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Modeling Dynamic Graphs

1. ldentify dynamic patterns in node behavior
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Evolving mixed-role memberships

Role 1 Role 2

Role 3 Role 4
Role 5 Role 6
Role 7 Role 8

Role contributions

2. Predict future 3. Detect unusual
structural changes transitions in behavior

o

Transition from
star to clique




Dynamic Behavioral Mixed-Membership
(DBMM) Model
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The DBMM model is: (1) Scalable for BIG graphs (2) Easily parallelizable
(3) Non-parametric & data-driven (4) Flexible and interpretable



Predicting Structural Behavior
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All models predict G, using G, as
fc+1 = G¢T

Summary model: Weight training
examples from k previous timesteps

Frobenius Loss
o

Baseline models: Predict future role
; 2‘0 - - 8‘0 o = based on

Time
Twitter (1) previous role
(2) average role distribution

DBMM is more accurate at predicting future behavior than baselines



Dynamic Network Analysis with Roles

Role transition  Role proportions
matrices over t'ime

Roles exhibit many of the
traditional time-series patterns

SN  Stationary ro'es Roles are interpretable

Fit role-model to matrix of
network statistics:
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Anomalous Structural Transitions

Problem: detect nodes with
unusual structural transitions

er) 2 (s—center) 3 (s—center) 4 (s-center) 5 (s—center) s—center) 7 (s—center) 8 (s—center) 9 (s—

11 (s—edge) 12 (s—edge) 13 (s-edge) 14 (s—edge) 15 (s—edge) 16 (s—edge) 17 (s—edge) 18 (s—edge) 19 (s—edge) 20 (s-edge)

Anomaly Score 2 (bridge) 23 (bridge) 4 (bridge) 25 (bridge) 26 (bridge)
1. Estimate transition model T for v 6 I JICH O OO0 JOGED UG OOOE O

2. Use it to predict v's memberships Inject anomalies into synthetic data:
3. Take the difference from actual Detected 88.5% over 200 repeated trials

8 (bridge) 29 (bridge) 30 (bridge)

DBMM model finds nodes that are anomalous for only short time-periods

Time-varying |
anomalies |
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