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Abstract—The topology of a network (connectivity of au-
tonomous systems (ASes) or routers) has significant implications
on the design of protocols and applications, and on the placement
of services and data centers. Researchers and practitioners
alike need realistic topologies for their simulation, emulation,
and testbed experiments. In this work, we propose a multi-
level framework for analyzing Internet topologies and their
evolution. Our multi-level framework includes novel measures,
evaluation strategies, and techniques for automatically learning
a representative set of graph measures. We apply our framework
to analyze topologies from two recent topology generators, Orbis
and WIT, according to how well they achieve their advertised
objectives. The generated topologies are compared to a set of
benchmark datasets that approximate different views of the
Internet in the data (trace-route measurements), control (BGP),
and management (WHOIS) planes. Our results demonstrate key
limitations of popular generators, and show that the recent
Internet clustering coefficient and average distance are not time-
invariant as assumed by many models. Additionally, we develop
a taxonomy of topology generators, and identify key challenges
in topology modeling.

I. INTRODUCTION

Accurate representation of network topologies plays a
critical role in designing protocols [30], predicting perfor-
mance [22], and understanding robustness and scalability of
the future Internet [23], [18], [31]. Many current topology
generators attempt to capture key static properties of the
Internet or to capture Internet evolution. The most recent
Internet topology generators [26], [38], [36], [25], [4] aim at
generating representative topologies of different sizes (number
of nodes); however, understanding and modeling the driving
forces behind Internet evolution remains a significant chal-
lenge.

Looking back on Internet topology modeling research over
the past ten years, Roughan et al. [33] note that the majority
of prior work makes simplifications that lead to misleading
findings and ill-conceived ideas about the Internet. In this
work, we examine this prior research on topology modeling
quantitatively. We propose a taxonomy for topology genera-
tors, analyze the claims they make, and introduce a multi-
level evaluation framework. In doing so, we seek to address
the following questions: (1) How do we quantitatively assess
a topology generator? and (2) How accurately do current
topology generators model both the static and the evolutionary
properties of the Internet?

Several previous studies examined the average degree of
the Internet Autonomous System (AS) graph, its average path
length, and its clustering coefficient and showed them to
remain constant as the Internet topology evolves, e.g., [37],
[26]. These findings are based on RouteViews datasets from
the 1990s–2006 time frame. We will show different character-
istics in more recent RouteViews data (Fig. 1 and 2). Further,
several generators aim to maintain “any arbitrary metric” of a
generated topology constant as the number of nodes increase,
e.g., [26], [27]. However, there is evidence of the Internet
topology transitioning from a hierarchical to a flat topological
structure [14], [13], [24]. These observations of a change in the
characteristics of the Internet are consistent with our findings,
and explain why topology generators that assumed a prior
structure or process based on previous patterns may fail to
predict recent evolution of the Internet topology.

We compare generated topologies to real and synthetic
datasets based on a multi-level approach that includes novel
measures, evaluation strategies, and techniques for automat-
ically learning a representative set of graph measures. In
contrast to prior work that assumed that certain measures are
sufficient and necessary to evaluate generated topologies, we
find that the measures previously studied are not enough to
demonstrate the superiority of a generator over another. There
are often other factors to consider. For instance, we found that
under certain conditions, Orbis generates topologies that are
approximately isomorphic to the initial topology used as input.
Therefore, any graph metric used to evaluate these topologies
will match almost exactly. As a result, it may be important to
require some variance between the graph used as input and
the generated graphs.

The contributions of this paper can be summarized as
follows. First, we propose a novel multi-level framework
for evaluating topologies and their evolution. This multi-
level framework includes graph, node, and link measures,
and learning and evaluation methods. Second, we study the
clustering coefficient and average distance in recent Internet
AS topology data, and demonstrate that they are not time-
invariant as assumed by earlier work. Third, we apply our
multi-level framework to evaluate two recent popular topology
generators, Orbis [26] and WIT [38], according to whether
they produce graphs that match their advertised objectives. The
topology generators are compared to a variety of datasets that
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approximate different views of the Internet at the data (tracer-
oute measurements [9]), control (BGP [2]), and management
(WHOIS [1]) planes. We also present a few results on the
RocketFuel [34] and the HOT [25] router-level topologies.

