
Triangle Core Decomposition and Maximum Cliques

Ryan A. Rossi
Purdue University

David F. Gleich
Purdue University

Assefaw H. Gebremedhin
Purdue University

Consider a graph G = (V,E). A k-core of G is a maximal induced subgraph of G where each vertex
has degree at least k. There is a linear time O(|E|+ |V |) time algorithm to compute the maximum k such
that a vertex is in a k-core for all vertices in the graph [1]. Because of this efficient algorithm, and a simple,
but often powerful, interpretation, k-cores are frequently utilized to study modern networks. Important
k-core related quantities include the size of the 2-core compared with the graph, the distribution of
k-core sizes, the largest k-core, and many similar quantities. In particular, the maximum value of k such
that there is a k − 1-core in G is known as the coloring number of a graph and provides an upper-bound
on the largest clique in G. In this abstract, we will discuss a recently proposed generalization of k-cores
to a triangle motif [2], refine a procedure to compute them to enable computations on large graphs, and
use the relationship between largest triangle core to confirm that a heuristic maximum clique finder
discovers the optimal solution for many social and information networks.

An equivalent definition of a k-core is a maximal induced subgraph of G where each vertex is incident
on at least k edges. This definition then generalizes to any motif, and in particular, a triangle k-core is
the maximal induced subgraph of G for which each edge (u, v) ∈ E participates in at least k triangles [2].
The triangle core number T (u, v) of an edge (u, v) ∈ E is the highest order core that contains that edge.
Similarly, the maximum triangle core of G is denoted T (G). There is also a polynomial time algorithm
for triangle cores, which is O(|T |) = O(|E|3/2) in the worst case [2].

This algorithm to compute triangle k-cores proceeds in the same fashion as an edge k-core method.
Let us review: to compute an edge k-core, we repeatedly remove all vertices of degree less than k. For
triangle k-cores, then, we repeatedly remove all edges that participate in fewer than k-triangles. The
insight that led to the O(|V |+ |E|) algorithm for edge k-cores, is that we can run this procedure for all
k iteratively because the cores are nested [1]. The same fact is true of triangle cores [2]. In that triangle
k-core algorithm, however, they explicitly store an array of triangles in order to check whether or not
a triangle has been processed. This storage limits scalability as graphs may have billions of triangles
with only millions of edges – see the Hollywood graph in Table 1. In the algorithm we present here, we

Algorithm 1 Fast Triangle Core Decomposition
1 procedure TriangleCores(G = (V,E))

2 for each (u, v) ∈ E do

3 Set T (u, v) to be the number of triangles involving (u, v)

4 Bucket sort the edges by increasing triangle count
5 while there are remaining edges do

6 Let (u, v) be the edge with smallest T (u, v)

7 Index all neighbors of u via remaining edges
8 for each edge (v, w) that remains with w in the index do

9 Subtract 1 from T (u,w) and T (v, w)
10 and update the bucket sort

11 Mark (u, v) removed.
Figure 1: Triangle cores 0, 1, and 2.

Table 1: dmax and davg are the largest and average degrees, respectively. Also, κ̄ is the mean clustering coefficient; |T | is the total
triangles, Tmax and Tavg are the maximum number and average number of triangles incident on a vertex; K is an upper bound on
ω from edge k-cores, T is an upper bound on ω from triangle k-cores, and ω̃ is the size of a clique from our heuristic. The timings
measure how long our heuristic, triangle counts, and triangle cores took, respectively.

