

Ryan A. Rossi¹ Nesreen K. Ahmed², Eunyee Koh¹, and Sungchul Kim¹

¹Adobe Research

² Intel Labs

Motivation

Communities are sets of densely connected nodes

Important for many applications

Most previous work has two main limitations:

- 1. Most previous work does not address the hierarchical community detection problem
- 2. Inefficient for large graphs with a runtime that is not linear in the number of edges

This work proposes an approach called hLP that addresses both these limitations.

• Fast linear-time approach for revealing hierarchical communities in large graphs

Problem

Given G, hLP computes

- (i) a hierarchy of communities $\mathbb{H} = \{\mathcal{C}^1, \dots, \mathcal{C}^L\}$ s.t. $|\mathcal{C}^{t-1}| > |\mathcal{C}^t|, \forall t$
- (ii) a hierarchy of super graphs $G_1, \ldots, G_t, \ldots, G_L$

$$V_t \leftarrow \mathcal{C}^t$$

$$E_t = \left\{ (i, j) : r \in C_i^t, s \in C_j^t \land (r, s) \in E_{t-1} \land i \neq j \right\}$$

Desired properties:

- Finds "good" high quality communities
- Fast algorithm for large graphs linear time and space complexity
- Summarizes structure at various levels of granularity

Two main steps:

- 1. Label propagation
- Super graph construction
 Repeat 1-2 until convergence

Algorithm 1 нLP

```
Input: a graph G = (V, E)
Output: hierarchical communities \mathbb{H} = \{ \mathcal{C}^1, \dots, \mathcal{C}^L \}

1 Set G_0 \leftarrow G to be the initial graph and t \leftarrow 0
2 repeat
3 t \leftarrow t + 1
4 \mathcal{C}^t \leftarrow \text{LabelProp}(G_{t-1})
5 G_t = (V_t, E_t) \leftarrow \text{CreateSuperGraph}(G_{t-1}, \mathcal{C}^t)
6 until |V_t| < 2 \triangleright Stop when no nodes to combine
```

Two main steps:

- 1. Label propagation
- Super graph construction
 Repeat 1-2 until convergence

Algorithm 1 нLP

```
Input: a graph G = (V, E)

Output: hierarchical communities \mathbb{H} = \{C^1, \dots, C^L\}
```

- 1 Set $G_0 \leftarrow G$ to be the initial graph and $t \leftarrow 0$
- 2 repeat
- $3 \qquad t \leftarrow t + 1$
- 4 $C^t \leftarrow \text{LabelProp}(G_{t-1})$
- 5 $G_t = (V_t, E_t) \leftarrow \text{CreateSuperGraph}(G_{t-1}, \mathbf{C}^t)$
- 6 until $|V_t| < 2$

Two main steps:

- 1. Label propagation
- Super graph construction
 Repeat 1-2 until convergence

Algorithm 1 нLР

```
Input: a graph G = (V, E)
```

Output: hierarchical communities $\mathbb{H} = \{C^1, \dots, C^L\}$

- 1 Set $G_0 \leftarrow G$ to be the initial graph and $t \leftarrow 0$
- 2 repeat
- $3 \qquad t \leftarrow t + 1$
- 4 $C^t \leftarrow \text{LabelProp}(G_{t-1})$
- 5 $G_t = (V_t, E_t) \leftarrow \text{CreateSuperGraph}(G_{t-1}, \mathbf{C}^t)$
- 6 until $|V_t| < 2$

Two main steps:

- 1. Label propagation
- Super graph construction
 Repeat 1-2 until convergence

Algorithm 1 нLP

```
Input: a graph G = (V, E)
```

Output: hierarchical communities $\mathbb{H} = \{C^1, \ldots, C^L\}$

- 1 Set $G_0 \leftarrow G$ to be the initial graph and $t \leftarrow 0$
- 2 repeat
- $3 \qquad t \leftarrow t + 1$
- 4 $C^t \leftarrow \text{LABELPROP}(G_{t-1})$
- 5 $G_t = (V_t, E_t) \leftarrow \text{CreateSuperGraph}(G_{t-1}, \mathbf{C}^t)$
- 6 until $|V_t| < 2$

Two main steps:

