空なる証明の道

Ku naru shoh-mei no michi

The way of the empty proof L'art de la preuve vide

If you have the right definition you have a simpler proof.

If you have the right data structures, you have a simpler algorithm.

If you have the right.....

Power of Elimination

除去の力

Tarski's Meta-theorem

To any formula $Φ(X_1, X_2,....,X_m)$ in the vocabulary $\{0,1,+,.,=,<\}$ one can effectively associate two objects:

- (i) a quantifier free formula $\theta(X_1,....,X_m)$ in the same vocabulary and
- (ii) a proof of the equivalence $\Phi \leftarrow \rightarrow \theta$ that uses the axioms for real closed fields.

$$\exists x \ ax^2 + b + c = 0$$

If and only if $b^2 - 4ac > 0$

Resolution: Tarski's Meta-theorem for Logic

Elimination not restricted to algebra and geometry

$$362x - 9y \le 55$$

 $2(63x + 2y \le -2)$
 $0x - 7y \le 13$

Used in automated theorem proving (algebra, geometry & logic)

But...

However...

Can be used in special cases to prove theorems by hand

The elimination of the proof is an ideal seldom reached

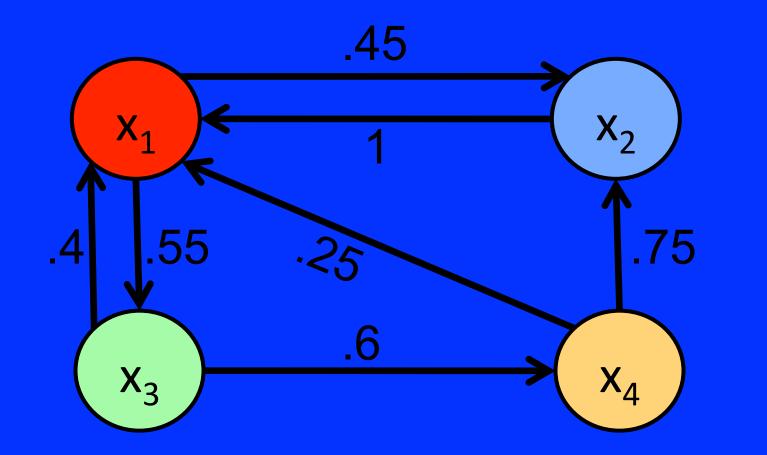
Elimination gives us the heart of the proof

Markov's Ergodic Theorem (1906)

Any irreducible, finite, aperiodic Markov Chain has all states Ergodic (reachable at any time in the future) and has a unique stationary distribution, which is a probability vector.

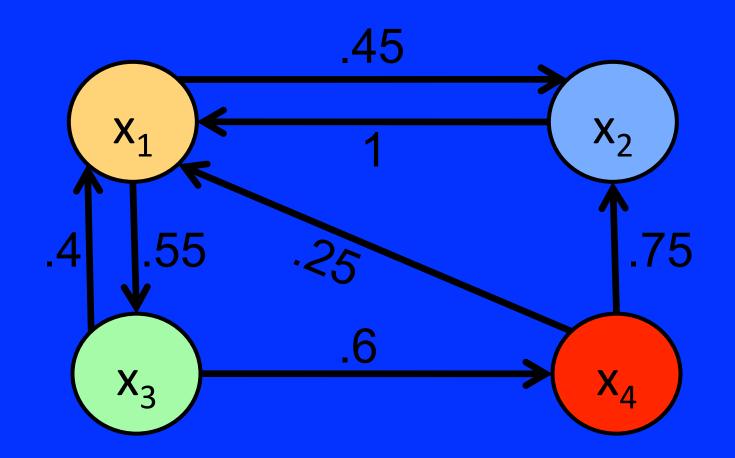
Probabilities

after 15 steps	30 steps	100 steps	500 steps	1000 steps
X1 = .33	X1 = .33	X1 = .37	X1 = .38	X1 = .38
X2 = .26	X2 = .26	X2 = .29	X2 = .28	X2 = .28
X3 = .26	X3 = .23	X3 = .21	X3 = .21	X3 = .21
X4 = .13	X4 = .16	X4 = .13	X4 = .13	X4 = .13



Probabilities

after 15 steps	30 steps	100 steps	500 steps	1000 steps
X1 = .46	X1 = .36	X1 = .38	X1 = .38	X1 = .38
X2 = .20	X2 = .26	X2 = .28	X2 = .28	X2 = .28
X3 = .26	X3 = .23	X3 = .21	X3 = .21	X3 = .21
X4 = .06	X4 = .13	X4 = .13	X4 = .13	X4 = .13



$$p_{11}x_1 + p_{21}x_2 + p_{31}x_3 = x_1$$

$$p_{12}x_1 + p_{22}x_2 + p_{32}x_3 = x_2$$

$$p_{13}x_1 + p_{23}x_2 + p_{33}x_3 = x_3$$

$$\sum x_i = 1$$

$$x_i \ge 0$$

You can view the problem in three different ways:

- Principal eigenvector problem
- Classical Linear Programming problem
- Elimination problem

Difficulties as an Eigenvector Problem

- Notion of convergence
- Deal with complex numbers
- Uniqueness of solution

 Need to use theorems: Perron-Frobenius, Chapman, Kolmogoroff, Cauchy... and/or restrictive hypotheses....

