A Multi-Level Approach for Evaluating Internet Topology Generators

Ryan Rossi¹, Sonia Fahmy¹, Nilothpal Talukder^{1,2} ¹Purdue University, IN ²Rensselaer Polytechnic Institute, NY Email: {rrossi,fahmy}@cs.purdue.edu, talukn@cs.rpi.edu

May 23, 2013

1/24

Motivation

Why Topology Generators?

- Generate representative network topologies of different sizes
- Used for experiments to design protocols, predict performance, and understand robustness and scalability of the future Internet
- Unfortunately, many fail to capture static and evolutionary properties of today's Internet, e.g., assume average path length and clustering coefficient constant

Our goal:

- Determine how to quantitatively assess a generator through a multi-level hierarchy of graph, node and link measures
- Focus on 2 popular generators: Orbis [SIGCOMM06] and WIT [INFOCOM07]
- Validate using different views of the Internet: data (traceroute), control (BGP tables), and management (WHOIS) planes

Taxonomy of Topology Generators

Generators	Process	Model Type	Topology	
WIT	Random-walks	Parametric	AS	
RSurfer		Parametric	N/A	
Orbis		Data-driven	AS & RL	
НОТ	Optimization	Parametric	RL	
Mod. HOT		Parametric	AS	
AB		Parametric	N/A	
BRITE	Preferential	Data-driven	AS & RL	
Inet	Attachment	Parametric	AS	
GLP		Parametric	AS	
SWT	Geometry	Parametric	AS & RL	
GT-ITM	Geometry	Parametric	AS & RL	

Orbis Topology Generator [SIGCOMM 2006]

- Series of measures based on degree correlations
- The first few *dK* distributions are:
 - 0K (average degree)
 - 1K (degree distribution: P(k) = n(k)/n)
 - ▶ 2K (joint degree distribution: $P(k_1, k_2) = m(k_1, k_2)\mu(k_1, k_2)/(2m)$, where $\mu(k_1, k_2) = 2$ if $k_1 = k_2$, otherwise 1)
 - ▶ 3K (wedges and triangles), etc.
- Fails to capture global characteristics
- d must be small in practice due to increasing complexity
- Relies on rescaling technique; inaccurate as topology becomes larger

WIT Topology Generator [INFOCOM 2007]

- Captures the "wealth" of ISPs over time
- Multiplicative stochastic process, u_i(t) = λ_i(t) u_i(t − 1), where u_i(t) is the unscaled wealth and λ_i(t) is an independent random variable
- $w_i(t)$ is the normalized wealth for node *i*, and $z_i(t) = C \cdot d_i(t)$ is the expense
- In each iteration,
 - If w_i(t) − z_i(t) > C + T, place a link between the node i and an arbitrary node by randomly walking *I*-steps from i
 - If $w_i(t) z_i(t) > -T$, remove a random link of node *i*
- ► Threshold *T* is carefully chosen to avoid oscillation

Orbis versus WIT

- WIT attempts to model the evolution of the AS topology
 - ► Fails when the underlying process and growth of the Internet change
- Orbis generates topologies that preserve a set of measures
 - Fails if the set of characteristics is incomplete w.r.t. the actual AS topology
- What is the best representative set of local and global measures?

Network Properties

Measure		Importance in Computer Networks				
≜ L	Degree	Fault tolerance, local robustness				
LOCAL	Assortativity					
	Clustering coefficient	Path diversity, fault tolerance, local ro- bustness				
	Distance	Scalability, performance, protocol design				
GLOBAL	Betweenness	Traffic engineering, potential congestion points				
	Eigenvector	Network robustness, performance, clus- ters/hierarchy, traffic engineering				

Measures Used

The order of evaluation measures in terms of the difficulty of preservation

$\textbf{Link} \geq \textbf{Node} \geq \textbf{Graph}$

Graph Measures

- Traditional: Average degree, Assortativity coefficient, Average clustering and Average distance, etc.
- ► Additional: largest singular value (λ₁), Network conductance (λ₁ − λ₂), radius, and diameter, etc.

Node Measures

- Traditional: Degree distribution, Clustering coefficient, distance, eccentricity, betweenness, etc.
- Additional: Network values, Scree Plots, K-walks, K-core, etc.

Measures Used (cont'd)

Link Measures

- Order of the nodes with respect to the magnitude of their coordinates along the principal direction
- The closest k-approximation of the topology

Community measures

Louvain's modularity

Measures Used (cont'd)

Quantitative Measures

- Graph based:
 - The normalized root-mean-square error (NRMSE)

$$D_{NRMSE}(\vec{x}, \hat{\vec{x}}) = \frac{\mathbb{E}[(\vec{x} - \hat{\vec{x}})^2]}{\max(\vec{x}, \hat{\vec{x}}) - \min(\vec{x}, \hat{\vec{x}})}.$$

- Node based:
 - Kolmogorov-Smirnov (KS): $KS(F_1, F_2) = \max_x |F_1(x) F_2(x)|$.
 - Kullback-Leibler (KL) divergence:

$$D_{KL}(P||Q) = \sum_{i} P(i) \ln \frac{P(i)}{Q(i)}$$

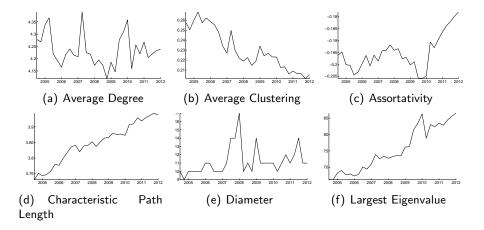
・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ 日 ・ 10/24

Learning Graph Measures [ReFeX, SIGKDD 2011]

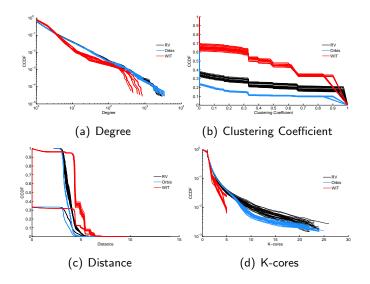
Instead of selecting a set of graph measures, we automatically learn a set of graph measures recursively.

