Dynamic Network Embeddings:
From Random Walks to Temporal Random Walks

Ryan A. Rossi
Adobe Research

Joint work with:

Giang Hoang Nguyen
John Boaz Lee

Nesreen K. Ahmed

Eunyee Koh
Sungchul Kim

Adobe Research

Representation Learning in Graphs

= Goal: Learn representation (features) for a set of graph
elements (nodes, edges, etc.)

(-)
Given G = (V, E)

Learn a function f : V — R
- _/

= Key intuition: Map the graph elements (e.g., nodes) to
the d-dimension space, while preserving some type of
“similarity”, e.g., based on proximity (communities), or
structural similarity (roles)

= Use the features for any downstream prediction task

Limitations of Current Methods

= Ignore temporal information (edge timestamps)

- Most real-world networks are dynamic (evolve over time)

Some recent work uses discrete static snapshot graphs [Hisano,
2016; Kamra et al., 2017]

= Very coarse approximation & introduces noise/errors
= Temporally invalid

= Unclear how to create discrete snapshot graphs & differs for
each network [Soundarajan et al., 2016]

= Time period to use depends highly on the underlying
domain/application (NP-hard problem)

Problem:
Learn Time-respecting Embeddings from CTDN

Goal: Find a mapping of nodes to a D-dimensional time-
dependent representation

Properties warranted by approach:

* Temporally valid
* Model network in the most natural way with min information loss
* Continuous-time dynamic network (as opposed to a sequence
of static snapshot graphs)
* General & unifying framework

Continuous-Time Dynamic Network Embeddings
(CTDNES)

= Temporally valid %8\
1 2
= Model network at the finest @/

temporal granularity

/69 |
= Natural way to handle dynamic 35 0

networks
. Ayoids noise/information loss with G = (V,Epr,T)
discrete static snapshot approaches I Er CVxV xR
= Supports learning in graph T -E — R+
streams where edges arrive
continuously over time (e.g., & © O © ©® ©
every second/millisecond) g ég %g i é ég ° ‘i
(9 O

€ = (u,v,t) € br Edge stream

Discrete-time models

Very coarse approximation of the
actual CTDN - temporally invalid
& noise/error problems

Vo V3 Vg4 Vi Vg4 V3 Vg V3
Vi Vo V3 V4 V3 Vs Vo Ve

SR

/\
\/

Vs

Ve

V4 Ve

Discrete-time models: represent dynamic network as a sequence

of static snapshot graphs G4, ...

7GT Whe'fe GZ — (V7 Et)

User-defined aggregation time-interval [t; 1, ;]

Very coarse approximation of the

Discrete-time models actual CTDN - temporally invalid
& noise/error problems

10
® @F@\—@

Discrete-time models: represent dynamic network as a sequence
of static snapshot graphs Gy, ...,Gr where G; = (V, E})

A temporal walk 1s a sequence
of edges/nodes that obey time.

Very coarse representation with
Discrete-time models similar noise/error problems

10
® @P@\—@

Discrete-time models: represent dynamic network as a sequence
of static snapshot graphs G1,...,Gr where G; = (V, E})

X o
f

CTDN

Notice the walk (v4,v1,v2) is possible 1
despite it being temporally invalid
« (v1,v2) exists in the past w.rt. (v4, v1) @
« No noise/error when modeled as CTDN

« CTDN captures the temporally valid
walks (with no information loss)

Continuous-Time Dynamic Network Embeddings

= Captures the temporally valid interactions in the dynamic
network in a lossless fashion

= CTDNE’s are temporally valid embeddings learned from the
actual dynamic network at the finest temporal granularity,
e.g., milliseconds

= CTDNFE’s do not have the issues and information loss that
arises when the actual dynamic network is approximated as a
sequence of static snapshot graphs

CTDN Embedding Framework

= |Introduces the notion of temporal walks

= Serves as a general & unifying framework

« Existing and future embedding methods that use random walks can
be adapted for modeling CTDN’s in a straightforward manner

= Consists of a few interchangeable components

Bias approach to leverage more recent information

Two main ways:

1. Bias the selection of the initial edge
to start the temporal random walk

2. Bias the temporal random walk

CTDN Embedding Framework
Edge stream v :
1. Model network as CTDN } ‘ ‘ ‘] ‘ ‘ ‘ \/ kN

Unbiased/biased Temporal Random Walks

2. Initial temporal edge selection

« Use temporally unbiased or biased techniques to
sample the initial edge in the temporal walk

3. Temporal neighbor sampling

« Temporally unbiased or biased sampling of a
node from a temporal neighborhood

4. Learn time-dependent embedding

— Uniform
| |— Linear
Exponential

Initial Temporal Edge Selection

Probability

= Each temporal walk starts from a
temporal edge e; € E;attimet=T 02}
sampled from a distribution [,

