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Graphs - rich and powerful

data representation
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Problem & Motivation

= Problem: Given a graph with only a few labeled nodes, the
goal is to predict the class labels of the unlabeled nodes

= Issue: Existing work assumes “smoothness’ of labels over
the graph/strong homophily (“birds of a feather flock
together”)

- Works well when the neighboring labels of a node are highly
correlated (i.e., the neighbors of a node have the same class label),

and perform poorly otherwise

= Reverse is often true in actual data



Heterophily Example Class labels may not be correlated with

neighbors (e.g., protein & molecular graphs).

= RSM generalizes across the spectrum of
relational data characteristics, and
avoids the issues, assumptions, and
limitations of existing methods.
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= (Class of a node may be correlated with o
nodes that have ”’similar” structural o

. Fully Observed/Actual Graph
properties and more generally features

(e.g., non-relational attributes, ... ).

= Existing methods based on
diffusion/label propagation would fail
(perform poorly)
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What we actually see



This work

= Addresses limitation of previous work that assumes strong

homophily between neighboring labels of a node

= Proposed general framework for graphs with arbitrary

relational autocorrelation (homophily or heterophily)

Other Contributions:

Principled similarity-based relational learning framework based on the
notion of maximizing similarity.

Fast, parallel, space-efficient, and flexible with many interchangeable
components

Designed for large-scale supervised and semi-supervised learning in
noisy multi-dimensional networks



Non-relational example (RSM-IID)

The similarity of the labeled nodes in X of
class k with respect to the test node
feature vector z; is formalized as,

Wik — Z (I)<Zi,Xj>

XjEXk;
Z._X. 2
(I)(zi,xj):exp<— | 1202]H )

Repeated for each class k to obtain w

After computing w, then z; is assigned to
the class with maximum similarity

£(z;) = argmax  wy
keC
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Supervised & Semi-Supervised Learning Components

= Supervised component:

1. Use the nodes with known class labels to predict the class labels of
the unknown nodes

= Semi-supervised components:

1. Iteratively estimate the nodes with unknown class labels, and at each
iteration we label a fixed percent of nodes with highest confidence

2. Sample a small number of unlabeled nodes NOT connected to the
node currently being estimated, and weight the similarity by the
current class probabilities



V¢ = nodes with known labels © Unlabeled node

IntUItlon V% = nodes with unknown labels O Labeled_ node
= = Non-neighbor
— Neighbor
N and Q = labeled neighbors and non-neighbors
Q= {v; Th(vs) | v; €V} N = {v; € Tp(v;) | v; € V}




V¢ = nodes with known labels © Unlabeled node

IntUItlon V% = nodes with unknown labels O Labeled_ node
= = Non-neighbor
— Neighbor
N and Q = labeled neighbors and non-neighbors
Q = {v; €Th(vi) | v; €V} N = {v; € Th(v:) | v; € V*}

Q" ={v; € Tn(vi) | v; € V"} N'={v; € Tn(vi) | v; € V*}
N’ and Q’ = unlabeled neighbors and non-neighbors



Leveraging Nodes with Known Labels

Ge similarity of the labeled nodesh

X of class k with respect to the test
node feature vector z; is:

R
W; e

I

Wi, > pa®(zix;)
X; EXLNAV; EQ
Repeated for each class k /

> p®(zi,x,)

X;EXpNv;EN

Obtain a set J by sampling (V* U U) via an arbitrary (weighted/u-
niform) distribution F (if needed, otherwise J = V¢ U U)
parallel for each v; € J > Supervised component

Set s;, to be ®(z;,x;)
Let k € {1,...,]|C|} be the class label of v; € V*
if v; € 'y, (v;) then
Update wf,i — wﬁc + Pik - Sij > labeled neighbor
else Update w], < wi, + pix -si; > labeled non-neigh.

end parallel




Leveraging Nodes with Unknown Labels

= How to make use of
unlabeled nodes?

