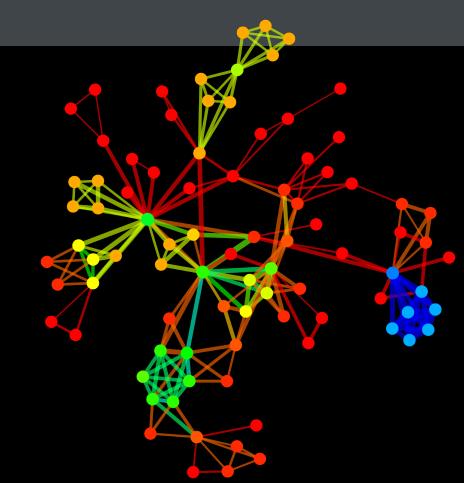
A Structural Graph Representation Learning Framework

Ryan A. Rossi (Adobe Research)

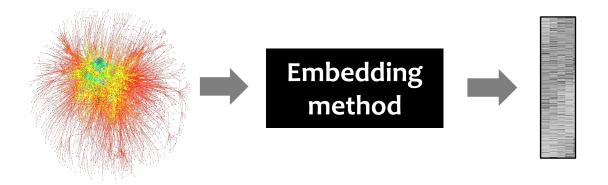
Joint work with:

Nesreen K. Ahmed (Intel Labs)
Eunyee Koh, Sungchul Kim, and Anup Rao (Adobe Research)
Yasin Abbasi-Yadkori (VinAl)



Motivation

Success of ML algorithms depend on data representation



- Existing methods have many limitations
 - Most focus on proximity/community-based embeddings
 - Embeds nodes that are close to one another in the graph in a similar fashion
 - Embeddings do not generalize across different graphs
 - Unable to capture higher-order motif-based network structures

• • •

Motivation

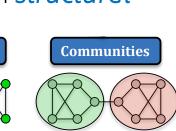
• Two complementary notions of embeddings in graphs:

proximity/community-based

and

structural role-based embeddings

- Structural role-based embeddings = based on structural similarity [Rossi TKDE15]
 - Independent of distance/proximity
 - Generalize across-networks
 - Roles = key structural patterns/behaviors of nodes



Are these nodes similar?

○ = star-edge node

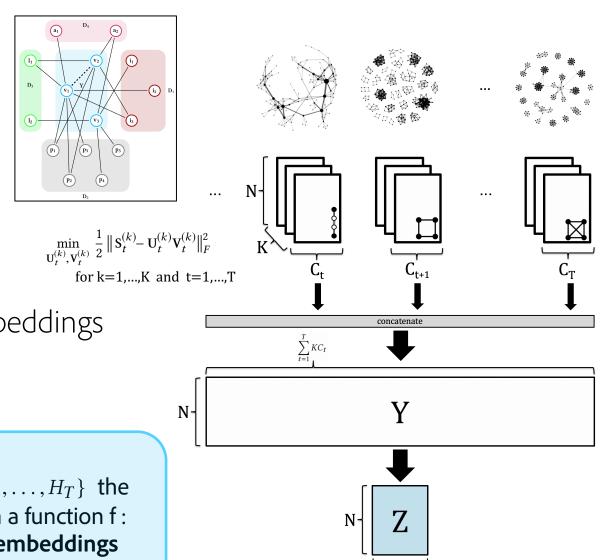
= star-center node (hub)

HONE Overview

- Derive network motifs
- 2. Form motif adjacency matrices
- 3. Motif matrix functions
- 4. Derive k-step motif matrix
- 5. For each k-step motif matrix, learn node embeddings
- 6. Learn global higher-order embedding

HIGHER ORDER NETWORK EMBEDDING (HONE):