Symbolic Gaussian Elimination

System of two variables:

$$p_{11}x_1 + p_{21}x_2 = x_1$$

 $p_{12}x_1 + p_{22}x_2 = x_2$
 $\sum x_i = 1$

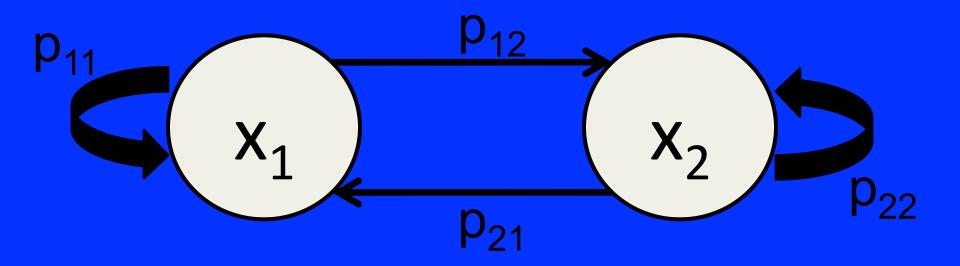
With Maple we find:

$$x_1 = p_{21}/(p_{21} + p_{12})$$

 $x_2 = p_{12}/(p_{21} + p_{12})$

$$x_1 = p_{21}/(p_{21} + p_{12})$$

 $x_2 = p_{12}/(p_{21} + p_{12})$



Symbolic Gaussian Elimination

Three variables:

$$p_{11}x_1 + p_{21}x_2 + p_{31}x_3 = x_1$$

$$p_{12}x_1 + p_{22}x_2 + p_{32}x_3 = x_2$$

$$p_{13}x_1 + p_{23}x_2 + p_{33}x_3 = x_3$$

$$\sum x_i = 1$$

With Maple we find:

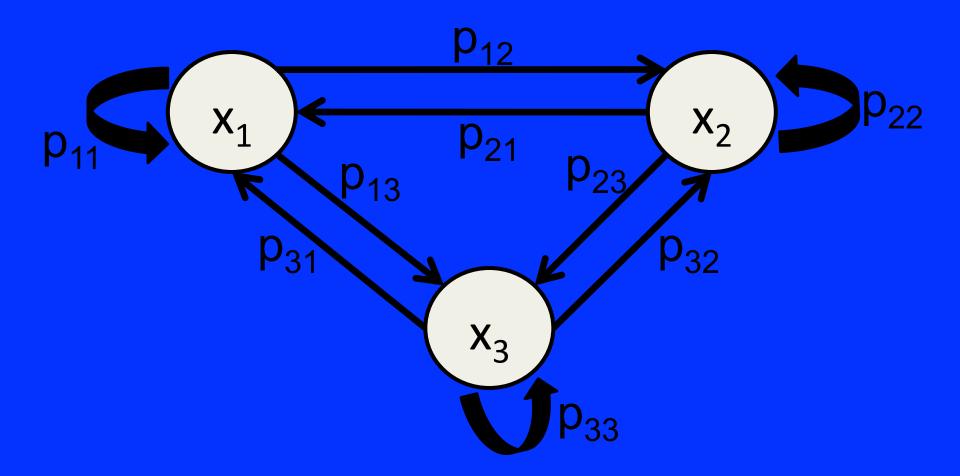
$$x_1 = (p_{31}p_{21} + p_{31}p_{23} + p_{32}p_{21}) / \Sigma$$

 $x_2 = (p_{13}p_{32} + p_{12}p_{31} + p_{12}p_{32}) / \Sigma$
 $x_3 = (p_{13}p_{21} + p_{12}p_{23} + p_{13}p_{23}) / \Sigma$

$$\Sigma = (p_{31}p_{21} + p_{31}p_{23} + p_{32}p_{21} + p_{13}p_{32} + p_{12}p_{31} + p_{12}p_{32} + p_{13}p_{21} + p_{12}p_{23} + p_{13}p_{23})$$

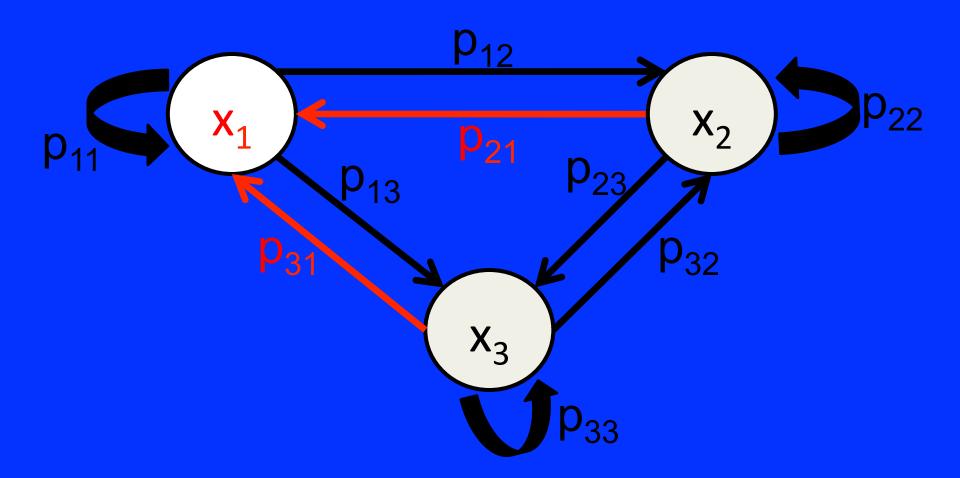
$$x_1 = (p_{31}p_{21} + p_{23}p_{31} + p_{32}p_{21}) / \Sigma$$