ﬂ he similarity of the unlabeled\

nodes in Z with respect to the
test node feature vector z; is:

m;’ = Z (Pz'@Pj)'(MZi,Zj)
’UjEN/

m{ = Z (P; © p) - ®(2i,2;)

e )

Obtain a set J by sampling (V'™ \ U) via an arbitrary (weighted/u-
niform) distribution F (if needed, otherwise J = V* \ U)
parallel for each v; € J > Semi-supervised component

Set s;; tobe (z;,z;)
for each class k£ € C do
if v € Fh('Ui) then

mE « mE + s,;(pirp;r) > unlabeled neighbor

else m!, < m!, + sij(pirpjr) © unlabel. non-neigh.

end parallel

Weight similarity by the probability
that node i and j belong to the
same class k

13- .’f’%
1-B




Maximizing Relational Similarity

Supervised Semi-Supervised
_ R
w; = aw; + (1 —a)w; m; = fm;" + (1—-/5)m

N——" N ~~ - ~—— X N~
Relational 11D Relational 1D

current estimate previous

7 7\ ~ ~ =

(T—|—1) (7')

i = ( Wi + my ) + Py

~~ ~—~
Supervised SSL

After computing p;, then z; is assigned to
the class with maximum similarity.

i) = P;
g(Z ) arg rl?ea(}?( 1k



Similarity Functions

= Radial Basis Function (RBF):

Z; — X, 2
q)(Zi,Xj) :exp(— H 20‘23” )

= Polynomial functions:

d(z;,x,) = ((zi,x]} + c)q

= Sigmoid kernel:

®(z;,x;) = tanh (a (z;,x;) + ¢)

...among many other possibilities...



n = # of nodes

Complexity AnalySiS d =# of features

k =# of class labels

= Computational Complexity:

Reduced by sampling from the different types of nodes
+ Single testinstance: O(|J| - d) where |J| < n

= Space Complexity:
« Given a test node to predict, RSM

takes O(k) Space | Inaddition to graph
« If collective inference is used, then and features
RSM takes O(nk)

—_—




Experiments



Experimental setup

Model selected via grid search

a, 8 € {0,0.01,0.1,0.25,0.5,0.75,0.99, 1}
o € {0.001,0.01,0.05,0.1}

10% of the labeled nodes as training

Results are averaged over 20 trials

Attributes = degree, 3- and 4-node graphlets



Heterophily Experiments

= RSM outperforms WVRN, SVM-G, and RPT across all
graphs with a mean gain of 24%, 52%, and 17%, respectively

= RSM is effective for graphs with heterophily

HETEROPHILY CLASSIFICATION RESULTS

F1 score
Graph |[C| L RSM  RSM-IID WVRN SVM-G RPT

DD645 20 2.0% 0.769 0.701 0.607 0.634 0.680
DD411 20 12.5% 0.712 0.695 0.605 0.239 0.615

DD5 19 6.7% 0.561 0.510 0.303 0426 0.465
DD244 20 7.1% 0.742 0.708 0.558 0.175 0.646
DD159 20 2.70% 0.734 0.702 0.605 0.280 0.652
DD185 18 12.5% 0.738 0.644 0.585 0.262 0.489

homophily measure L(G) = YIBI 22 (v, 0,)e 8 Llvi; v;)

L(v;,v5) =1 if class labels of vi and vj match, otherwise 0



Homophily Experiments

= RSM significantly outperforms the other methods

= Effective for classification on graphs with homophily

= Flexible for prediction in graphs with arbitrary relational
autocorrelation (homophily or heterophily)

CLASSIFICATION RESULTS FOR GRAPHS WITH HOMOPHILY

Accuracy
Graph |C/| . RSM  RSM-IID WVRN SVM-G RPT
aff-polbooks 3 66.6% 89.25 71.16 74.41 69.89 70.97
bio-Gene 2 79.7% 85.27 64.88 72.41 61.85 60.24
Enzymes349 2 50.0% 77.81 67.93 62.50 55.36 66.07
musicGenre 8 84.9% 82.35 51.57 60.59 48.63 55.56

homophily measure
L(G) = Y1B1 X (v; v, e B L(vis v5)

L(v;,v;) =1 if class labels of vi and v; match, otherwise 0



Parallel Scaling
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Note a machine with two Intel Xeon E5-
2687 CPUs @3.10GHz were used with 8
cores each.



