

Modeling Dynamic Behavior in Large Evolving Graphs

Ryan A. Rossi, Brian Gallagher, Jennifer Neville, Keith Henderson

Modeling Dynamic Graphs

1. **Identify** dynamic patterns in node behavior

Evolving mixed-role memberships

Role contributions

2. **Predict** future structural changes

Transition from star to clique

3. **Detect** unusual transitions in behavior

Dynamic Behavioral Mixed-Membership (DBMM) Model

- 1. Compute set of features
- 2. Estimate the features on each snapshot graph
- 3. Learn roles from features using NMF, number of roles selected via MDL
- 4. Extract roles from each feature matrix over time
- 5. Use NMF to estimate transition model

The DBMM model is: (1) Scalable for **BIG** graphs (2) Easily parallelizable (3) Non-parametric & data-driven (4) Flexible and interpretable

Predicting Structural Behavior

Given G_{t-1} and G_t find a transition model T that minimizes the functional:

$$f(\mathbf{G}_t, \mathbf{G}_{t-1}) = \frac{1}{2} ||\mathbf{G}_t - \mathbf{G}_{t-1}\mathbf{T}||_F^2$$

All models predict G_{t+1} using G_t as $G_{t+1}' = G_t T$

<u>Summary model</u>: Weight training examples from k previous timesteps

Baseline models: Predict future role based on

- (1) previous role
- (2) average role distribution

DBMM is more accurate at predicting future behavior than baselines

Dynamic Network Analysis with Roles

Anomalous Structural Transitions

Problem: detect nodes with unusual structural transitions

Anomaly score:

- 1. Estimate transition model T for v
- 2. Use it to predict v's memberships
- 3. Take the difference from actual

Inject anomalies into synthetic data: Detected 88.5% over 200 repeated trials

DBMM model finds nodes that are anomalous for only short time-periods