 $x_2 = (p_{13}p_{32} + p_{31}p_{12} + p_{12}p_{32}) / \Sigma$
 $x_3 = (p_{21}p_{13} + p_{12}p_{23} + p_{13}p_{23}) / \Sigma$



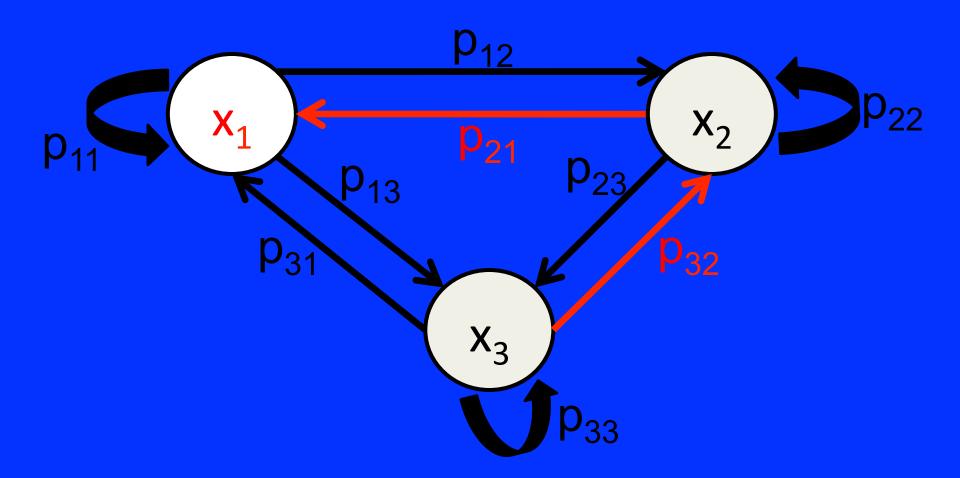
$$x_1 = (p_{31}p_{21} + p_{23}p_{31} + p_{32}p_{21}) / \Sigma$$

 $x_2 = (p_{13}p_{32} + p_{31}p_{12} + p_{12}p_{32}) / \Sigma$
 $x_3 = (p_{21}p_{13} + p_{12}p_{23} + p_{13}p_{23}) / \Sigma$



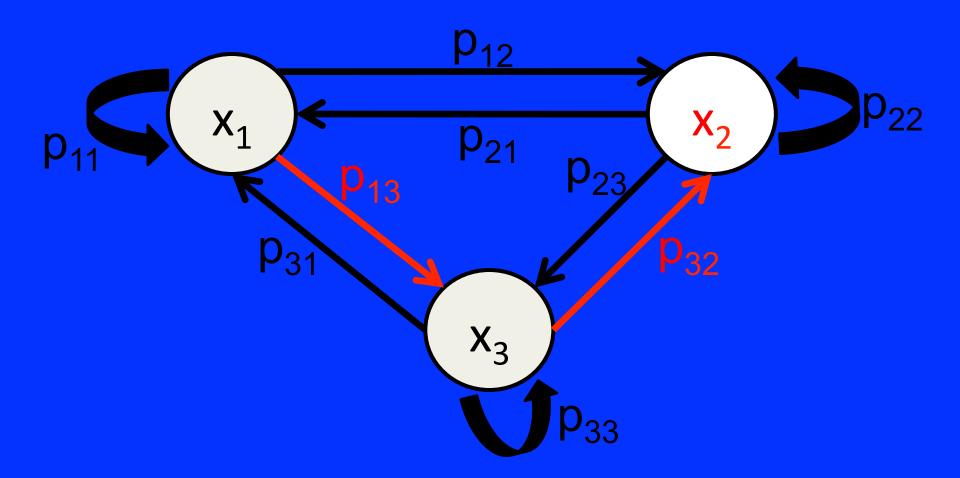
$$x_1 = (p_{31}p_{21} + p_{23}p_{31} + p_{32}p_{21}) / \Sigma$$

 $x_2 = (p_{13}p_{32} + p_{31}p_{12} + p_{12}p_{32}) / \Sigma$
 $x_3 = (p_{21}p_{13} + p_{12}p_{23} + p_{13}p_{23}) / \Sigma$



