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§ Goal: Learn representation (features) for a set of graph 
elements (nodes, edges, etc.)

§ Key intuition: Map the graph elements (e.g., nodes) to 
the d-dimension space, while preserving some type of 
“similarity”, e.g., based on proximity (communities), or 
structural similarity (roles) 

§ Use the features for any downstream prediction task



§ Ignore temporal information (edge timestamps)
⎻ Most real-world networks are dynamic (evolve over time)

Some recent work uses discrete static snapshot graphs [Hisano, 
2016; Kamra et al., 2017]

§ Very coarse approximation & introduces noise/errors 

§ Temporally invalid

§ Unclear how to create discrete snapshot graphs & differs for 
each network [Soundarajan et al., 2016]

§ Time period to use depends highly on the underlying 
domain/application (NP-hard problem)



Goal: Find a mapping of nodes to a D-dimensional time-
dependent representation

Properties warranted by approach:

• Temporally valid
• Model network in the most natural way with min information loss

• Continuous-time dynamic network (as opposed to a sequence 
of static snapshot graphs)

• General & unifying framework



§ Temporally valid

§ Model network at the finest 
temporal granularity 

§ Natural way to handle dynamic 
networks
• Avoids noise/information loss with 

discrete static snapshot approaches

§ Supports learning in graph 
streams where edges arrive 
continuously over time (e.g., 
every second/millisecond)

Edge stream



t=1 t=2
[1, 5] [6, 10]

Discrete-time models: represent dynamic network as a sequence 
of static snapshot graphs                     where 
User-defined aggregation time-interval

Very coarse approximation of the 
actual CTDN – temporally invalid 
& noise/error problems



t=1 t=2
[1, 5] [6, 10]

Discrete-time models: represent dynamic network as a sequence 
of static snapshot graphs                     where 

Very coarse approximation of the 
actual CTDN – temporally invalid 
& noise/error problems

A temporal walk is a sequence 
of edges/nodes that obey time.



t=1 t=2
[1, 5] [6, 10]

Discrete-time models: represent dynamic network as a sequence 
of static snapshot graphs                     where 

Very coarse representation with 
similar noise/error problems

Notice the walk (v4,	v1,	v2)	is possible 
despite it being temporally invalid

• (v1,	v2)	exists	in	the	past	w.r.t.	(v4,	v1)
• No	noise/error	when	modeled	as	CTDN
• CTDN	captures	the	temporally	valid	
walks	(with	no	information	loss)

CTDN

X



§ Captures the temporally valid interactions in the dynamic 
network in a lossless fashion

§ CTDNE’s are temporally valid embeddings learned from the 
actual dynamic network at the finest temporal granularity, 
e.g., milliseconds

§ CTDNE’s do not have the issues and information loss that 
arises when the actual dynamic network is approximated as a 
sequence of static snapshot graphs



§ Introduces the notion of temporal walks 

§ Serves as a general & unifying framework
• Existing and future embedding methods that use random walks can 

be adapted for modeling CTDN’s in a straightforward manner

§ Consists of a few interchangeable components



Two main ways:

1. Bias the selection of the initial edge 
to start the temporal random walk 

2. Bias the temporal random walk



1. Model network as CTDN

2. Initial temporal edge selection
• Use temporally unbiased or biased techniques to 

sample the initial edge in the temporal walk

3. Temporal neighbor sampling
• Temporally unbiased or biased sampling of a 

node from a temporal neighborhood

4. Learn time-dependent embedding

Unbiased/biased Temporal Random Walks

Edge stream



§ Each temporal walk starts from a 
temporal edge ei ∈ ET at time t = T 
sampled from a distribution 

= min. time associated with an edge in G

Unbiased

Temporally Biased

§ Exponential:

§ Linear: 
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§ After sampling the initial edge to begin the temporal walk

§ At each step in the temporal random walk, we sample a node w from the 
temporal neighborhood of node v according to a distribution

§ Afterwards, we add w to the temporal walk, and find the temporal neighbors of w 
given the edge traversal time, and repeat.

A temporal walk is a temporally 
valid sequence of edges traversed 
in increasing order of edge times



Unbiased

Temporally Biased

§ Exponential:

§ Linear: 

Proceed by sampling a node w from the 
temporal neighborhood of v, adding it to 
the temporal walk, traversing (v,w,t), and 
repeating…

= T(v,w)
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Given a temporal walk St, we learn time-dependent node embeddings by solving:

where is the node embedding function; and 

s.t.

is an arbitrary temporal context window

Just one example extending the Skip-Gram model, 
many other possibilities





DeepWalk & D=128,	R=10,	L=80,	!=10
Node2vec(

Use first 75% of edges (ordered by time) as training 

& last 25% for testing. We sample an equal number 

of negative edges to use. (more details in paper)

Overall gain in AUC of 11.9% across all embedding methods and graphs

# of context windows 

from walk of length L

# of total walks

= uniform (simplest)andCTDNE:

LINE: 2nd-order, samples T = 60M

repeated for 10 
random trials

)



Results indicate the choice of distribution depends on the 
underlying data and temporal characteristics.

= distribution used to select the initial edge to begin a temporal walk

= distribution used to select next ”temporally relevant node” 
in a temporal walk



DTDNE methods: Given T static snapshot graphs, we learn a (D/T)-dimensional 
embedding and concatenate them all to obtain a D-dimensional embedding 

Disadvantages/limitations:
§ Approximate & noisy representation
§ Uses temporally invalid info.
§ Finding appropriate aggregation granularity is NP-hard 

• Heuristics often used or simply ignored

§ How to handle inactive nodes? Many heuristics…
• Use previous embedding (if exists)
• Set to mean embbedding
• Set to zero, etc…

Two types of embedding methods:
• Discrete-time dynamic network embeddings (DTDNE) 
• Continuous-time dynamic network embeddings (CTDNE) 



Overall, CTDN embeddings capture the temporal properties better & 
more accurately than embedding methods that use a sequence of 
discrete snapshot graphs (and without all the issues/heuristics)

Results comparing CTDNE’s to DTDNE’s (AUC)

DTDNE methods: Given T static snapshot graphs, we learn a (D/T)-dimensional 
embedding and concatenate them all to obtain a D-dimensional embedding 

Two types of embedding methods:
• Discrete-time dynamic network embeddings (DTDNE) 
• Continuous-time dynamic network embeddings (CTDNE) 



§ This work learns CTDNE’s using basic Skip-gram model 

§ Other existing or future RW-based embedding methods 

can be easily generalized via the proposed framework

Existing/future 
RW-based method

Collect/use temporal 
random walks
(via %& and %))

… …

Examples: node2vec, struct2vec, and deep graph models, e.g., GRAM



§ Introduced the notion of temporal random walks for 

embedding methods

§ Continuous-Time Dynamic Network Embeddings

• Avoids the issues and loss in information from ignoring time or creating 

discrete static snapshot graphs

§ General & Unifying Framework 

• Key idea can be used by others to adapt existing and/or future 

embedding methods in a straightforward way

§ Effectiveness

• Achieves an average gain in AUC of 11.9% across all methods and graphs 

from various application domains



Data accessible online:
http://networkrepository.com
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