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Introduction

e Although relational dependencies have been successfully exploited in
classification models, most approaches ignore temporal network information
and only consider static network snapshots

e However, many relational domains have
both network structure and attributes ©||O O

changing over time O

e For example, in social media there
can be temporal dynamics in both

the communication structure and G‘ G‘ .
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e Events in the recent past are more
influential than events in distant past 0O O
e Regular series of events are likely W
to indicate stronger relationships OI sentity content .. » O
than events isolated in time l{ TvTe

Data: Python Open Source Development

¢ \\We extracted emails and bug discussions from the open-source python
development environment (01/01/07 - 09/30/08)
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e Fvery temporal snapshot /
corresponds to the events G,
that occurred during the
time period J.
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* The size of the temporal snapshots are three month periods.

e Goal: Predict individual developer effectiveness (has closed bug) given the
communications between developers and their latent topics.

Textual Analysis: Interpreting Links and Nodes
e |[nitial dataset has only developer emails and bug discussions

e Network Annotation: Automatically annotate the links and nodes by
discovering the latent topics of the communications between individuals

e Motivation:

* |n the task of predicting effectiveness we may find that communications
about specific topics may indicate more productive interactions

e For example, communications about ‘sports’ may correspond to less effective
interactions than those discussing ‘web programming’

e \We have developed a simple method for assigning such semantics to the links
and nodes in a text-based network.

e Use LDA to identify communication topics

e | abel each communication link with it’s most likely latent topic and each
individual with their most frequent topic of communication.
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Temporally-Evolving Network Classifier

e Phase 1: Model Temporal Influence of Links and Attributes

e Transform dynamic graph into statically weighted summary graph and set of
weighted summary attributes using kernel smoothing (exponential kernel)
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e \Weights can be viewed as probabilities that a relationship (or attribute value)
is still active at the current time step t, given that it was observed at time (t-k)
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e Phase 2: Incorporate Weights into Relational Classifier

e Use summary link and attribute weights in any arbitrary modified relational
classifier to moderate the conditional attribute dependencies throughout the
relational data graph

e \When relational attributes are considered by the model, the attribute values
are weighted by the product of their attribute weight and the corresponding
link weight
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Weighted mode: TVRC - red (T ) and TENC - blue(T,)

Results: Predicting Effectiveness
e \Weighting parameters 6 and A are selected using k-fold cross validation

e Models: TENC

] TVRC
Window Model
Union Model

e Method to automatically annotate network with latent link and node topics for
classification

0.95

e TENC: Incorporates the temporal
influence of both links and attributes
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e TVRC: Uses temporal information on

inks only
e Union Model: Uses unweighted '
summary network _
¢ \Window Model: Uses only the
Immediate past '
e Main Finding: TENC drastically improves 8

model performance over all models
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Conclusions
e Main Contributions:

® Designed classifier to model and leverage the evolution of both links and
latent topics

* Modeling the temporal dynamics of the latent topics results in a significant
improvement for predicting individual effectiveness

* The results illustrate the opportunity for modeling both the time-varying
communication links and the temporally evolving latent topic attributes



