Dynamic Network Embeddings: From Random Walks to Temporal Random Walks

Ryan A. Rossi
Adobe Research

Joint work with:
Giang Hoang Nguyen
John Boaz Lee
Nesreen K. Ahmed
Eunyee Koh
Sungchul Kim
Goal: Learn representation (features) for a set of graph elements (nodes, edges, etc.)

\[
\text{Given } G = (V, E) \\
\text{Learn a function } f : V \rightarrow \mathbb{R}^d
\]

Key intuition: Map the graph elements (e.g., nodes) to the d-dimension space, while preserving some type of “similarity”, e.g., based on *proximity* (communities), or *structural similarity* (roles)

Use the features for any downstream prediction task
Limitations of Current Methods

- Ignore temporal information (edge timestamps)
 - Most real-world networks are dynamic (evolve over time)

Some recent work uses discrete static snapshot graphs [Hisano, 2016; Kamra et al., 2017]

- Very coarse approximation & introduces noise/errors
- Temporally invalid
- Unclear how to create discrete snapshot graphs & differs for each network [Soundarajan et al., 2016]
- Time period to use depends highly on the underlying domain/application (NP-hard problem)
Goal: Find a mapping of nodes to a D-dimensional time-dependent representation

Properties warranted by approach:

• Temporally valid
• Model network in the most natural way with min information loss
 • Continuous-time dynamic network (as opposed to a sequence of static snapshot graphs)
• General & unifying framework
Continuous-Time Dynamic Network Embeddings (CTDNEs)

- Temporally valid
- Model network at the finest temporal granularity
- Natural way to handle dynamic networks
 - Avoids noise/information loss with discrete static snapshot approaches
- Supports learning in graph streams where edges arrive continuously over time (e.g., every second/millisecond)

\[e_i = (u, v, t) \in E_T \]
Discrete-time models: represent dynamic network as a sequence of static snapshot graphs \(G_1, \ldots, G_T \) where \(G_i = (V, E_t) \)

User-defined aggregation time-interval \([t_{i-1}, t_i]\)

Very coarse approximation of the actual CTDN – temporally invalid & noise/error problems
Discrete-time models

Very coarse approximation of the actual CTDN – temporally invalid & noise/error problems

Discrete-time models: represent dynamic network as a sequence of static snapshot graphs G_1, \ldots, G_T where $G_i = (V, E_t)$

A temporal walk is a sequence of edges/nodes that obey time.
Discrete-time models

Very coarse representation with similar noise/error problems

Discrete-time models: represent dynamic network as a sequence of static snapshot graphs G_1, \ldots, G_T where $G_i = (V, E_t)$

Notice the walk (v_4, v_1, v_2) is possible despite it being **temporally invalid**

- (v_1, v_2) exists in the past w.r.t. (v_4, v_1)
- No noise/error when modeled as CTDN
- CTDN captures the **temporally valid** walks (with no information loss)
Continuous-Time Dynamic Network Embeddings

- Captures the temporally valid interactions in the dynamic network in a lossless fashion.

- **CTDNE’s** are *temporally valid embeddings* learned from the actual dynamic network at the finest temporal granularity, e.g., milliseconds.

- **CTDNE’s** do not have the issues and information loss that arises when the actual dynamic network is *approximated* as a sequence of static snapshot graphs.
CTDN Embedding Framework

- Introduces the notion of **temporal walks**
- Serves as a general & unifying framework
 - Existing and future embedding methods that use random walks can be adapted for modeling CTDN’s in a straightforward manner
- Consists of a few interchangeable components
Bias approach to leverage more recent information

Two main ways:

1. Bias the selection of the initial edge to start the temporal random walk
2. Bias the temporal random walk
CTDN Embedding Framework

1. Model network as CTDN

2. Initial temporal edge selection
 - Use temporally unbiased or biased techniques to sample the initial edge in the temporal walk

3. Temporal neighbor sampling
 - Temporally unbiased or biased sampling of a node from a temporal neighborhood

4. Learn time-dependent embedding
Initial Temporal Edge Selection

- Each temporal walk starts from a temporal edge $e_i \in E_T$ at time $t = T$ sampled from a distribution \mathbb{P}_s

Unbiased

$$\mathbb{P}(e) = \frac{1}{|E_T|}$$

Temporally Biased

- Exponential:

$$\mathbb{P}(e) = \frac{\exp \left[T(e) - t_{\text{min}} \right]}{\sum_{e' \in E_T} \exp \left[T(e') - t_{\text{min}} \right]}$$

t_{min} = min. time associated with an edge in G

- Linear:

$$\mathbb{P}(e) = \frac{\eta(e)}{\sum_{e' \in E_T} \eta(e')}$$

$\eta : E_T \rightarrow \mathbb{Z}^+$
Temporal Random Walks

A temporal walk is a temporally valid sequence of edges traversed in increasing order of edge times