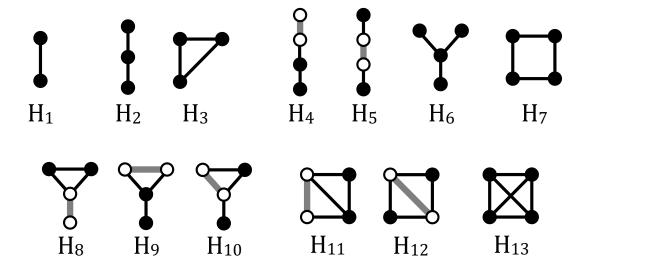
Given a network G = (V, E), a set of network motifs $\mathcal{H} = \{H_1, \dots, H_T\}$ the goal of higher-order network embedding (HONE) is to learn a function $f : V \to \mathbb{R}^D$ that maps nodes to D-dimensional **structural node embeddings** using network motifs.



Step 1: Derive network motif counts

- Network motifs => graphlets (small induced subgraphs) or orbits (graphlet automorphisms)
- Graphlet decomposition

Basis for capturing structural behavior

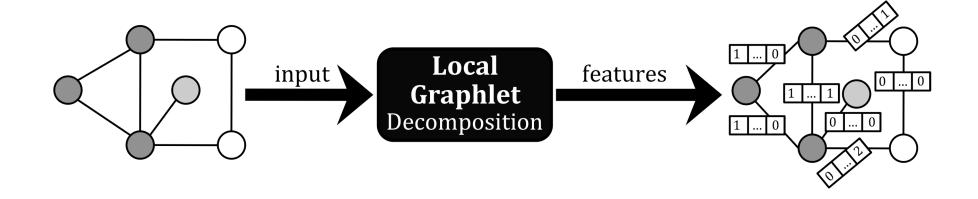


Network Motifs: Simple Building Blocks of Complex Networks – [Milo et. al – Science 2002]

The Structure and Function of Complex Networks – [Newman – Siam Review 2003]

Step 1: Derive network motif counts

Network motifs => graphlets (small induced subgraphs) or orbits (graphlet automorphisms)



Exact algorithms: count cliques & cycles, and use combinatorial relationships to derive others in o(1) time [ICDM 2015]

Estimation methods: Motif estimators with provable error bounds [TNNLS18, BigData 2016]

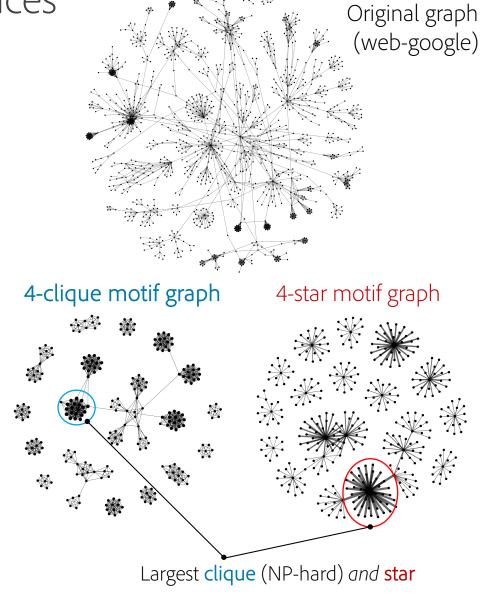
Step 2: Form weighted motif adjacency matrices

Given:

a graph G=(V,E) and a set $\mathcal{H}=\{H_1,\ldots,H_T\}$ of T network motifs, we form the (weighted) motif adjacency matrices

$$\mathcal{W} = \left\{ \mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_T \right\}$$

 $(\mathbf{W}_t)_{ij}$ = # of instances of motif \mathbf{H}_t that contain nodes i and j



Step 3: Motif matrix functions

To generalize HONE for any motif-based matrix, we define a function $\Psi: \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}$

A few motif matrix functions investigated:

• Motif Transition Matrix $\Psi : \mathbf{W} \to \mathbf{D}^{-1}\mathbf{W}$

$$\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$$

$$\sum_{j} P_{ij} = \mathbf{p}_{i}^{T} \mathbf{e} = 1$$

$$P_{ij} = \frac{W_{ij}}{w_{i}}$$

diagonal motif degree matrix:

$$D = diag(We)$$

• Weighted Motif Laplacian $e = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$

$$\mathbf{e} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$$

$$L = D - W$$

can use in/out/total motif degree

Normalized Weighted Motif Laplacian

$$\widehat{\mathbf{L}} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$$

$$\widehat{L}_{ij} = \begin{cases} 1 - \frac{W_{ij}}{w_j} & \text{if } i = j \text{ and } w_j \neq 0 \\ -\frac{W_{ij}}{\sqrt{w_i w_j}} & \text{if } i \text{ and } j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}$$

 $w_i = \sum_i W_{ij}$ is the motif degree of node i

RW Norm. Weighted Motif Laplacian

$$\widehat{\mathbf{L}}_{rw} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{W}$$

Other interesting motif matrix formulations can also be used!

Step 4: Derive k-step motif-based matrices

• Given the motif matrix function Ψ and the set $\mathcal W$ of motif adjacency matrices, we derive all k-step motif-based matrices for all T motifs and K steps

Captures important dependencies further away

$$S_t^{(k)} = \Psi(W_t^k), \text{ for } k = 1, ..., K \text{ and } t = 1, ..., T$$

The number of paths weighted by motif counts from node i to node j in k-steps is

$$(\mathbf{W}^k)_{ij} = \left(\underbrace{\mathbf{W} \cdots \mathbf{W}}_{k} \right)_{ij}$$

The probability (weighted by motif counts) of transitioning from node i to node j in k-steps is given by (\mathbf{p}_k)

is given by
$$(\mathbf{P}^k)_{ij} = (\underbrace{\mathbf{P} \cdots \mathbf{P}}_{k})_{ij}$$

non-uniform random walk that selects subsequent nodes with prob. proportional to the edge's motif count.

Step 5: Local k-step Motif Embeddings

$$\mathbf{S}_t^{(k)} pprox \Phi \langle \mathbf{U}_t^{(k)} \mathbf{V}_t^{(k)} \rangle$$

• We find low-rank "local" node embeddings for each motif and k-step matrix by solving:

$$\underset{\mathbf{U}_t^{(k)}, \mathbf{V}_t^{(k)} \in \mathcal{C}}{\operatorname{arg\,min}} \ \mathbb{D}\big(\mathbf{S}_t^{(k)} \parallel \Phi \langle \mathbf{U}_t^{(k)} \mathbf{V}_t^{(k)} \rangle \big), \quad \text{for k=1,...,K and t=1,...,T}$$

Concatenate all k-step node embedding for all T motifs and K steps

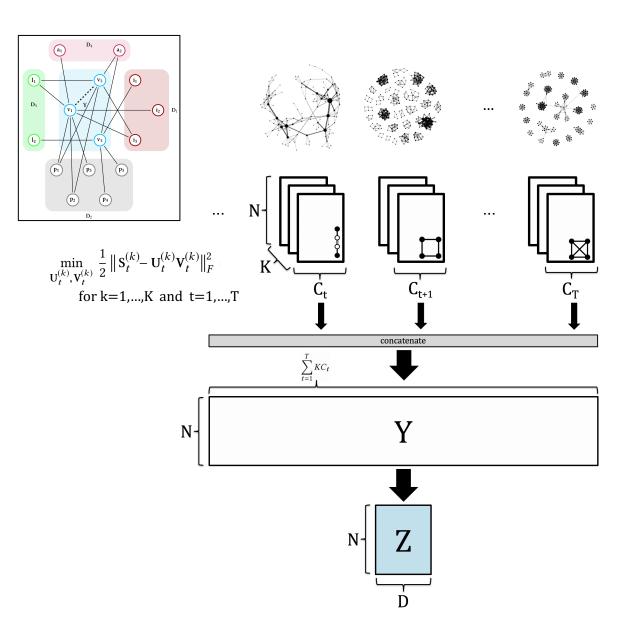
$$\mathbf{Y} = \left[\underbrace{\mathbf{U}_{1}^{(1)} \cdots \mathbf{U}_{T}^{(1)}}_{\text{1-step}} \cdots \underbrace{\mathbf{U}_{1}^{(K)} \cdots \mathbf{U}_{T}^{(K)}}_{K\text{-steps}} \right] \qquad \mathbf{Y} \text{ is } N \times TKD_{\ell}$$