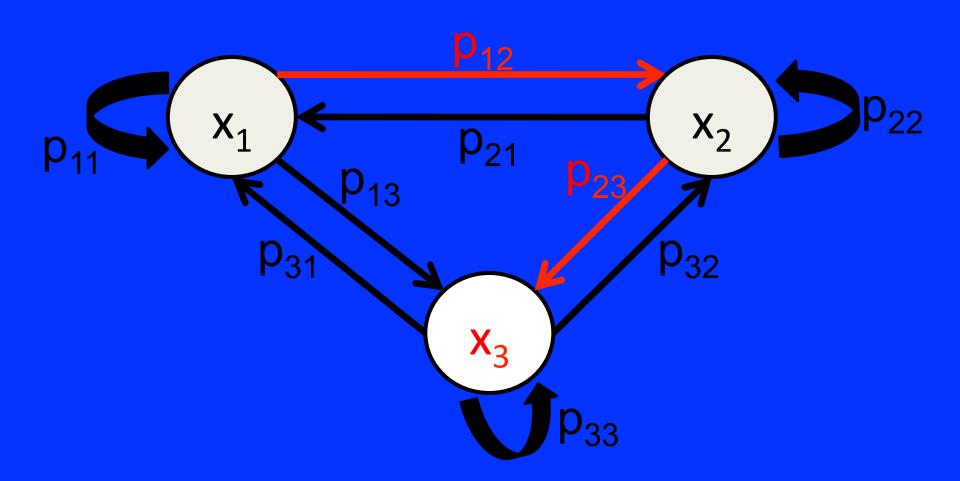
$$x_1 = (p_{31}p_{21} + p_{23}p_{31} + p_{32}p_{21}) / \Sigma$$

 $x_2 = (p_{13}p_{32} + p_{31}p_{12} + p_{12}p_{32}) / \Sigma$
 $x_3 = (p_{21}p_{13} + p_{12}p_{23} + p_{13}p_{23}) / \Sigma$



$$x_1 = (p_{31}p_{21} + p_{23}p_{31} + p_{32}p_{21}) / \Sigma$$

 $x_2 = (p_{13}p_{32} + p_{31}p_{12} + p_{12}p_{32}) / \Sigma$
 $x_3 = (p_{21}p_{13} + p_{12}p_{23} + p_{13}p_{23}) / \Sigma$



Do you see the LIGHT?

James Brown (The Blues Brothers)

Symbolic Gaussian Elimination

System of four variables:

$$p_{21}x_{2} + p_{31}x_{3} + p_{41}x_{4} = x_{1}$$

$$p_{12}x_{1} + p_{42}x_{4} = x_{2}$$

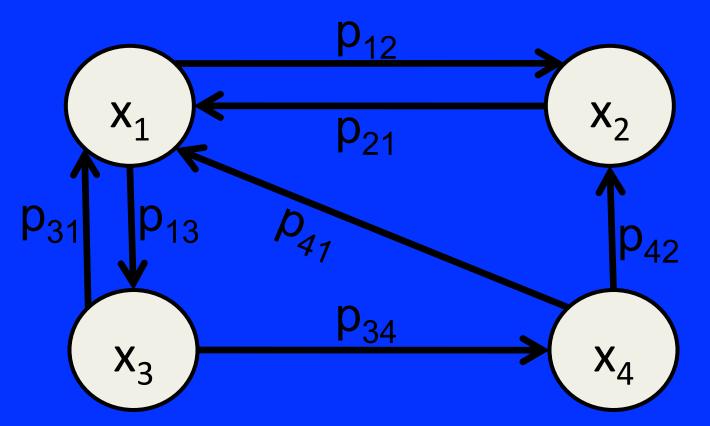
$$p_{13}x_{1} = x_{3}$$

$$p_{34}x_{3} = x_{4}$$

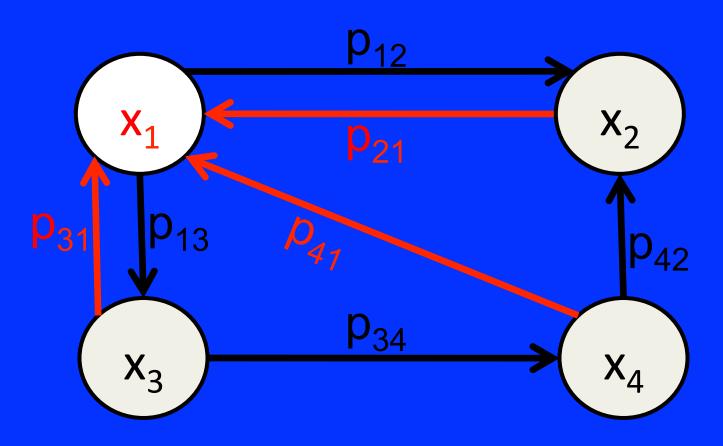
$$\sum x_{i} = 1$$

With Maple we find:

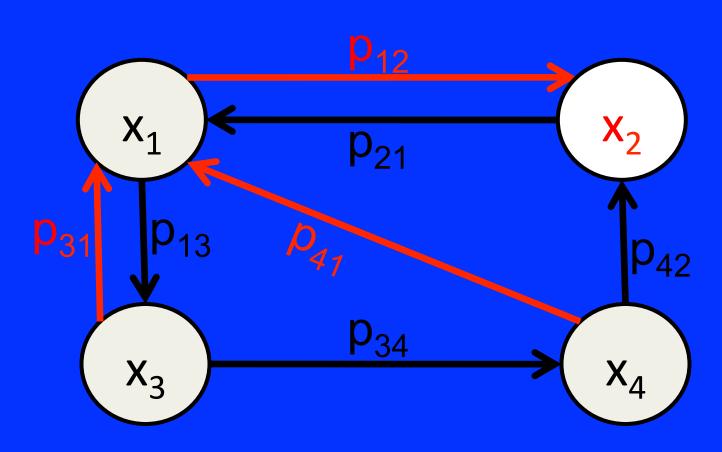
$$\begin{aligned} x_1 &= p_{21}p_{34}p_{41} + p_{34}p_{42}p_{21} + p_{21}p_{31}p_{41} + p_{31}p_{42}p_{21} / \Sigma \\ x_2 &= p_{31}p_{41}p_{12} + p_{31}p_{42}p_{12} + p_{34}p_{41}p_{12} + p_{34}p_{42}p_{12} + p_{13}p_{34}p_{42} / \Sigma \\ x_3 &= p_{41}p_{21}p_{13} + p_{42}p_{21}p_{13} / \Sigma \\ x_4 &= p_{21}p_{13}p_{34} / \Sigma \end{aligned}$$