We structure the remainder of the paper as follows. Sec-
tion II presents a taxonomy for topology generators. We also
discuss in detail two recent topology generators, Orbis and
WIT. In section III, we propose a framework for analyzing
network properties based on matrix factorization techniques
that range across three-levels of structural granularity. Sec-
tion IV describes the datasets and process used to compare
real and synthetic topologies. In section V, we evaluate the
topology models using our multi-level approach. We conclude
with a summary of our main findings.

II. TAXONOMY AND CHALLENGES

We introduce a taxonomy of prominent topology generators
in Table I. This taxonomy is based on the main principle used
in generating topologies (random-walk, optimization, prefer-
ential attachment, geometry), the type (parametric, nonpara-
metric), and the topology (AS, router-level (RL)) constructed.

Parametric generators assume a particular functional form or
mechanism, whereas data-driven generations (nonparametric
models) make fewer assumptions about the functional form.
A generator may estimate parameters from data or simply
assume an underlying mechanism. If an underlying mechanism
or principle is used in a topology generator (e.g., WIT), the
generator is tailored to a specific type of topology such as
the Internet AS topology, whereas topology generators that
perform parameter estimation from data can typically generate
many types of networks (e.g., social or biological networks).

Models based on preferential attachment [3], [5], [28],
[21], [8], [40] may be too restrictive to model the Internet
evolution, since the decision to link to another node is based
on degrees of nodes, giving high importance to highly con-
nected nodes. Generators based on random-walks can suffer
from similar problems. Optimization-based generators [11],

TABLE I
TAXONOMY OF TOPOLOGY GENERATORS

GENERATORS PROCESS Model Type Topology

WIT [38] Random-walks Parametric AS
RSurfer [7] Parametric N/A

Orbis [26]
Optimization

Data-driven AS & RL
HOT [25] Parametric RL
Mod. HOT [11] Parametric AS

AB [3]
Preferential

Parametric N/A
BRITE [28]

Attachment
Data-driven AS & RL

Inet [21] Parametric AS
GLP [8] Parametric AS

SWT [22] Geometry Parametric AS & RL
GT-ITM [10] Parametric AS & RL

[15] consider solving the optimization problem between the
benefit and improved connectivity of the network. However,
economic considerations of the connectivity are not typically
considered in the optimization. GT-ITM [10] is one of the
earliest generators and is primarily based on the hierarchical
nature of the Internet, which appears to be changing [14], [13],
[24]. Tangmunarunkit et al. [35] find that degree-based models
match a set of measures better than these early hierarchical
models. Though recent generators accurately match the power-
law distribution, they fail to capture certain network measures
summarized in Table II.

Below, we formally describe two recent and well-cited
Internet topology generators, Orbis and WIT, which we use
as case studies in the remainder of this paper.

A. Orbis: From Degree to Topology

Orbis uses a series of measures based on degree correlations
that monotonically capture more global structures [26]. An
initial topology is given as input and randomly rewired such
that the dK-distribution of the input topology is preserved.
The first few dK distributions are: 0K (average degree),
1K (degree distribution: P (k) = n(k)/n), 2K (joint degree
distribution: P (k1, k2) = m(k1, k2)µ(k1, k2)/(2m), where
µ(k1, k2) = 2 if k1 = k2, otherwise 1), 3K (wedges
and triangles), and so forth. The topologies are rescaled by
simply stretching the target distribution and preserving it under
random rewiring. The chosen value of d must be small in
practice due to the increase in complexity as d increases.
Additionally, as d increases, the space of possible graphs that
can be generated exponentially shrinks, yielding topologies
that are only slightly different from the input training topology.
Of course, if the input graph varies only slightly from the
generated graph, then both graphs exhibit nearly identical
characteristics, and the generated graph is not too useful.
With small values of d, Orbis is limited to preserving only
local characteristics. As we will show, constructing graphs
with d = {0, 1, 2, 3} captures a few related local measures,
but fails to capture global characteristics. Furthermore, as the
generated graphs are rescaled, the accuracy of capturing the
local measures depends on the rescaling technique, becoming
increasingly inaccurate as the size of the topology increases.