Step 6: Global higher-order node embeddings

• Given $\mathbf{Y} = \begin{bmatrix} \mathbf{U}_1^{(1)} & \cdots & \mathbf{U}_T^{(1)} & \cdots & \mathbf{U}_1^{(K)} & \cdots & \mathbf{U}_T^{(K)} \end{bmatrix}$, find low-rank "global" higher-order node embeddings by solving

$$\underset{\mathbf{Z},\mathbf{H}\in\mathcal{C}}{\operatorname{arg\,min}} \quad \mathbb{D}\left(\mathbf{Y} \parallel \Phi \langle \mathbf{ZH} \rangle\right)$$

$$\underset{\mathbf{Z},\mathbf{H}}{\operatorname{min}} \quad \frac{1}{2} \left\|\mathbf{Y} - \mathbf{ZH}\right\|_{F}^{2} = \frac{1}{2} \sum_{i,i} \left(\mathbf{Y}_{ij} - (\mathbf{ZH})_{ij}\right)^{2}$$



Extensions

Attribute diffusion

$$\bar{\mathbf{X}}_t^{(0)} \leftarrow \mathbf{X}$$

$$\bar{\mathbf{X}}_t^{(k)} = \Psi(\mathbf{W}_t^{(k)}) \bar{\mathbf{X}}_t^{(k-1)}, \quad \text{for } k = 1, 2, \dots, K \quad \mathsf{OR} \qquad \bar{\mathbf{X}}^{(k)} = (1 - \theta) \mathbf{L} \bar{\mathbf{X}}^{(k-1)} + \theta \mathbf{X}, \quad \text{for } k = 1, 2, \dots$$

Accumulation motif variants

$$\bar{\mathbf{S}}^{(k)} = \sum_{\ell=1}^{k} \alpha^{\ell} \Psi(\mathbf{W}^{\ell}) = \alpha \Psi(\mathbf{W}) + \alpha^{2} \Psi(\mathbf{W}^{2}) + \dots + \alpha^{k} \Psi(\mathbf{W}^{k})$$

Weighted and combined motif matrix

$$\mathbf{W} = \sum_{t=1}^{T} \beta_t \mathbf{W}_t \qquad \beta_t \ge 0$$

$$\bar{\mathbf{W}}^{(k)} = \sum_{\ell=1}^k \mathbf{W}^\ell = \mathbf{W} + \mathbf{W}^2 + \dots + \mathbf{W}^k$$
 where \mathbf{W}_k is a weighted graph that counts the number of paths of length up to k.

Results

Experimental setup

- 10-fold cross-validation, repeated for 10 random trials
- Used all 2-4 node connected orbits
- D=128, Dl = 16 for the local motif embeddings
- Edge embedding derived via $(\mathbf{z}_i + \mathbf{z}_j)/2$
- Predict link existence via logistic regression (LR)
- # steps K selected via grid search over $K \in \{1, 2, 3, 4\}$

Main findings:

