
Giang Hoang Nguyen
John Boaz Lee

Nesreen K. Ahmed

Eunyee Koh
Sungchul Kim

§ Goal: Learn representation (features) for a set of graph
elements (nodes, edges, etc.)

§ Key intuition: Map the graph elements (e.g., nodes) to
the d-dimension space, while preserving some type of
“similarity”, e.g., based on proximity (communities), or
structural similarity (roles)

§ Use the features for any downstream prediction task

§ Ignore temporal information (edge timestamps)
⎻ Most real-world networks are dynamic (evolve over time)

Some recent work uses discrete static snapshot graphs [Hisano,
2016; Kamra et al., 2017]

§ Very coarse approximation & introduces noise/errors

§ Temporally invalid

§ Unclear how to create discrete snapshot graphs & differs for
each network [Soundarajan et al., 2016]

§ Time period to use depends highly on the underlying
domain/application (NP-hard problem)

Goal: Find a mapping of nodes to a D-dimensional time-
dependent representation

Properties warranted by approach:

• Temporally valid
• Model network in the most natural way with min information loss

• Continuous-time dynamic network (as opposed to a sequence
of static snapshot graphs)

• General & unifying framework

§ Temporally valid

§ Model network at the finest
temporal granularity

§ Natural way to handle dynamic
networks
• Avoids noise/information loss with

discrete static snapshot approaches

§ Supports learning in graph
streams where edges arrive
continuously over time (e.g.,
every second/millisecond)

Edge stream

t=1 t=2
[1, 5] [6, 10]

Discrete-time models: represent dynamic network as a sequence
of static snapshot graphs where
User-defined aggregation time-interval

Very coarse approximation of the
actual CTDN – temporally invalid
& noise/error problems

t=1 t=2
[1, 5] [6, 10]

Discrete-time models: represent dynamic network as a sequence
of static snapshot graphs where

Very coarse approximation of the
actual CTDN – temporally invalid
& noise/error problems

A temporal walk is a sequence
of edges/nodes that obey time.

t=1 t=2
[1, 5] [6, 10]

Discrete-time models: represent dynamic network as a sequence
of static snapshot graphs where

Very coarse representation with
similar noise/error problems

Notice the walk (v4,	v1,	v2)	is possible
despite it being temporally invalid

• (v1,	v2)	exists	in	the	past	w.r.t.	(v4,	v1)
• No	noise/error	when	modeled	as	CTDN
• CTDN	captures	the	temporally	valid	
walks	(with	no	information	loss)

CTDN

X

§ Captures the temporally valid interactions in the dynamic
network in a lossless fashion

§ CTDNE’s are temporally valid embeddings learned from the
actual dynamic network at the finest temporal granularity,
e.g., milliseconds

§ CTDNE’s do not have the issues and information loss that
arises when the actual dynamic network is approximated as a
sequence of static snapshot graphs

§ Introduces the notion of temporal walks

§ Serves as a general & unifying framework
• Existing and future embedding methods that use random walks can

be adapted for modeling CTDN’s in a straightforward manner

§ Consists of a few interchangeable components

Two main ways:

1. Bias the selection of the initial edge
to start the temporal random walk

2. Bias the temporal random walk

1. Model network as CTDN

2. Initial temporal edge selection
• Use temporally unbiased or biased techniques to

sample the initial edge in the temporal walk

3. Temporal neighbor sampling
• Temporally unbiased or biased sampling of a

node from a temporal neighborhood

4. Learn time-dependent embedding

Unbiased/biased Temporal Random Walks

Edge stream

§ Each temporal walk starts from a
temporal edge ei ∈ ET at time t = T
sampled from a distribution

= min. time associated with an edge in G

Unbiased

Temporally Biased

§ Exponential:

§ Linear:

0 0.5 1 1.5 2 2.5 3
Time 104

0

0.2

0.4

0.6

0.8

1

Pr
ob
ab
ilit
y

Uniform
Linear
Exponential

§ After sampling the initial edge to begin the temporal walk

§ At each step in the temporal random walk, we sample a node w from the
temporal neighborhood of node v according to a distribution

§ Afterwards, we add w to the temporal walk, and find the temporal neighbors of w
given the edge traversal time, and repeat.