B. WIT: From Random Walks to Topology

The WIT model uses a simple multiplicative stochastic
process, ui(t) = λi(t) ui(t − 1), where ui(t) is the unscaled
wealth of node i at time t and λi(t) is a random variable.
This process captures the “wealth” of ISPs over time [37],
[38]. The wealth (or weight) for each ISP is used to add or
remove links based on a given threshold.

More formally, the wealth of a node is updated each
iteration (or time). If the updated node weight exceeds a
given threshold wi(t) − zi(t) > C + T , then a link is added
by randomly walking l-steps until an arbitrary node z is
reached and a link is placed between the nodes. In the above
threshold check, wi(t) is the normalized wealth for node i,
and zi(t) = C · di(t) (depends on the current degree di(t)
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of node i and the expected link cost C = w0 · c, where w0

and c are only some of the input parameters). Furthermore, T
must be carefully chosen to avoid an oscillating (degenerate)
case where a link is added and then the next time deleted,
indefinitely. Similarly, if the node weight is below a threshold
wi(t) − zi(t) > −T , then the node randomly chooses one
of its links to remove. A new node x is added and a link is
initially created by randomly selecting a node y and linking to
that node. Additionally, a second link is added by randomly
walking l-steps as described previously.

C. Challenges in Topology Generation

Topology modeling remains a difficult challenge [33]. As
discussed above, some models like WIT do not estimate
parameters using an input topology, but rather rely on the
accuracy of assumptions made about the underlying growth
mechanism and the ability of this mechanism to accurately
match the forces driving the evolution of the Internet topology.
Selecting the parameters for WIT requires detailed knowledge
of the model and the behavior of the Internet over time,
which is not very well-understood. The lack of parameter
estimation makes WIT difficult to use in simulations or other
practical applications. The initial evaluation of WIT in [38]
uses the optimal parameters for RouteViews, but provides
little intuition for selecting these parameters for a given AS
topology.

TABLE II
MEASURES AND RELATED NETWORK CHARACTERISTICS

Measure Importance in Computer Networks

L
O

C
A

L Degree Fault tolerance, local robustness
Assortativity
Clustering
coefficient

Path diversity, fault tolerance, local robust-
ness

Distance Scalability, performance, protocol design

G
L

O
B

A
L Betweenness Traffic engineering, potential congestion

points
Eigenvector Network robustness, performance, clus-

ters/hierarchy, traffic engineering

Consider the space of all graphs that preserve a set of
measures and suppose we select an arbitrary graph from this
space. This graph may preserve the set of measures, but not
capture the characteristics of the system (e.g., AS topology).
Therefore, a graph that preserves a set of measures is not guar-
anteed to capture the important characteristics of the system
under investigation. From this perspective, WIT attempts to
model the evolution of the AS topology directly, whereas Orbis
generates topologies that preserve a set of measures. Thus, the
WIT model would fail when the underlying process used in the
formation and growth of the Internet changes or if the model
does not accurately mimic the underlying process, whereas
Orbis would fail if the set of characteristics are incomplete
with respect to the characteristics implied by the actual AS
topology.

III. A MULTI-LEVEL FRAMEWORK

At the heart of our topology analysis framework are multi-
level evaluation criteria based on three general classes of
measures: graph, node, and link measures. Graph measures
(i.e., scalar measures) compute a single value for the entire
network graph, whereas node and link measures compute a
value for each node or link, respectively.

