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	Background:
	Latent Semantic Analysis (LSA) has been successfully used in applications such as Speech Recognition, Natural Language Processing, Cognitive Modeling, Document Classification and Cross Language Information Retrieval. LSA is based on Singular Value Decomposition (SVD) which has many applications. In particular an early and major use of SVD is in noise removal and dimension reduction. In latent semantic analysis we extract hidden information about the relationships between objects as they change when we set all, but the most significant, singular values to zero.


	Purpose:  
	The purpose of this lab is to get a basic understanding of the singular value decomposition (and LSA) and to learn how these can be applied.


	Resources:  
	MATLAB: http://www.mathworks.com 

http://www.bluebit.gr/matrix-calculator/


	Directions:
	Read the tutorial thoroughly and complete the excercises along the way.


	Exercises:


Let 
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, we decompose M into three matrices using Singular Value Decomposition:

If n > m:
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If n < m:
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If n = m:
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where 
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. The matrix S contains the singular values located in the [i,i]1,..,n cells in decreasing order of magnitude and all other cells contain zero. The eigenvectors of MMT make up the columns of U and the eigenvectors of MTM make up the columns of V. The matrices U and V are orthogonal, unitary and span vector spaces of dimension n and m, respectively. The inverses of U and V are their transposes.
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The columns of U are the principal directions of the columns of the original dataset and the rows of VT are the principal directions of the rows of the original dataset. The principal directions are ordered according to the singular values and therefore according to the importance of their contribution to M.

The singular value decomposition is used by setting some singular values to zero, which implies that we approximate the matrix M by a matrix:
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A fundamental theorem by Eckart and Young states that Mk is the closest rank-k least squares approximation of M [10]. This theorem can be used in two ways. To reduce noise by setting insignificant singular values to zero or by setting the majority of the singular values to zero and keeping only the few influential singular values in a manner similar to principal component analysis. 

In latent semantic analysis we extract information about the relationships between calls and features as they change when we set all, but the most significant, singular values to zero. The singular values in S provide contribution scores for the principal directions in U and VT.

We use the terminology “principal direction” for the following reason. In zoomed clusters it was shown that (assuming unit vectors) the principal eigenvector is an “iterated centroid” that is a version of the notion of centroid, where outliers are given a lower weight [17]. Furthermore, in text analysis it is usual to consider that the main information is provided by the direction of the vectors rather than by their length.
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We first decompose M into three matrices using the singular value decomposition.
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From looking at S, we can see that the first singular value is much higher than the 2nd singular value. By only considering the first singular value and the corresponding eigenvectors of U and VT we can find a best fit least squares approximation.
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Noise removal
	M =
	0.283
	0.839
	0.350
	0.603
	0.239
	0.691
	0.500
	0.500
	0.724
	0.384

	
	0.701
	0.781
	0.383
	0.745
	0.603
	0.623
	0.771
	0.766
	0.653
	0.636

	
	0.583
	0.659
	0.279
	0.648
	0.427
	0.604
	0.658
	0.631
	0.688
	0.446

	
	0.829
	0.129
	0.080
	0.462
	0.577
	0.218
	0.657
	0.593
	0.330
	0.395

	
	0.742
	0.527
	0.232
	0.645
	0.520
	0.535
	0.731
	0.688
	0.645
	0.476

	
	0.528
	0.668
	0.313
	0.611
	0.458
	0.533
	0.604
	0.603
	0.556
	0.491

	
	0.028
	1.001
	0.461
	0.549
	0.183
	0.676
	0.343
	0.406
	0.584
	0.442

	
	0.577
	0.533
	0.223
	0.571
	0.395
	0.528
	0.610
	0.579
	0.622
	0.386

	
	0.327
	0.926
	0.418
	0.655
	0.338
	0.699
	0.545
	0.572
	0.685
	0.514

	
	0.710
	0.260
	0.127
	0.485
	0.492
	0.315
	0.617
	0.571
	0.409
	0.388

	
	0.283
	0.839
	0.350
	0.603
	0.239
	0.691
	0.500
	0.500
	0.724
	0.384

	
	0.701
	0.781
	0.383
	0.745
	0.603
	0.623
	0.771
	0.766
	0.653
	0.636
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We decompose M using the singular value decomposition…
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and set the insignificant singular values in S to zero, since these represent noise.
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So from M, we can see that M’ is the best fit least squares approximation of M.
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In our collection we have the three documents below. From these documents, we can construct a term by document matrix M by only considering the meaningful words in every document.

d1:   Survey of ordered trees
d2:   Graph of paths in trees
d3:   Survey of paths in spanning trees
	
	            d1  d2   d3

	survey
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Usually a weighting scheme is applied to the term by document matrix such as the log entropy as seen below:
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Where Fi,j is the word frequency i in sequence j, gi is the total number of times word i occurs in the sequences and N is the number of sequences in the corpus.
However, in this small example we are only concerned with understanding the concepts of LSA, so we will simply use the frequency of the words in the documents with no weighting scheme applied.



As our query, we will use the document q mapped into the same space as our training documents:

q:   spanning trees of a graph
[image: image21.png]



We will now decompose the matrix M using the Singular Value Decomposition. This can be done using online software such as Matlab or the Bluebit Matrix Calculator: http://www.bluebit.gr/matrix-calculator/
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By keeping the first two columns of U and V and the first two columns and rows of S we have a rank-2 approximation of M.
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In this new space, we have that the rows of U are the coordinates of the terms and the columns of VT are the coordinates of the documents. e also have that the columns of U are the principal direction of the documents and the rows of VT are the principal direction of the terms.

	Terms
	Term Coordinates
	
	Document Coordinates

	Survey
	-0.461
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Now we find the new query coordinates with the reduced 2-dimensional space using  [image: image25.png]q=q U5t
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We use cosine scoring:

[image: image27.png]sim(d1, 42) = aiq; / |afay X afa;




So from V we find the document coordinates, or they can be found also by  [image: image29.png]d=
=dTU,S;?
S




d1(-0.5,0.707)

d2(-0.5,-0.707)

d3(-0.707,0)

as demonstrated above, we find the query coordinates by  [image: image31.png]q=q U5t




q(-0.4268,-0.3536)

We can now use these coordinates for cosine scoring as follows:
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So from this, we can rank the documents by largest to smallest and find that d2 is most similar to our query.

d2 > d3 > d1
But for this example in 2 dimensions we can look at the plotted vectors of the documents:
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Similarly, we can look at the plotted vectors of the terms:
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1. What terms / documents are most similar to our query?

2. What seems to be the reason behind this similarity?
3. Why do you think LSA groups the words: spanning and trees together?

4.  What can be learned by looking at the columns of U and V?

5. Now find or make a collection of three documents like we did in this example. After you have the three documents, complete the LSA steps in this tutorial as we did in the example above. Record all the details and write up your findings.
6. Go on Google Scholar and list a few recent applications of SVD/LSA in bioinformatics.
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