Time

Unbiased P(e) =1/|E7]
Temporally Biased
exp |T(e) — tmin]
Ze’EET CXp [T(el) — tmin]

tmin = min. time associated with an edge in G

» Exponential: P(e) =

€
= Linear: P(e) = e) n: Epr = ZT

Ze’eET n(e’)

0 0.5 1 1.5 2 2.5 3

x10

procedure TEMPORALWALK(G', e = (s,7),t, L, C)

1
2 Initialize temporal walk S; = [s, r]
Temporal Random Walks 5 Seti=r
4 forp = 1tomin(L,C) — 1do
5 Ie(i) = {(w,t') | e = (i,w,t") € Ex AT (i) >t}
6 if [T'¢(i)| > O then
. 7 Select node j from distribution Fr ("¢ (7))
A temporal walk is a temporally g Append j to S,

. Sett =T (i, j
valid sequence of edges traversed suro 7
in increasing order of edge times 1 else terminate temporal walk
12 return temporal walk S; of length | S| rooted at node s

= After sampling the initial edge to begin the temporal walk

= At each step in the temporal random walk, we sample a node w from the
temporal neighborhood of node v according to a distribution FI‘

= Afterwards, we add w to the temporal walk, and find the temporal neighbors of w
given the edge traversal time, and repeat.

) , O,

8,10 I (v) = {(w,t’) | e = (v,w,t') € Ex ANT(e) > t}

O O 7
Vi > V2 41 > (Vo
O, e

(a) Neighborhood I'(v2) (b) Temporal neigh. I';(v2)

—_

o
o)

Temporal Random Walks

Probability

Proceed by sampling a node w from the

temporal neighborhood of v, adding itto o}

the temporal walk, traversing (v,w,t), and
repeating...

Unbiased P(w) = 1/|T(v)]

Temporally Biased

| |— Linear

— Uniform

— Exponential

o
o
T

o
~
T

Time

exp [T(w) — T(U)]

» Exponential: P(w) =

7(w) =T(v,w)

= Linear: P(w) = Zw’EFt(v) 5(w')

Zw’EFt(v) exp [T(w’) — T(’U)]

CTDN Embeddings

Given a temporal walk S, we learn time-dependent node embeddings by solving:

mjz}x logIP’(WT = {Vi—w, "y Vitw) \ Vi | f(vz))

where f . V — RP isthe node embedding function; and

WT — {Ui—wa Tt 7U7Z—|—w} s.t.
T (Vicw, Vicwt1) < -+ < T (Vigw—1,Vitw)

is an arbitrary temporal context window W C S

Just one example extending the Skip-Gram model,
many other possibilities

Experiments

Use first 75% of edges (ordered by time) as training
Experiments & last 25% for testing. We sample an equal number
of negative edges to use. (more details in paper)

CTDNE: [_ and [F = uniform (simplest)

DeepWalk & D=128, R=10, L=80, w=10 b= R X N X (L w + 1)
Node2vec(p,q € {0.25,0.50,1,2,4}) ot ot e
#oft t | Ik of context windows
LINE: 2"d-order, samples T = 60M NLR 7 from walk of length L
Table 1: AUC scores for Temporal Link Prediction. repeated for 10

random trial
DATA DeepWalk Node2Vec LINE CTDNE (GAIN) als

ia-contact 0.845 0.874 0.736 0913 (+10.37%)
ia-hypertext09 0.620 0.641 0.621 0.671 (+6.51%)
ia-enron-employees 0.719 0.759 0550 0.777 (+13.00%)
ia-radoslaw-email 0.734 0.741 0.615 0.811 (+14.83%)
ia-email-eu 0.820 0.860 0.650 0.890 (+12.73%)
fo-forum 0.670 0.790 0.640 0.826 (+15.25%)
soc-bitcoinA 0.840 0.870 0.670 0.891 (+10.96%)
soc-wiki-elec 0.820 0.840 0.620 0.857 (+11.32%)

Overall gain in AUC of 11.9% across all embedding methods and graphs

Experiments comparing different CTDNE variants

IFS = distribution used to select the initial edge to begin a temporal walk

IFF = distribution used to select next ”"temporally relevant node”
in a temporal walk

Variant
F Fr contact hyper enron rado

Unif (Eq. 1) Unif (Eq.5) 0913 0.671 0.777 0.811
Unif (Eq. 1) Lin (Eq.7) 0.903 0.665 0.769 0.797
Lin (Eq.3) Unif (Eq.5) 0915 0.675 0.773 0.818
Lin (Eq.3) Lin (Eq.7) 0.903 0.667 0.782 0.806
Exp (Eq.2) Exp (Eq.6) 0.921 0.681 0.800 0.820
Unif (Eq. 1) Exp (Eq. 6) 0.913 0.670 0.759 0.803
Exp (Eq.2) Unif (Eq.5) 0.920 0.718 0.786 0.827
Lin (Eq.3) Exp (Eq. 6) 0.916 0.681 0.782 0.823
Exp (Eq.2) Lin (Eq.7) 0914 0.675 0.747 0.817

Results indicate the choice of distribution depends on the
underlying data and temporal characteristics.