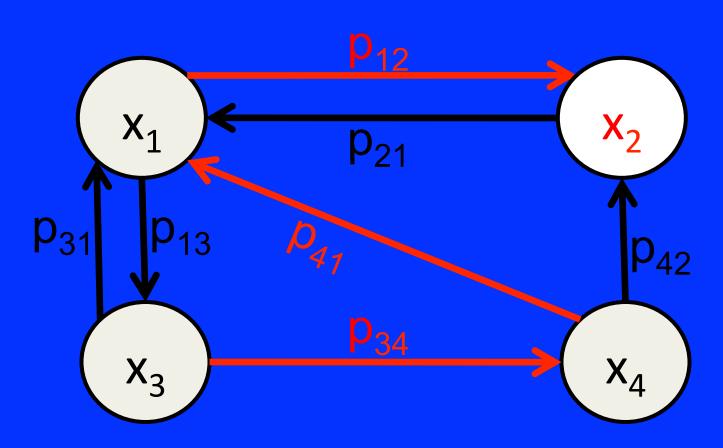
$$\begin{array}{l} x_1 = p_{21}p_{34}p_{41} + p_{34}p_{42}p_{21} + p_{21}p_{31}p_{41} + p_{31}p_{42}p_{21} / \Sigma \\ x_2 = p_{31}p_{41}p_{12} + p_{31}p_{42}p_{12} + p_{34}p_{41}p_{12} + p_{34}p_{42}p_{12} + p_{13}p_{34}p_{42} / \Sigma \\ x_3 = p_{41}p_{21}p_{13} + p_{42}p_{21}p_{13} / \Sigma \\ x_4 = p_{21}p_{13}p_{34} / \Sigma \end{array}$$



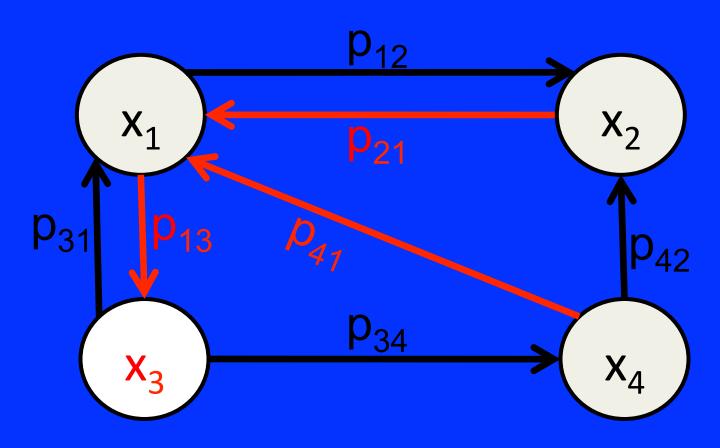
$$\begin{aligned} x_1 &= p_{21}p_{34}p_{41} + p_{34}p_{42}p_{21} + p_{21}p_{31}p_{41} + p_{31}p_{42}p_{21} / \Sigma \\ x_2 &= p_{31}p_{41}p_{12} + p_{31}p_{42}p_{12} + p_{34}p_{41}p_{12} + p_{34}p_{42}p_{12} + p_{13}p_{34}p_{42} / \Sigma \\ x_3 &= p_{41}p_{21}p_{13} + p_{42}p_{21}p_{13} / \Sigma \\ x_4 &= p_{21}p_{13}p_{34} / \Sigma \end{aligned}$$



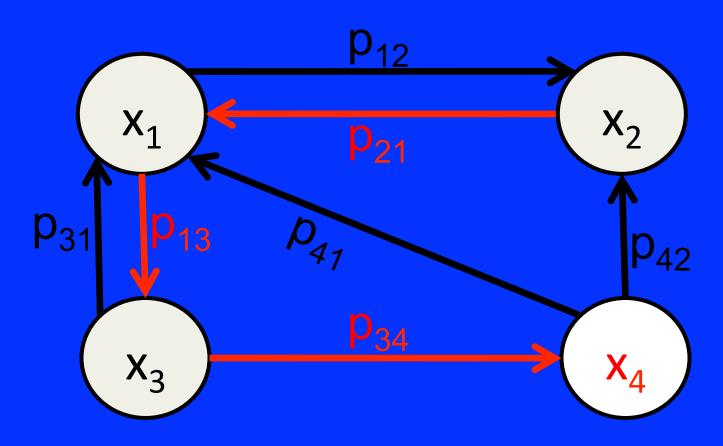
$$\begin{aligned} x_1 &= p_{21}p_{34}p_{41} + p_{34}p_{42}p_{21} + p_{21}p_{31}p_{41} + p_{31}p_{42}p_{21} / \Sigma \\ x_2 &= p_{31}p_{41}p_{12} + p_{31}p_{42}p_{12} + p_{34}p_{41}p_{12} + p_{34}p_{42}p_{12} + p_{13}p_{34}p_{42} / \Sigma \\ x_3 &= p_{41}p_{21}p_{13} + p_{42}p_{21}p_{13} / \Sigma \\ x_4 &= p_{21}p_{13}p_{34} / \Sigma \end{aligned}$$