- After sampling the initial edge to begin the temporal walk
- At each step in the temporal random walk, we sample a node w from the temporal neighborhood of node v according to a distribution \mathbb{F}_Γ.
- Afterwards, we add w to the temporal walk, and find the temporal neighbors of w given the edge traversal time, and repeat.

```
1 procedure TEMPORALWALK($G', e = (s, r), t, L, C$)
2     Initialize temporal walk $S_t = [s, r]$
3     Set $i = r$
4     for $p = 1$ to $\min(L, C) - 1$ do
5         $\Gamma_t(i) = \{(w, t') | e = (i, w, t') \in E_T \land T(i) > t\}$
6         if $|\Gamma_t(i)| > 0$ then
7             Select node $j$ from distribution $\mathbb{F}_{\Gamma_t}(\Gamma_t(i))$
8             Append $j$ to $S_t$
9             Set $t = T(i, j)$
10            Set $i = j$
11         else terminate temporal walk
12     return temporal walk $S_t$ of length $|S_t|$ rooted at node $s$
```
Temporal Random Walks

Proceed by sampling a node \(w \) from the temporal neighborhood of \(v \), adding it to the temporal walk, traversing \((v, w, t)\), and repeating...

Unbiased

\[
P(w) = \frac{1}{|\Gamma_t(v)|}
\]

Temporally Biased

- **Exponential:**

\[
P(w) = \frac{\exp\left[\tau(w) - \tau(v)\right]}{\sum_{w' \in \Gamma_t(v)} \exp\left[\tau(w') - \tau(v)\right]}
\]

\[
\tau(w) = T(v, w)
\]

- **Linear:**

\[
P(w) = \frac{\delta(w)}{\sum_{w' \in \Gamma_t(v)} \delta(w')}
\]

\[
\delta : V \times \mathbb{R}^+ \rightarrow \mathbb{Z}^+
\]
Given a temporal walk S_t, we learn time-dependent node embeddings by solving:

$$\max_f \log P\left(W_T = \{v_{i-\omega}, \cdots, v_{i+\omega}\} \setminus v_i \mid f(v_i)\right)$$

where $f : V \rightarrow \mathbb{R}^D$ is the node embedding function; and

$$W_T = \{v_{i-\omega}, \cdots, v_{i+\omega}\} \text{ s.t.}$$

$$\mathcal{T}(v_{i-\omega}, v_{i-\omega+1}) < \cdots < \mathcal{T}(v_{i+\omega-1}, v_{i+\omega})$$

is an arbitrary temporal context window $W_T \subseteq S_t$

Just one example extending the Skip-Gram model,
many other possibilities
Experiments
Experiments

Use first 75% of edges (ordered by time) as training & last 25% for testing. We sample an equal number of negative edges to use. (more details in paper)

CTDNE: F_S and $F_I = \text{uniform (simplest)}$

DeepWalk & $D=128$, $R=10$, $L=80$, $\omega=10$

Node2vec ($p, q \in \{0.25, 0.50, 1, 2, 4\}$)

LINE: 2^{nd}-order, samples $T = 60M$

$$\beta = R \times N \times (L - \omega + 1)$$

of total walks # of context windows from walk of length L

<table>
<thead>
<tr>
<th>DATA</th>
<th>DeepWalk</th>
<th>Node2Vec</th>
<th>LINE</th>
<th>CTDNE</th>
<th>(Gain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ia-contact</td>
<td>0.845</td>
<td>0.874</td>
<td>0.736</td>
<td>0.913</td>
<td>(+10.37%)</td>
</tr>
<tr>
<td>ia-hypertext09</td>
<td>0.620</td>
<td>0.641</td>
<td>0.621</td>
<td>0.671</td>
<td>(+6.51%)</td>
</tr>
<tr>
<td>ia-enron-employees</td>
<td>0.719</td>
<td>0.759</td>
<td>0.550</td>
<td>0.777</td>
<td>(+13.00%)</td>
</tr>
<tr>
<td>ia-radoslaw-email</td>
<td>0.734</td>
<td>0.741</td>
<td>0.615</td>
<td>0.811</td>
<td>(+14.83%)</td>
</tr>
<tr>
<td>ia-email-eu</td>
<td>0.820</td>
<td>0.860</td>
<td>0.650</td>
<td>0.890</td>
<td>(+12.73%)</td>
</tr>
<tr>
<td>fb-forum</td>
<td>0.670</td>
<td>0.790</td>
<td>0.640</td>
<td>0.826</td>
<td>(+15.25%)</td>
</tr>
<tr>
<td>soc-bitcoinA</td>
<td>0.840</td>
<td>0.870</td>
<td>0.670</td>
<td>0.891</td>
<td>(+10.96%)</td>
</tr>
<tr>
<td>soc-wiki-elec</td>
<td>0.820</td>
<td>0.840</td>
<td>0.620</td>
<td>0.857</td>
<td>(+11.32%)</td>
</tr>
</tbody>
</table>

Overall gain in AUC of 11.9% across all embedding methods and graphs
Experiments comparing different CTDNE variants

\(F_s \) = distribution used to select the initial edge to begin a temporal walk

\(F_\Gamma \) = distribution used to select next "temporally relevant node" in a temporal walk