The three evaluation granularities form an approximate
ordering, link measures ≥ node measures ≥ graph measures,
according to the difficulty of preserving a property from
that level. For instance, constructing a graph that preserves
the average degree is easier than constructing a graph that
preserves the degree distribution. Clearly, the node and link
measures capture graph structure and connectivity better than
single point statistics. A topology generator that consistently
preserves graph measures is said to be validated at this level
(i.e., the least constrained evaluation granularity).

The majority of previous work was not sufficiently quanti-
tative in its evaluation of topology generators, leading to an
incomplete and often misleading depiction of their accuracy
and representativeness. Some generators are evaluated using
only single point statistics while others focus on only local
properties such as degree and average local-clustering coef-
ficient. Further, most of the previous work did not examine
community structure.

As a basis for our multi-level approach, we use a number
of graph, node, and link measures using matrix factorizations.
These measures and their relation to AS-level and router-
level topologies have only received limited attention. The
majority of previous work uses the spectrum of the Laplacian
matrix (which indicates connected components and sparse
cuts), and ignores the adjacency matrix (which can indicate
properties such as the number of paths). Nevertheless, matrix-
factorization-based characteristics have been described by
some as critically important [27], [17], [12], yielding tight
bounds for (1) distance-related characteristics, (2) clustering-
related characteristics, and (3) graph resilience under node/link
removal. Most graphs with large eigenvalues exhibit small
diameters, expand faster, and are more robust with respect
to link or node removal [27]. The eigenvectors also cluster
tightly connected or similar nodes, whereas large eigenvalues
may imply more node and link-disjoint paths. In addition to
capturing a significant amount of global information about the
resulting topology, the eigenvectors also identify local char-
acteristics such as degree-patterns and clustering of various
sizes. Table II summarizes a number of measures and their
corresponding network characteristics.

Much of the previous work evaluates topologies by visually
comparing the similarity of measures. Instead, we propose
using distance or divergence measures to more quantitatively
compare graph, node, or link measures. Further, instead of
choosing a set of measures, we use an approach that au-
tomatically learns a set of “representative” node measures
based on the original graph. Our approach then computes
these same features using the generated graphs. After that, the
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Fig. 1. Graph Measures. Evolutionary characteristics of the AS topology as observed from RouteViews (2004 to 2012). The majority of previous models
assume the Internet topology (and measures applied to it) are time-invariant. However, as shown above, we find evidence of a recent transition in the topological
structure, most notably seen from 2007-present (28K and beyond) which is consistent with [24]. We observe the average clustering coefficient decreasing,
indicating there are on average fewer triangles (triad relationships) being formed between ISPs, even as the number of ISPs and connections increase. This
behavior also helps explain the increase in characteristic path length: the topology is becoming more spread out and flat due to fewer triangles being formed.
Further, the assortativity coefficient is becoming more positive; ISPs are now connecting to others that have a similar amount of connections (gradually losing
the hierarchical structure). These findings help explain the transition to a flat topology [14], [13], [24], while allowing us to understand the speed of this
change and predict its future impact on the Internet.

node measures can be compared and evaluated. This approach
eliminates the human bias of selecting measures to evaluate a
generator.

A. Graph Measures

In addition to the traditional graph (or scalar) measures
(e.g., average degree k, assortativity coefficient r, average
clustering c̄, average distance (d̄), we propose using the largest
singular value (λ1), network conductance (λ1−λ2), radius, and
diameter.

A positive assortativity coefficient indicates that nodes tend
to link to nodes with similar degree. Note that the Internet AS
graph has negative assortativity, although its value is changing.