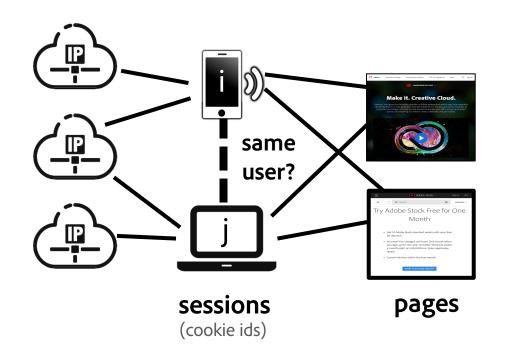
Mean Gain in AUC of 19.24% (& up to 75.21%)

	soc-hamster	rt-twitter-cop	^{soc-wiki-Vote}	tech-routers-rf	facebook-PU	inf-openflights	soc-bitcoinA	RANK
HONE-W (Eq. 2)	0.841	0.843	0.811	0.862	0.726	0.910	0.979	1
HONE-P (Eq. 5)	0.840	0.840	0.812	0.863	0.724	0.913	0.980	2
HONE- L (Eq. 7)	0.829	0.841	0.808	0.858	0.722	0.906	0.975	3
HONE - \widehat{L} (Eq. 8)	0.829	0.836	0.803	0.862	0.722	0.908	0.976	5
HONE - $\widehat{\mathbf{L}}_{\mathrm{rw}}$ (Eq. 9)	0.831	0.834	0.808	0.863	0.723	0.909	0.976	4
Node2Vec [19]	0.810	0.635	0.721	0.804	0.701	0.844	0.894	6
DeepWalk [34]	0.796	0.621	0.710	0.796	0.696	0.837	0.863	7
LINE [47]	0.752	0.706	0.734	0.800	0.630	0.837	0.780	8
GraRep [9]	0.805	0.672	0.743	0.829	0.702	0.898	0.559	9
Spectral [48]	0.561	0.699	0.593	0.602	0.516	0.606	0.629	10

Visitor Stitching of Web Logs

Problem: Given web browser logs, the goal is to predict the sessions (cookie ids) that correspond to the same user.

- Core to many products
- Utility/perf. of downstream applications relies on it



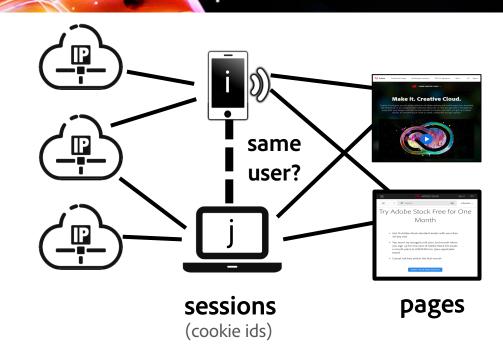
Tasks	Graph	V	E	$d_{ m avg}$
Visitor Stitching	Comp-A (web logs)	8.9M	55.2M	6.2
	Comp-B (web logs)	22.8M	61.3M	2.7

Visitor Stitching of Web Logs

Problem: Given web browser logs, the goal is to predict the sessions (cookie ids) that correspond to the same user.

		N2V	DW	LINE	GraRep	Spec.	HONE	HONE+X
<u> </u>	Prec.	ETL	ETL	0.8947	0.9924	0.7404	0.9999	0.9810
P7	Rec.	ETL	ETL	0.6254	0.4388	0.4907	0.6676	0.8777
COMP	F1	ETL	ETL	0.7362	0.6085	0.5902	0.8007	0.9265
	AUC	ETL	ETL	0.7968	0.7215	0.5730	0.8572	0.9304
COMPB	Prec.	ETL	ETL	0.8362	0.9945	0.7731	0.9923	0.9885
	Rec.	ETL	ETL	0.3985	0.0937	0.2768	0.7336	0.7736
	F1	ETL	ETL	0.5397	0.1713	0.4077	0.8249	0.8534
	AUC	ETL	ETL	0.6843	0.5447	0.5259	0.8626	0.8811