$$\begin{aligned} x_1 &= p_{21}p_{34}p_{41} + p_{34}p_{42}p_{21} + p_{21}p_{31}p_{41} + p_{31}p_{42}p_{21} / \Sigma \\ x_2 &= p_{31}p_{41}p_{12} + p_{31}p_{42}p_{12} + p_{34}p_{41}p_{12} + p_{34}p_{42}p_{12} + p_{13}p_{34}p_{42} / \Sigma \\ x_3 &= p_{41}p_{21}p_{13} + p_{42}p_{21}p_{13} / \Sigma \\ x_4 &= p_{21}p_{13}p_{34} / \Sigma \end{aligned}$$



$$\begin{aligned} x_1 &= p_{21}p_{34}p_{41} + p_{34}p_{42}p_{21} + p_{21}p_{31}p_{41} + p_{31}p_{42}p_{21} / \Sigma \\ x_2 &= p_{31}p_{41}p_{12} + p_{31}p_{42}p_{12} + p_{34}p_{41}p_{12} + p_{34}p_{42}p_{12} + p_{13}p_{34}p_{42} / \Sigma \\ x_3 &= p_{41}p_{21}p_{13} + p_{42}p_{21}p_{13} / \Sigma \\ x_4 &= p_{21}p_{13}p_{34} / \Sigma \end{aligned}$$



Ergodic Theorem Revisited

If there exists a reverse spanning tree in a graph of the Markov chain associated to a stochastic system, then:

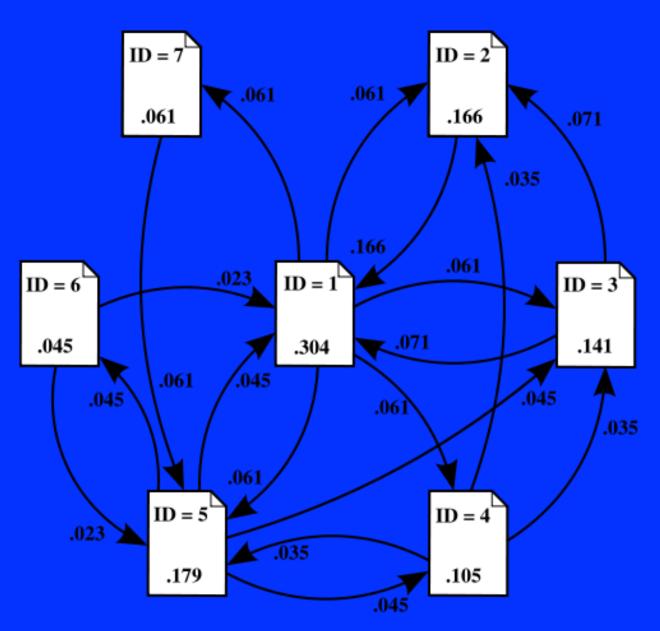
(a) the stochastic system admits the following probability vector as a solution:

$$\left\{x_i = \frac{W(i)}{\sum_j W(j)}\right\} i = 1, n$$

- (b) the solution is unique.
- (c) the conditions $\{x_i \ge 0\}_{i=1,n}$ are redundant and the solution can be computed by Gaussian elimination.

Internet Sites

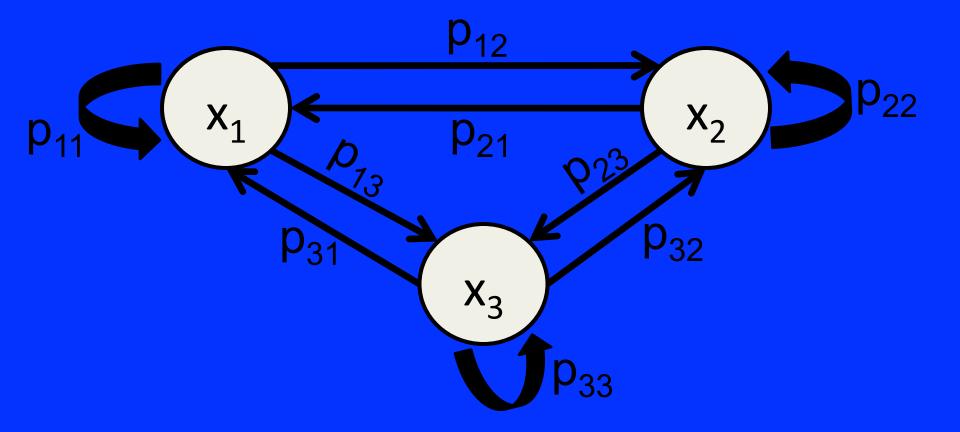
- Kleinberg
- Google
- SALSA
- In degree heuristic



