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Ku naru shoh-mei no michi



If you have the right definition you
have a simpler proof.

If you have the right data structures,
you have a simpler algorithm.

If you have the right.....



Power of Elimination



Hx ax2+b+c=0

If and only if
b? —4ac >0



Elimination not restricted to algebra and

geometry
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Used in theorem proving (algebra,
geometry & logic)
But...

However...
Can be used in special cases to






The elimination of the proof is an
seldom reached

Elimination gives us the of the proof



Any irreducible, finite, aperiodic Markov Chain
has all states Ergodic (reachable at any time in
the future) and has a unique stationary
distribution, which is a probability vector.









011X1 + P21X; ¥ P31X3 = X4
012X1 F PoXy + P3pX3 = X,
013Xy + Py3X; T P33X3 = X3
XX =1

X; 20

You can view the problem in three different ways:

* Principal eigenvector problem
* Classical Linear Programming problem
* Elimination problem



Notion of convergence
Deal with complex numbers
Uniqueness of solution

Need to use theorems: Perron-Frobenius,
Chapman, Kolmogoroff, Cauchy... and/or
restrictive hypotheses....



System of two variables:

P11X1 T Py1X5 =Xy
P12X1 T PyXy =Xy
XX =1

With Maple we find:

X1 = Py1/(Py1 + P1y)
X, = P15/ (Py1 + P1y)






Three variables:
P11X1 T PayXy T P31X3 =Xy
P12X1 + P2aXy + P3aX3 = X;
P13Xy + P23X; T P33X3 = X3
XX =1

With Maple we find:

X1 = (P31P21+ P31P23 + P3aPy1) / 2

Xa = (P13P32+ P1oP31 + P1oP3y) / 2

X3 = (P13P21+ P1oP23 + P13Py3) / 2

2 = (P31Py1 + P31P23 + P3yPp1 + P13P3y + P1oP3g + P1yP3y +

P13P21 + P12P23+ P13Py3)


















LIGHT



System of four variables:

P21Xy * P31X3 + PgiXy = X4
P12X1 ¥ PygrXys = X
P13X1 = X3
P34X3= X4
XX =1





















If there exists a reverse spanning tree in a graph of the
Markov chain associated to a stochastic system, then:

(a)the stochastic system admits the following
probability vector as a solution:

{ 8 W(l)} .
“ETwef "

(b) the solution is unique.
(c) the conditions {x; 2 0};_, , are redundant and the
solution can be computed by Gaussian elimination.
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For an n-vertex digraph, define an n x n matrix A
such that A[i,j] = 1 if there is an edge from i to |,
for all i # j, and the diagonal entries are such

that the row sums are 0.

Let A(k) be the matrix obtained from A by
deleting row k and column k. Then the absolute
value of the determinant of A(k) is the number
of spanning trees rooted at k (edges directed
towards vertex k)



Differences

* Kirchoff theorem perform n gaussian
eliminations

e Revised version — only two gaussian



Fundamental Theorem in Game Theory
Von Neumann & Kuhn

Minimax Theorem brings certainty into the
world of probabilistic game theory.

Applications in Computer Science, Economics
& Business, Biology, etc.
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If the primal problem has an optimal solution,

n

then the dual also has an optimal solution,

"= (Y1, Yo e Ym )
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Nobody enters unless he knows
Geometry

Plato
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A Q is defined as a convex
hull of a finite collection of points.

X = YAX
Y =2AY, ’.
2N =1

A=0




polytope
bounded polyhedron



“This classical result is an outstanding example of
a fact which is completely obvious to geometric
intuition, but wields important algebraic content
and is not trivial to prove.”

R.T. Rockafeller
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