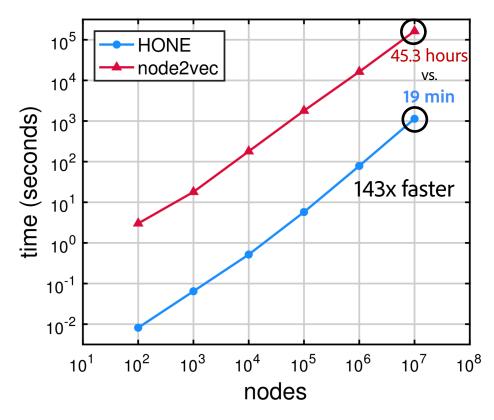
^{*}N2V=Node2Vec, DW=DeepWalk



Runtime & Scalability

- State-of-the-art method takes 1.8 days (45.3 hours) for 10 million nodes (avg. degree of 10)
- HONE finishes in only 19 minutes (10M nodes, 100M edges)
 - Results from laptop
- 143x faster

Erdös-Rényi graphs (from 100 to 10 million nodes) w/ avg. degree 10

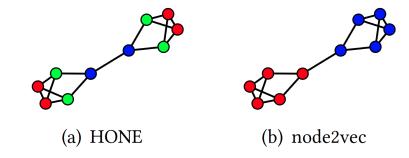


Results for Attribute/Feature-Diffusion Variants

Mean gain of the HONE methods with attribute diffusion relative to each of the original HONE methods

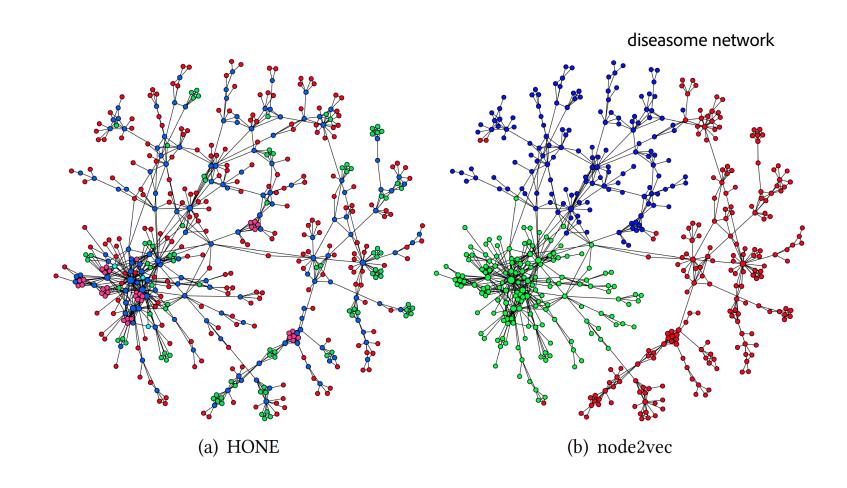
	HONE-W	HONE-P	HONE-L	HONE-L	$\text{HONE-}\widehat{L}_{rw}$
$\overline{\text{HONE-W} + \bar{X}}$	0.76%	1.30%	1.38%	1.24%	1.08%
$HONE-P + \bar{X}$	1.58%	2.12%	2.20%	2.06%	1.90%
$HONE-L + \bar{X}$	0.62%	1.15%	1.23%	1.09%	0.93%
$HONE-\widehat{L}+\bar{X}$	1.37%	1.91%	1.99%	1.85%	1.69%
HONE- \widehat{L}_{rw} + \bar{X}	1.27%	1.81%	1.88%	1.74%	1.58%

Structural Role-based Embeddings



Validation of HONE's ability to capture roles on graphs with known ground-truth.

Structural Role-based Embeddings



Summary & Key Contributions

- Introduced Higher-Order motif-based Network Embeddings (HONE)
- Described a computational framework for computing them
- Demonstrated the effectiveness of higher-order network embeddings for link prediction and visitor stitching

Future work should investigate other HONE variants, matrix motif formulations, etc.

Thanks!

Questions?

Data accessible online:

http://networkrepository.com