Markov Chain as a Conservation System

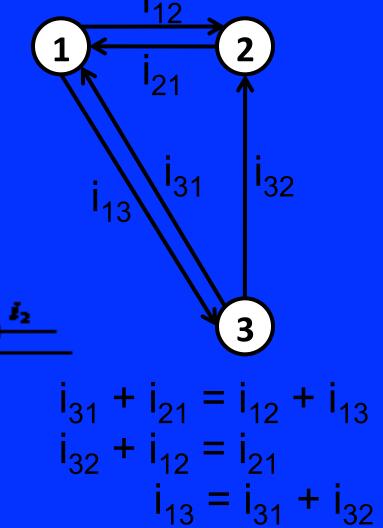
$$p_{11}x_1 + p_{21}x_2 + p_{31}x_3 = x_1(p_{11} + p_{12} + p_{13})$$

 $p_{12}x_1 + p_{22}x_2 + p_{32}x_3 = x_2(p_{21} + p_{22} + p_{23})$
 $p_{13}x_1 + p_{23}x_2 + p_{33}x_3 = x_3(p_{31} + p_{32} + p_{33})$



Kirchoff's Current Law

The sum of currents
 flowing towards a node is
 equal to the sum of
 currents flowing away
 from the node.



$$i_3 + i_2 = i_1 + i_4$$

Kirchoff's Matrix Tree Theorem (1847)

For an n-vertex digraph, define an n x n matrix A such that A[i,j] = 1 if there is an edge from i to j, for all $i \neq j$, and the diagonal entries are such that the row sums are 0.

Let A(k) be the matrix obtained from A by deleting row k and column k. Then the absolute value of the determinant of A(k) is the number of spanning trees rooted at k (edges directed towards vertex k)

Two theorems for the price of one!!

Differences

- Kirchoff theorem perform n gaussian eliminations
- Revised version only two gaussian

Minimax Theorem

- Fundamental Theorem in Game Theory
- Von Neumann & Kuhn

 Minimax Theorem brings certainty into the world of probabilistic game theory.

Applications in Computer Science, Economics
 & Business, Biology, etc.

Minimax Theorem

$$max(x + 2y)$$

$$11z \le 30/11$$

$$-233 \le 2$$

$$0 \le z \le 1$$

max value z can take is min value of the right hand side

min value z can take is max value of the left hand side

Duality Theorem

If the primal problem has an optimal solution,

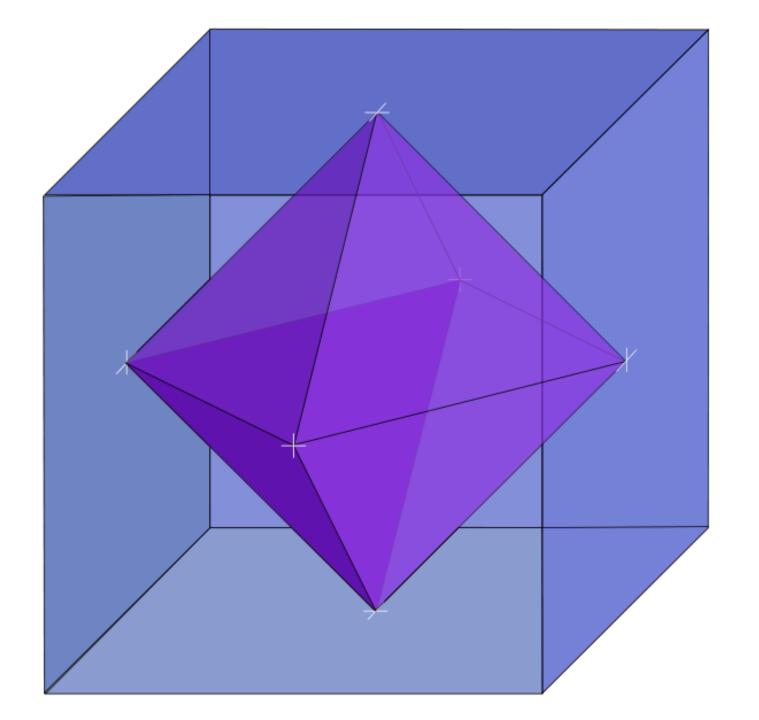
$$x^* = (x_1^*, x_2^*, \dots, x_n^*)$$

then the dual also has an optimal solution,

$$y^* = (y_1^*, y_2^*, \dots, y_m^*)$$

and

$$\max \sum_{j} c_{j} x_{j} = \min \sum_{i} b_{i} y_{i}$$



幾何学

Γεωμετρία

Géométrie

Geometry

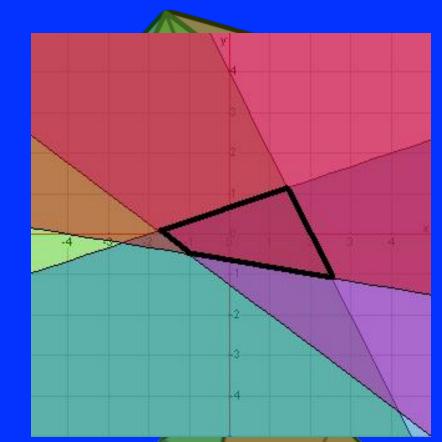
Κανένας δεν εισάγει εκτός αν ξέρει τη γεωμετρία Πλάτων

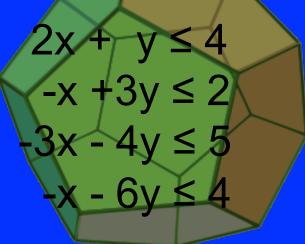
Nobody enters unless he knows Geometry *Plato* κανένας δεν παίρνει από εδώ εκτός αν ξέρει τη γεωμετρία Jean-Louis L.