- 1. Label propagation
- Super graph construction
 Repeat 1-2 until convergence

Algorithm 1 нLР

Input: a graph G = (V, E)

Output: hierarchical communities $\mathbb{H} = \{C^1, \dots, C^L\}$

- 1 Set $G_0 \leftarrow G$ to be the initial graph and $t \leftarrow 0$
- 2 repeat
- $3 \qquad t \leftarrow t + 1$
- 4 $C^t \leftarrow \text{LabelProp}(G_{t-1})$
- 5 $G_t = (V_t, E_t) \leftarrow \text{CreateSuperGraph}(G_{t-1}, \mathbf{C}^t)$
- 6 until $|V_t| < 2$

Two main steps:

- 1. Label propagation
- Super graph construction
 Repeat 1-2 until convergence

Time Complexity:

O(LTM)

L = number of layers T = number of iterations M = number of edges

Algorithm 1 нLP

Input: a graph G = (V, E)

Output: hierarchical communities $\mathbb{H} = \{C^1, \dots, C^L\}$

- 1 Set $G_0 \leftarrow G$ to be the initial graph and $t \leftarrow 0$
- 2 repeat
- $3 \qquad t \leftarrow t + 1$
- 4 $C^t \leftarrow \text{LabelProp}(G_{t-1})$
- 5 $G_t = (V_t, E_t) \leftarrow \text{CreateSuperGraph}(G_{t-1}, \mathbf{C}^t)$
- 6 **until** $|V_t| < 2$

Two main steps:

- 1. Label propagation
- 2. Construct super graph

Repeat 1-2 until convergence

Space Complexity:

$$O(L(M+N))$$

L = number of layers M = number of edges N = number of nodes

Algorithm 1 нLP

```
Input: a graph G = (V, E)
Output: hierarchical communities \mathbb{H} = \{C^1, \dots, C^L\}

1 Set G_0 \leftarrow G to be the initial graph and t \leftarrow 0
2 repeat
3 t \leftarrow t + 1
4 C^t \leftarrow \text{LabelProp}(G_{t-1})
5 G_t = (V_t, E_t) \leftarrow \text{CreateSuperGraph}(G_{t-1}, C^t)
6 until |V_t| < 2 \triangleright Stop when no nodes to combine
```

Algorithm 2 Create Super Graph

```
Input: a graph G_{t-1} = (V_{t-1}, E_{t-1}), communities C^t from G_{t-1}

Output: community (super) graph G_t = (V_t, E_t) for layer t

1 V_t \leftarrow C^t = \{C_1, \ldots, C_k\} and E_t \leftarrow \emptyset

2 Let c be the community assignment vector where c_i = k if i \in C_k

3 parallel for i \in V_{t-1} do

4 for j \in \Gamma_i do \triangleright Neighbor of vertex i

5 if c_i \neq c_j and (c_i, c_j) \notin E_t then

6 E_t \leftarrow E_t \cup (c_i, c_j)
```

Results

Use modularity for evaluation

Table 1: Quantitative evaluation using modularity.

~			0			
	DS	KCore	LP	Louv	Spec	нLР
soc-yahoo-msg	0.0003	0.0004	0.0479	0.0394	0.0005	0.0569
bio-gene	0.0195	0.0217	0.0315	0.0408	-0.0208	0.0846
ca-cora	0.0089	0.0304	0.0444	0.0608	0.0164	0.1026
soc-terror	0.0888	0.0892	0.0967	0.0967	0.0999	0.1243
inf-US-powerGrid	0.0027	0.0027	0.0061	0.0212	0.1127	0.1242
web-google	0.0272	0.0275	0.0429	0.0471	0.1010	0.1122
ca-CSphd	0.0224	0.0224	0.0234	0.0198	0.0131	0.1201
ca-netscience	0.0164	0.0168	0.1063	0.0561	0.1229	0.1233
road-luxem.	0.0629	0.0629	0.0077	0.0046	-0.1170	0.1141
bio-DD21	0.0865	0.0866	0.0106	0.0202	0.1241	0.1247

Runtime comparison

Summary of Contributions

- Proposed a new hierarchical graph clustering algorithm
- Fast with linear time and space complexity
- Outperforms other algorithms in terms of cluster quality
- Useful for visualization and interactive exploration of large networks

Thanks for listening!

Appendix