Graph |V | |E| |T | dmax davg κ̄ Tmax Tavg K T ω̃ ω̃ sec ∆ sec T sec

dblp-2010 226k 716k 4.8M 238 6 0.64 5.9k 21 75 75 75 0.02 0.10 0.29
citeseer 227k 814k 8.1M 1.4k 7 0.68 5.4k 35 87 87 87 0.05 0.09 0.43

hollywood 1.1M 56M 15B 11k 105 0.77 4.0M 13k 2209 2209 2209 1.57 38.93 727.2

youtube 496k 1.9M 7.3M 25k 7 0.11 151k 14 50 19 14 0.42 0.71 15.92
orkut 3.0M 106M 1.6B 27k 70 0.17 1.3M 525 231 75 45 13.8 38.73 770.5

livejour 4.0M 28M 251M 2.7k 13 0.26 80k 62 214 214 214 3.2 3.92 54.3
friendster 65M 1.8B 12.5B 5.2k 55 0.16 190 158k 305 129? 129 561 2616 45247

Texas84 36k 1.6M 34M 6.3k 87 0.19 141k 922 82 62 48 0.070 0.34 4.80
Penn94 42k 1.4M 22M 4.4k 65 0.21 68k 520 63 48 44 0.05 0.22 3.27

p2p-gnut 63k 148k 6.1k 95 4 0.01 17 0.1 7 4? 4 0.01 0.01 0.02
as-skitter 1.7M 11M 86M 35k 13 0.26 565k 50 112 68 64 0.37 4.33 70.6

uk-05 130k 12M 2.5B 850 181 0.99 124k 19k 500 500 500 0.05 2.52 12.40
wikipedia 1.9M 4.5M 6.7M 2.6k 4 0.16 12k 3 67 31? 31 0.66 0.54 3.54

can accomplish the same type of check implicitly by carefully ordering and indexing. Eliminating this
storage reduces the runtime and memory requirements considerably: 443 seconds to 60 seconds and
7GB of memory to 500MB (LiveJournal graph from [2]).

In Algorithm 1, we present the refinement of the algorithm to remove the global triangle marks. At
the conclusion, the array T (u, v) contains the triangles core numbers for each edge. In the loop over
all edges, we treat each edge only once, and remove it once we have visited all of its triangles. The
inner-loop only visits a triangle (u, v, w) once because, after that loop, edge (u, v) is removed from the
graph. This algorithm works by removing edges (u, v) with minimal triangle core number, and thus,
once we remove all edges, we’ll have the maximum triangle core numbers for each edge.

Now, we discuss the implications of triangle cores on clique finding. As noted in ref. [2], if a graph
has a clique of size k, then it must have a triangle core of size k− 2. Hence, if T is the maximum triangle
core, then T + 2 is an upper bound on the size of the maximum clique ω in G. Thus, we have the
following bounds: ω ≤ T + 2 ≤ K+ 1 ≤ dmax where K is the maximum k-core and dmax is the maximum
degree in G. We have also found that the triangle core bound is sometimes tighter than an approximate
chromatic number χ̃ from a greedy coloring that uses k-core ordering. We expect that using the triangle
cores in a greedy coloring scheme ought to improve a coloring bound further, but in practice, we find
that the largest triangle core is often close to the maximum clique size. See the table.

Given that we have an upper bound on the largest clique size, we use a heuristic procedure to find a
large clique in the graph. Our heuristic prunes vertices and their neighborhoods by edge k-cores and
only searches vertices with an edge k-core bigger than the largest clique found thus far. At each step of
the heuristic clique growing procedure, vertices are selected by greedily choosing the vertex with largest
edge k-core number among the search candidates. We find this produces large cliques quickly.

In Table 1, we use the heuristic to compute ω̃, and use the triangle cores to compute T , an upper
bound on the maximum clique size. We can compute the triangle cores relatively quickly, it takes minutes
and hours to handle graph with hundreds of millions or billions of edges, but the memory load is feasible
on a modern desktop.

In the future, we plan to study ways to use the triangle cores to get better upper-bounds on the
clique size by coloring the graph.

[1] V. Batagelj and M. Zaversnik. An o (m) algorithm for cores decomposition of networks. arXiv preprint
cs/0310049, 2003.

[2] Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing triangle k-core motifs within networks.
In ICDE, pages 1049–1060, 2012.