Comparing CTDNE’s to DTDNE’s (discrete static
snapshot approaches)

Two types of embedding methods:
* Discrete-time dynamic network embeddings (DTDNE)
* Continuous-time dynamic network embeddings (CTDNE)

DTDNE methods: Given T static snapshot graphs, we learn a (D/T)-dimensional
embedding and concatenate them all to obtain a D-dimensional embedding

Disadvantages/limitations:
= Approximate & noisy representation

= Uses temporally invalid info.

* Finding appropriate aggregation granularity is NP-hard
* Heuristics often used or simply ignored

= How to handle inactive nodes? Many heuristics...
* Use previous embedding (if exists)
* Set to mean embbedding
* Setto zero, etc...

Comparing CTDNE’s to DTDNE’s (discrete static
snapshot approaches)

Two types of embedding methods:
* Discrete-time dynamic network embeddings (DTDNE)
* Continuous-time dynamic network embeddings (CTDNE)

DTDNE methods: Given T static snapshot graphs, we learn a (D/T)-dimensional
embedding and concatenate them all to obtain a D-dimensional embedding

Results comparing CTDNE’s to DTDNE’s (AUC)

DATA DTDNE CTDNE (GAIN)

1a-contact 0.843 0.913 (+8.30%)
ia-hypertext09 0.612 0.671 (+9.64%)
ia-enron-employees 0.721 0.777 (+7.76%)
1a-radoslaw-email 0.785 0.811 (+3.31%)

Overall, CTDN embeddings capture the temporal properties better &
more accurately than embedding methods that use a sequence of
discrete snapshot graphs (and without all the issues/heuristics)

CTDN Embedding Framework

= This work learns CTDNE’s using basic Skip-gram model

= Other existing or future RW-based embedding methods
can be easily generalized via the proposed framework

Existing/future
RW-based method

Collect/use temporal
random walks

(via Fg and Fy)

Examples: node2vec, structavec, and deep graph models, e.g., GRAM

Summary and Conclusion

= |Introduced the notion of temporal random walks for
embedding methods

= Continuous-Time Dynamic Network Embeddings

» Avoids the issues and loss in information from ignoring time or creating
discrete static snapshot graphs

General & Unifying Framework

« Key idea can be used by others to adapt existing and/or future
embedding methods in a straightforward way

Effectiveness

« Achieves an average gain in AUC of 11.9% across all methods and graphs
from various application domains

Thanks!

Questions?

@ NameCi e foms!

NETWORK REPOSITORY
DOWNLOAD DATASETS

INTERACTIVE ANALYTICS

Download hundreds of real-world graphs and network datasets
Interactive visualization and analysis of network datasets
Explore network datasets and visualize their structure

Network Data Repository. Exploratory Analysis & Visualization.

The first interactive data and network repository with real-time analytics. Network repository is not only the first interactive
repository, but also the largest network and graph data repository with over 500+ donations. This large comprehensive
collection of network graph data is useful for making significant research findings as well as benchmark data sets for a
wide variety of applications and domains (e.g., network science, bicinformatics, machine learning, data mining, physics,
and social science) and includes relational, attributed, heterogeneous, streaming, spatial, and time series data as well as
non-relational machine learning data. All data sets are easily downloaded into a standard consistent format. We also have
built a multi-level interactive graph analytics engine that allows users to visualize the structure of the networks as well as
macro-level graph statistics as well as important micro-level properties of the nodes and edges.

Download network datasets

Data accessible online:
http://networkrepository.com

References

= Soundarajan, S., Tamersoy, A., Khalil, E. B., Eliassi-Rad, T., Chau, D. H., Gallagher, B., & Roundy, K. (2016, April).

Generating graph snapshots from streaming edge data. In Proceedings of the 25th International Conference Companion
on World Wide Web (pp. 109-110).

= Ryohei Hisano. Semi-supervised graph em- bedding approach to dynamic link prediction. arXiv preprint arXiv:1610.04351,
2016.

= Nitin Kamra, Umang Gupta, and Yan Liu. Deep generative dual memory network for continual learning. arXiv preprint,
arXiv:1710.10368, 2017

