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Motivation

§ Success of ML algorithms depend on data representation

§ Existing methods have many limitations
§ Most focus on proximity/community-based embeddings 

§ Embeds nodes that are close to one another in the graph in a similar fashion

§ Embeddings do not generalize across different graphs 

§ Unable to capture higher-order motif-based network structures

…

Embedding 
method



Motivation

Cj#

Ci#

Ck#

= star-edge node
= star-center node (hub)…

Are these nodes similar?

§ Two complementary notions of embeddings in graphs: 
proximity/community-based

and

structural role-based embeddings

§ Structural role-based embeddings = based on structural 
similarity [Rossi TKDE15]

⎻ Independent of distance/proximity

⎻ Generalize across-networks

⎻ Roles = key structural patterns/behaviors of nodes 
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for	k=1,…,K		and		t=1,…,T

…

HONE Overview

1. Derive network motifs
2. Form motif adjacency matrices
3. Motif matrix functions
4. Derive k-step motif matrix
5. For each k-step motif matrix, learn node embeddings 
6. Learn global higher-order embedding

HIGHER ORDER NETWORK EMBEDDING (HONE): 
Given a network G = (V, E), a set of network motifs                                  the 
goal of higher-order network embedding (HONE) is to learn a function f : 
V → RD that maps nodes to D-dimensional structural node embeddings 
using network motifs.



Step 1: Derive network motif counts

§ Network motifs => graphlets (small induced subgraphs) or orbits (graphlet automorphisms)
§ Graphlet decomposition

Network Motifs: Simple Building Blocks of Complex Networks – [Milo et. al – Science 2002]
The Structure and Function of Complex Networks – [Newman – Siam Review 2003]

Applied to food, biologcal, genetic, neural, web, social and other networks
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Basis for capturing 
structural behavior



Step 1: Derive network motif counts

§ Network motifs => graphlets (small induced subgraphs) or orbits (graphlet automorphisms)

Exact algorithms: count cliques & cycles, and use combinatorial relationships to derive others in o(1) time [ICDM 2015]
Estimation methods: Motif estimators with provable error bounds [TNNLS18, BigData 2016]



Step 2: Form weighted motif adjacency matrices

Given:
§ a graph G=(V,	E)	and a set                                            of 

T network motifs, we form the (weighted) motif 
adjacency matrices

#	of	instances	of	motif Ht that	
contain	nodes	i	and	j

Original graph

4-star motif graph4-clique motif graph

(web-google)

Largest clique (NP-hard) and star



A few motif matrix functions investigated:

§ Motif Transition Matrix 

Step 3: Motif matrix functions

diagonal motif degree matrix:

§ Weighted Motif Laplacian 

§ Normalized Weighted Motif Laplacian 

§ RW Norm. Weighted Motif Laplacian 

To generalize HONE for any motif-based matrix, we 
define a function

can use in/out/total motif degree
Other interesting motif matrix 
formulations can also be used!



Step 4: Derive k-step motif-based matrices

§ Given the motif matrix function 𝛹 and the set 𝒲 of motif adjacency matrices, 
we derive all k-step motif-based matrices for all T motifs and K steps

The number of paths weighted by motif 
counts from node i to node j in k-steps is

The probability (weighted by motif counts) of
transitioning from node i to node j in k-steps
is given by

non-uniform random walk that selects subsequent 
nodes with prob. proportional to the edge’s motif count. 

Captures important 
dependencies 
further away



§ We find low-rank ”local” node embeddings for each motif and k-step matrix 
by solving:

§ Concatenate all k-step node embedding for all T motifs and K steps

Step 5: Local k-step Motif Embeddings

,				for	k=1,…,K		and		t=1,…,T



Step 6: Global higher-order 
node embeddings

§ Given                                                         , 
find low-rank ”global” higher-order node 
embeddings by solving 

for	k=1,…,K		and		t=1,…,T

…



Extensions

§ Attribute diffusion

§ Accumulation motif variants

§ Weighted and combined motif matrix where Wk is a weighted graph that counts the 
number of paths of length up to k.

OR



Results

Experimental setup
§ 10-fold cross-validation, repeated for 10 random trials

§ Used all 2-4 node connected orbits 

§ D=128, Dl = 16 for the local motif embeddings

§ Edge embedding derived via mean function

§ Predict link existence via logistic regression (LR)

§ # steps K selected via grid search over

Main findings:

§ Mean Gain in AUC of 19.24% (& up to 75.21%)



Visitor Stitching of Web Logs

same 
user?

pagessessions

i

j

Problem: Given web browser logs, the goal is to 
predict the sessions (cookie ids) that correspond to the 
same user. 

- Core to many products 
- Utility/perf. of downstream applications relies on it

(cookie ids)



Visitor Stitching of Web Logs
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Problem: Given web browser logs, the goal is to predict 
the sessions (cookie ids) that correspond to the same user. 

(cookie ids)



Runtime & Scalability

§ State-of-the-art method takes 1.8 days (45.3 
hours) for 10 million nodes (avg. degree of 10) 

§ HONE finishes in only 19 minutes (10M 
nodes, 100M edges)
§ Results from laptop

§ 143x faster

Erdös-Rényi graphs (from 100 to 10 
million nodes) w/ avg. degree 10

45.3 hours
vs.

19 min

143x faster



Results for Attribute/Feature-Diffusion Variants

Mean gain of the HONE methods with attribute diffusion 
relative to each of the original HONE methods



Structural Role-based Embeddings

Validation of HONE’s ability to capture 
roles on graphs with known ground-truth.



Structural Role-based Embeddings

diseasome network



Summary & Key Contributions

§ Introduced Higher-Order motif-based Network Embeddings (HONE)

§ Described a computational framework for computing them

§ Demonstrated the effectiveness of higher-order network embeddings for link prediction 
and visitor stitching 

Future work should investigate other HONE variants, matrix motif formulations, etc.



Thanks!

Questions?

Data accessible online:
http://networkrepository.com
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