<table>
<thead>
<tr>
<th>Variant</th>
<th>(F_s)</th>
<th>(F_\Gamma)</th>
<th>contact</th>
<th>hyper</th>
<th>enron</th>
<th>rado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unif (Eq. 1)</td>
<td>Unif (Eq. 5)</td>
<td>0.913</td>
<td>0.671</td>
<td>0.777</td>
<td>0.811</td>
<td></td>
</tr>
<tr>
<td>Unif (Eq. 1)</td>
<td>Lin (Eq. 7)</td>
<td>0.903</td>
<td>0.665</td>
<td>0.769</td>
<td>0.797</td>
<td></td>
</tr>
<tr>
<td>Lin (Eq. 3)</td>
<td>Unif (Eq. 5)</td>
<td>0.915</td>
<td>0.675</td>
<td>0.773</td>
<td>0.818</td>
<td></td>
</tr>
<tr>
<td>Lin (Eq. 3)</td>
<td>Lin (Eq. 7)</td>
<td>0.903</td>
<td>0.667</td>
<td>0.782</td>
<td>0.806</td>
<td></td>
</tr>
<tr>
<td>Exp (Eq. 2)</td>
<td>Exp (Eq. 6)</td>
<td>0.921</td>
<td>0.681</td>
<td>\textbf{0.800}</td>
<td>0.820</td>
<td></td>
</tr>
<tr>
<td>Unif (Eq. 1)</td>
<td>Exp (Eq. 6)</td>
<td>0.913</td>
<td>0.670</td>
<td>0.759</td>
<td>0.803</td>
<td></td>
</tr>
<tr>
<td>Exp (Eq. 2)</td>
<td>Unif (Eq. 5)</td>
<td>0.920</td>
<td>\textbf{0.718}</td>
<td>0.786</td>
<td>\textbf{0.827}</td>
<td></td>
</tr>
<tr>
<td>Lin (Eq. 3)</td>
<td>Exp (Eq. 6)</td>
<td>0.916</td>
<td>0.681</td>
<td>0.782</td>
<td>0.823</td>
<td></td>
</tr>
<tr>
<td>Exp (Eq. 2)</td>
<td>Lin (Eq. 7)</td>
<td>0.914</td>
<td>0.675</td>
<td>0.747</td>
<td>0.817</td>
<td></td>
</tr>
</tbody>
</table>

Results indicate the choice of distribution depends on the underlying data and temporal characteristics.
Comparing CTDNE’s to DTDNE’s (discrete static snapshot approaches)

Two types of embedding methods:
• Discrete-time dynamic network embeddings (DTDNE)
• Continuous-time dynamic network embeddings (CTDNE)

DTDNE methods: Given T static snapshot graphs, we learn a (D/T)-dimensional embedding and concatenate them all to obtain a D-dimensional embedding

Disadvantages/limitations:
▪ Approximate & noisy representation
▪ Uses temporally invalid info.
▪ Finding appropriate aggregation granularity is NP-hard
 • Heuristics often used or simply ignored
▪ How to handle inactive nodes? Many heuristics…
 • Use previous embedding (if exists)
 • Set to mean embedding
 • Set to zero, etc...
Comparing CTDNE’s to DTDNE’s (discrete static snapshot approaches)

Two types of embedding methods:
- Discrete-time dynamic network embeddings (DTDNE)
- Continuous-time dynamic network embeddings (CTDNE)

DTDNE methods: Given T static snapshot graphs, we learn a (D/T)-dimensional embedding and concatenate them all to obtain a D-dimensional embedding.

<table>
<thead>
<tr>
<th>DATA</th>
<th>DTDNE</th>
<th>CTDNE</th>
<th>(GAIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ia-contact</td>
<td>0.843</td>
<td>0.913</td>
<td>(+8.30%)</td>
</tr>
<tr>
<td>ia-hypertext09</td>
<td>0.612</td>
<td>0.671</td>
<td>(+9.64%)</td>
</tr>
<tr>
<td>ia-enron-employees</td>
<td>0.721</td>
<td>0.777</td>
<td>(+7.76%)</td>
</tr>
<tr>
<td>ia-radoslaw-email</td>
<td>0.785</td>
<td>0.811</td>
<td>(+3.31%)</td>
</tr>
</tbody>
</table>

Overall, CTDN embeddings capture the temporal properties better & more accurately than embedding methods that use a sequence of discrete snapshot graphs (and without all the issues/heuristics)
CTDN Embedding Framework

- This work learns CTDNE’s using basic Skip-gram model
- Other existing or future RW-based embedding methods can be easily generalized via the proposed framework

Examples: node2vec, struct2vec, and deep graph models, e.g., GRAM
Summary and Conclusion

- Introduced the notion of temporal random walks for embedding methods

- Continuous-Time Dynamic Network Embeddings
 - Avoids the issues and loss in information from ignoring time or creating discrete static snapshot graphs

- General & Unifying Framework
 - Key idea can be used by others to adapt existing and/or future embedding methods in a straightforward way

- Effectiveness
 - Achieves an average gain in AUC of 11.9% across all methods and graphs from various application domains
Thanks!

Questions?

Data accessible online:
http://networkrepository.com
References