A temporal walk is a temporally
valid sequence of edges traversed
in increasing order of edge times

Unbiased

Temporally Biased

§ Exponential:

§ Linear:

Proceed by sampling a node w from the
temporal neighborhood of v, adding it to
the temporal walk, traversing (v,w,t), and
repeating…

= T(v,w)

0 0.5 1 1.5 2 2.5 3
Time 104

0

0.2

0.4

0.6

0.8

1

Pr
ob
ab
ilit
y

Uniform
Linear
Exponential

Given a temporal walk St, we learn time-dependent node embeddings by solving:

where is the node embedding function; and

s.t.

is an arbitrary temporal context window

Just one example extending the Skip-Gram model,
many other possibilities

DeepWalk & D=128,	R=10,	L=80,	!=10
Node2vec(

Use first 75% of edges (ordered by time) as training

& last 25% for testing. We sample an equal number

of negative edges to use. (more details in paper)

Overall gain in AUC of 11.9% across all embedding methods and graphs

of context windows

from walk of length L

of total walks

= uniform (simplest)andCTDNE:

LINE: 2nd-order, samples T = 60M

repeated for 10
random trials

)

Results indicate the choice of distribution depends on the
underlying data and temporal characteristics.

= distribution used to select the initial edge to begin a temporal walk

= distribution used to select next ”temporally relevant node”
in a temporal walk

DTDNE methods: Given T static snapshot graphs, we learn a (D/T)-dimensional
embedding and concatenate them all to obtain a D-dimensional embedding

Disadvantages/limitations:
§ Approximate & noisy representation
§ Uses temporally invalid info.
§ Finding appropriate aggregation granularity is NP-hard

• Heuristics often used or simply ignored

§ How to handle inactive nodes? Many heuristics…
• Use previous embedding (if exists)
• Set to mean embbedding
• Set to zero, etc…

Two types of embedding methods:
• Discrete-time dynamic network embeddings (DTDNE)
• Continuous-time dynamic network embeddings (CTDNE)

Overall, CTDN embeddings capture the temporal properties better &
more accurately than embedding methods that use a sequence of
discrete snapshot graphs (and without all the issues/heuristics)

Results comparing CTDNE’s to DTDNE’s (AUC)

DTDNE methods: Given T static snapshot graphs, we learn a (D/T)-dimensional
embedding and concatenate them all to obtain a D-dimensional embedding

Two types of embedding methods:
• Discrete-time dynamic network embeddings (DTDNE)
• Continuous-time dynamic network embeddings (CTDNE)

§ This work learns CTDNE’s using basic Skip-gram model

§ Other existing or future RW-based embedding methods

can be easily generalized via the proposed framework

Existing/future
RW-based method

Collect/use temporal
random walks
(via %& and %))

… …

Examples: node2vec, struct2vec, and deep graph models, e.g., GRAM

§ Introduced the notion of temporal random walks for

embedding methods

§ Continuous-Time Dynamic Network Embeddings

• Avoids the issues and loss in information from ignoring time or creating

discrete static snapshot graphs

§ General & Unifying Framework

• Key idea can be used by others to adapt existing and/or future

embedding methods in a straightforward way

§ Effectiveness

• Achieves an average gain in AUC of 11.9% across all methods and graphs

from various application domains

Data accessible online:
http://networkrepository.com

§ Soundarajan, S., Tamersoy, A., Khalil, E. B., Eliassi-Rad, T., Chau, D. H., Gallagher, B., & Roundy, K. (2016, April).
Generating graph snapshots from streaming edge data. In Proceedings of the 25th International Conference Companion
on World Wide Web (pp. 109-110).

§ Ryohei Hisano. Semi-supervised graph em- bedding approach to dynamic link prediction. arXiv preprint arXiv:1610.04351,
2016.

§ Nitin Kamra, Umang Gupta, and Yan Liu. Deep generative dual memory network for continual learning. arXiv preprint,
arXiv:1710.10368, 2017