- 1. **Base set of measures.** The process starts by computing degree (in/out/total edges) and egonet measures (in/out egonet).
 - egonet includes the node, its neighbors, and any edges in the induced subgraph on these nodes.
- Aggregate measures. The existing measures of a node are aggregated to create additional measures by taking the sum/mean of the neighbors (done in a recursive fashion). One simple measure is the mean value of the degree among all neighbors of a node.
- 3. **Prune correlated measures.** At each iteration, we test for redundant measures using a simple correlation test, and remove all measures that are highly correlated.
- 4. **Stopping Criteria.** Repeat steps 2-3 until no new measures are retained.

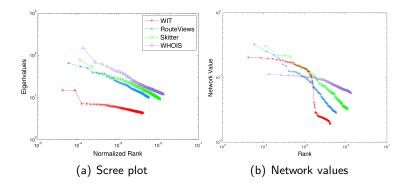
Evaluation Strategy


- 1. Given G_n^* of size *n*, generate same size graph G_n s.t. $\mathcal{M}(G_n) \approx \mathcal{M}(G_n^*)$
- 2. Given G_n^* of size *n*, generate G_m of size *m* where $m \ge n$ s.t. $\mathcal{M}(G_m) \approx \mathcal{M}(G_n^*)$
- 3. Given an ordered sequence G_t^* for t = 1, 2, ..., m, generate a corresponding sequence G_t for t = 1, 2, ..., m s.t. G_t is the same size as G_t^* and $\mathcal{M}(G_t) \approx \mathcal{M}(G_t^*)$

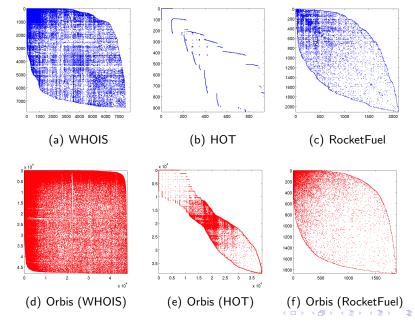
Datasets for Validation


- Skitter traceroute
- RouteViews' BGP tables (RV)¹
- RIPE's WHOIS
- HOT
- RocketFuel

¹AS-level subgraphs for 2004-2012


Results: Graph Measures

Results: Node Measures



Results: Node Measures

・ロ ・ ・ 日 ・ ・ 言 ・ く 言 ・ う ミ ・ う へ や 16/24

Results: Link Measures

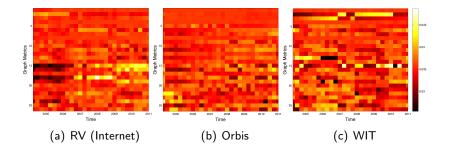
17 / 24

Results: Quantitative Measures

Table : Quantitative Evaluation of Orbis using KS Distance.							
	Deg.	СС	Ecc.	Kcores	PR	EigDiff	Net-Value
Нот	0.009	0.000	0.000	0.078	0.067	0.588	0.131
\mathbf{RF}	0.013	0.450	0.000	0.088	0.215	0.629	0.680
WHOIS	0.059	0.480	0.224	0.060	0.536	0.169	0.159
Skitter	0.010	0.211	0.029	0.009	0.342	0.096	0.182

Results: Community Measures

			Communities	Q	Nodes	Edges	Degree	СС
	Rou	teViews	24	0.65	3951	13360	3.38	0.45
2004	Orbis		46	0.48	957	2254	2.36	0.10
	WIT		57	0.92	755	2653	3.51	0.64
2011	RouteViews		34	0.68	6048	18496	3.06	0.22
	Orbis		60	0.48	2347	5640	2.40	0.12
_	WIT		66	0.94	2095	11727	5.60	0.45
			Commu	nities	C-path	Radius	Diameter	
-		RouteVi	ews 24		2.74	3	6	-
	2004	Orbis	46		3.01	4	8	
		WIT	57		2.75	4	7	
	2011	RouteVi	EWS 34		3.27	5	9	_
		Orbis	60		2.91	4	8	
		WIT	66		3.44	5	10	


Table : Evaluating the Community Structure of the Topologies.

Results: Selected versus Learned Measures

20 / 24

Results: Learned Graph Measures

Conclusions

- We propose a multi-level framework for understanding Internet topologies, and evaluating generators (focus on Orbis, WIT)
- We leverage both macro measures (graph) and micro measures (node and link measures) to accurately compare topologies
- We show that the existing generators fail to capture static and evolutionary properties of the Internet AS topology
- Data-driven generators generate static topologies with little or no variance
- Parametric generators typically cannot accurately model Internet evolution

Future Directions

- Investigate additional topology generators
- Develop a parameter estimation technique for WIT and analyze its behavior with the refined parameters
- Study Internet evolution and investigate causes for the changes we observed

Thank you. Questions?

◆□> ◆□> ◆注> ◆注> □注:

24 / 24