
Temporally-Evolving Network Classifier

• Phase 1: Model Temporal Influence of Links and Attributes


• Transform dynamic graph into statically weighted summary graph and set of 
weighted summary attributes using kernel smoothing (exponential kernel)


• Weights can be viewed as probabilities that a relationship (or attribute value) 
is still active at the current time step t, given that it was observed at time (t-k)
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Introduction

• Although relational dependencies have been successfully exploited in 

classification models, most approaches ignore temporal network information 
and only consider static network snapshots


• However, many relational domains have "
both network structure and attributes "
changing over time


• For example, in social media there "
can be temporal dynamics in both "
the communication structure and "
message/document content


• We aim to exploit these dependencies "
between temporal and relational "
information to improve predictive "
accuracy


• Key ideas:


• Events in the recent past are more "
influential than events in distant past


• Regular series of events are likely"
to indicate stronger relationships "
than events isolated in time
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Data: Python Open Source Development

• We extracted emails and bug discussions from the open-source python 

development environment  (01/01/07 - 09/30/08)


• 13181 email messages "
from 1914 developers


• 69435 bug comments "
from 5108 developers


• Let D = D1, D2,...,Dn be a "
sequence of temporal "
snapshots. 


• Every temporal snapshot i "
corresponds to the events "
that occurred during the "
time period i. 


• The size of the temporal snapshots are three month periods.


• Goal: Predict individual developer effectiveness (has closed bug) given the 
communications between developers and their latent topics.


Textual Analysis: Interpreting Links and Nodes

• Initial dataset has only developer emails and bug discussions


• Network Annotation: Automatically annotate the links and nodes by 
discovering the latent topics of the communications between individuals


• Motivation: 


• In the task of predicting effectiveness we may find that communications 
about specific topics may indicate more productive interactions


• For example, communications about ‘sports’ may correspond to less effective 
interactions than those discussing ‘web programming’


• We have developed a simple method for assigning such semantics to the links 
and nodes in a text-based network.


• Use LDA to identify communication topics


• Label each communication link with it’s most likely latent topic and each 
individual with their most frequent topic of communication.


Conclusions

• Main Contributions:


• Method to automatically annotate network with latent link and node topics for 
classification


• Designed classifier to model and leverage the evolution of both links and 
latent topics


• Modeling the temporal dynamics of the latent topics results in a significant 
improvement for predicting individual effectiveness


• The results illustrate the opportunity for modeling both the time-varying 
communication links and the temporally evolving latent topic attributes


Results: Predicting Effectiveness

• Weighting parameters θ and λ are selected using k-fold cross validation


• Models:


• TENC: Incorporates the temporal "
influence of both links and attributes


• TVRC: Uses temporal information on "
links only


• Union Model: Uses unweighted "
summary network


• Window Model: Uses only the "
immediate past


• Main Finding: TENC drastically improves !
model performance over all models 


• Phase 2: Incorporate Weights into Relational Classifier


• Use summary link and attribute weights in any arbitrary modified relational 
classifier to moderate the conditional attribute dependencies throughout the 
relational data graph


• When relational attributes are considered by the model, the attribute values 
are weighted by the product of their attribute weight and the corresponding 
link weight