Runtime Performance

= RSM is fast with real-time response times

- in the range of a few ms or less

= Able to support real-time interactive learning & inference

AVERAGE TIME PER TEST INSTANCE

Graph V4| IC| avg. time

soc— lerroristRel 90 2 0.18 ms
aff—polbooks 12 3 0.12 ms
cora 272 7 0.97 ms

DD6 417 20 3.10 ms

political-retweet 1848 2 0.15 ms




Varying RSM Inference Types

1. Collective Inference (Cl): Uses neighbor labels
2. Relational Inference (RI): Uses neighbor attributes

3. Relational-Collective Inference (RCI): Uses both neighbor
labels and neighbor attributes

—a— RSM

121 4 '
i —e— RSM-CI ||
= 10 \ —+—RSM-RI Impact of different classes of features/inference
o 8 RSMRCII on classification (soc-TerrorRel.)
> 6f
o
S 4f Accuracy (percent) improvement of RSM-Cl, RSM-
T2p Rl, and RSM-RCI over a basic variant of RSM.
OF = - - - -

0.005 0.01 0.025 0.05 0.1
Label Density



Varying SSL iterations & known labels

= Improvement over label propagation as the # of SSL
iterations increases

= More iterations appears to perform better when very
few known labels
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Effectiveness for Interactive RML

Methods often fail in practice due to low
relational autocorrelation, noisy links, sparsely
labeled graphs, and data representation

Class of RSM models are designed
to be fast for interactive RML

cora
yncertainty Nodes  Misclassified ~ INTERACTIVE RELATIONAL LEARNING
| — | — o fo) [e) O O
0
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Betweenness Links Degree a

. Local model Class dist. 1 I
T : RSM model in real-
avg degree O 220k 439% 659 878k M 2 51 101 150 199 Variant Collective RSM

Sty R time using a visual

- interface as well as

b o perform evaluation,
analyze errors, and
r— make adjustments
and refinements in a

Feat. Norm.
Node Norm. Closed_loopo

Norm similarity

max degree

avg degree

1Tl

avg triangles
max triangles
local clustering
global clustering
assortativity
max k-core

max triangle-core
chromatic num.

max triangle-core
chromatic num.
max indep. set
num communities
num roles

max betweenness
diameter

mean distance
max pagerank

max indep. set
num communities
num roles

max betweenness
diameter

mean distance
max pagerank

Add Prior [ ]

Meta-features

SSL-Sim n

label density
num classes
accuracy

label_density
num classes
accuracy

BP Prior Est.

Evaluate Models [}

Select Model Attrs.
Learn Model

~ GRAPH GENERATION PARAMETERS
Close Controls

Users can search the space of RSM models in
an interactive and visual fashion in real-time



Effectiveness for Interactive RML
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A local RSM model is
learned in real-time from
the selected subgraph(s);
and accuracy and stats.
are reported in the right
side panel

Users can select subgraph(s) of
interest by visually selecting
-nodes and edges.
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Summary and Conclusion

Introduced a general principled similarity-based relational
learning framework

= Accurate for graphs with arbitrary relational autocorrelation
(homophily and heterophily)

 Previous methods perform well only when there is strong homophily

= Fast and scalable

« Supports large-scale graphs, and applications requiring real-time
performance such as interactive relational learning

= Flexible with many interchangeable components



T h a n ks ! NETWORK REPOSITORY

DOWNLOAD DATASETS

INTERACTIVE ANALYTICS %

Download hundreds of real-world graphs and network datasets
Interactive visualization and analysis of network datasets

[ ] '? Explore network datasets and visualize their structure

Network Data Repository. Exploratory Analysis & Visualization.

The first interactive data and network repository with real-time analytics. Network repository is not only the first interactive
repository, but also the largest network and graph data repository with over 500+ donations. This large comprehensive
collection of network graph data is useful for making significant research findings as well as benchmark data sets for a
wide variety of applications and domains (e.g., network science, bioinformatics, machine learning, data mining, physics,
and social science) and includes relational, attributed, heterogeneous, streaming, spatial, and time series data as well as
non-relational machine learning data. All data sets are easily downloaded into a standard consistent format. We also have
built a multi-level interactive graph analytics engine that allows users to visualize the structure of the networks as well as
macro-level graph statistics as well as important micro-level properties of the nodes and edges.

Download network datasets

Data accessible online:
http://networkrepository.com
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