彼が幾何学を知っていなければだれも出ない

Personne ne sort s' il ne connait la Géométrie

Nobody gets out unless he knows Geometry A polyhedron is defined as the intersection of a finite number of linear halfspaces.





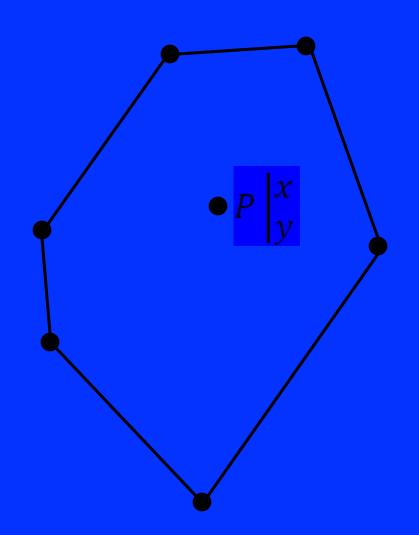
A polytope Q is defined as a convex hull of a finite collection of points.

$$x = \sum \lambda_i x_i$$

$$y = \sum \lambda_i y_i$$

$$\sum \lambda_i = 1$$

$$\lambda_i \ge 0$$



Minkowski(1896)-Steinitz(1916)-Farkas(1906)-Weyl(1935) Theorem

Q is a polytope if and only if it is a bounded polyhedron.

Extension by Charnes & Cooper (1958)

"This classical result is an outstanding example of a fact which is completely obvious to geometric intuition, but wields important algebraic content and is not trivial to prove."

R.T. Rockafeller

A polytope Q is defined as a convex hull of a finite collection of points.

$$\lambda_{3} = \lambda_{2} - \lambda_{2} - \lambda_{2} - \lambda_{2}$$

$$\lambda_{1} + 2 \lambda_{2} + 2 \lambda_{3} \ge 0$$

$$\lambda_{1} + 2 \lambda_{2} + 2 \lambda_{3} \ge 0$$

$$\lambda_{1} + 2 \lambda_{2} + 2 \lambda_{3} \ge 0$$

$$\lambda_{1} + 2 \lambda_{2} + 2 \lambda_{3} \ge 0$$

$$\lambda_{1} + 2 \lambda_{2} + 2 \lambda_{3} \ge 0$$

$$\lambda_{1} + 2 \lambda_{2} + 2 \lambda_{3} \ge 0$$

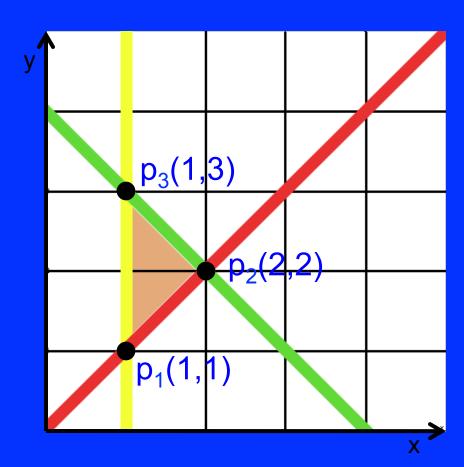
$$\lambda_{1} + 2 \lambda_{2} + 2 \lambda_{3} \ge 0$$

$$\lambda_{1} + 2 \lambda_{2} + 2 \lambda_{3} \ge 0$$

$$\lambda_{2} + \lambda_{3} \ge 0$$

$$\lambda_{3} \ge 0$$

$$\lambda_{3} \ge 0$$



A polyhedron is defined as the intersection of a finite number of linear halfspaces.

References

- Kirchhoff, G. "Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird." Ann. Phys. Chem. 72, 497-508, 1847.
- А. А. Марков. "Распространение закона больших чисел на величины, зависящие друг от друга". "Известия Физико-математического общества при Казанском университете", 2-я серия, том 15, ст. 135-156, 1906.
- H. Minkowski, Geometrie der Zahlen (Leipzig, 1896).
- J. Farkas, "Theorie der einfachen Ungleichungen," J. F. Reine u. Ang. Mat., 124, 1-27, 1902.
- H. Weyl, "Elementare Theorie der konvexen Polyeder," Comm. Helvet., 7, 290-306, 1935.
- A. Charnes, W. W. Cooper, "The Strong Minkowski Farkas-Weyl Theorem for Vector Spaces Over Ordered Fields," Proceedings of the National Academy of Sciences, pp. 914-916, 1958.

References

- E. Steinitz. Bedingt Konvergente Reihen und Konvexe Systeme. J. reine angew. Math., 146:1-52, 1916.
- K. Jeev, J-L. Lassez: Symbolic Stochastic Systems. MSV/AMCS 2004: 321-328
- V. Chandru, J-L. Lassez: Qualitative Theorem Proving in Linear Constraints. Verification: Theory and Practice 2003: 395-406
- Jean-Louis Lassez: From LP to LP: Programming with Constraints. DBPL 1991: 257-283