A wedge is a 2-length path. The set of wedges Wu centered
at u is given by Wu = du(du − 1)/2 where du is degree. A
wedge {(u,w)(w, v)} forms a triangle if there exists an edge
(u, v). Let Tu be the set of triangles centered at u. Then, the
local clustering coefficient is Cu = |Tu|/|Wu|. We use the
average local-clustering coefficient C =

∑
u∈V Cu [39], as

opposed to the global clustering coefficient [29].
The difference between the two largest eigenvalues denotes

the network conductance which is also known by some as
the performance of a network [27]. Each of these scalar
values is computed from the eigenvectors and eigenvalues
(or, if appropriate, the singular-vectors or singular-values) of
the graph adjacency matrix. Note that a graph measure may
also be computed by applying any summary function (e.g.,
avg, sum, max, min, var) to a node measure.

B. Node Measures

To analyze the local and global node-level properties of
networks, we primarily use the following measures:

− Network Values. Plot of the eigenvector components (indica-
tors of network value) corresponding to the largest eigenvalue.
−Scree Plot. Plot of the k largest eigenvalues (or singular-
values) versus their normalized rank using a log-scale.
−K-walks: A Class of Local and Global Measures. We pro-
pose using a simple class of measures, denoted as k-walks,
capable of measuring both local and global properties of
graphs by adjusting a single parameter. A k-walk of a vertex
u is the number of walks of length k rooted at u. The number
of walks from node u to node v in a graph G with length k is
(Ak)uv . The k-walk measure of a graph adjacency matrix A is
given by σk(A) = Ake, where e is the unit vector. If k →∞
then we have the principal eigenvector and the other extreme
where k = 1 results in the degree distribution. Intermediate
values 1 ≤ k ≤ ∞ give other properties of the graph going
from the most local property of degree to the most global
property of the principal eigenvector. This metric provides a
formal way to bound the similarity of two graphs with respect
to k.
−K-core. A k-core is a vertex induced subgraph where all
vertices have degree at least k. The core number of a vertex
v is the largest k such that v is in a k-core.
−Others. We also use traditional measures such as degree
distribution, clustering coefficient, distance, eccentricity, be-
tweenness, among others. Note that the number of triangles Tu
and wedges Wu from Section III-A are also node measures.

C. Link Measures

Link measures lie at the finest evaluation granularity. First,
we apply a technique to order the nodes with respect to the
magnitude of their coordinates along the principal direction.
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Fig. 2. Node Measures. The node measures are changing between 2004 and 2012 (RouteViews), consistent with our findings in Fig. 1

This procedure reveals significant link structures, connectivity
patterns, and block structures/clustering. Second, we analyze
the network characteristics more accurately by computing
the closest k-approximation of the topology resulting in the
weighting, suppression, or creation of links. Similar techniques
have been used in information retrieval and various fields
that require a low-dimensional representation that preserves
the most significant information with minimum loss. Both
methods allow us to identify the most significant properties
preserved in the resulting topology.

D. Communities

We evaluate the community structure using Louvain’s mod-
ularity [6], which was previously shown to be important for
studying the Internet AS graph [19]. The evaluation strategy
below is defined for a single topology, but the strategy is
applied for each of the generated topologies and the corre-
sponding benchmark topology. Our evaluation strategy is as
follows:
1. Given a topology, extract communities. Let kmax denote

the number of communities that have at least r nodes. We
use r = 100 to discard small insignificant communities.

2. For each community k = 1, ..., kmax, induce the subgraph
Sk such that Sk consists of all the nodes in the community
k and the links between these nodes.

3. For each community subgraph Sk = S1, ..., Skmax
, eval-

uate the connectivity properties using graph measures and
node measures.

Once the community subgraphs have been extracted over
the benchmark/generated topologies, there are several ways
to evaluate them. One way is to compare the number of
communities extracted for each topology. We also evaluate
the largest community using graph and node measures.

E. Quantitative Metrics

Most previous work evaluates topologies by visually com-
paring values of individual measures. Instead, we use a few
“metrics” to more quantitatively evaluate the generators.

Metrics for Graph Measures. For graph measures, we first select
a set of measures and compute them for each graph. Let x be
the “true” measures (e.g., from RouteViews) and x̂ be the
estimated measures computed on a generated topology from
an arbitrary generator, then the normalized root-mean-square

error (NRMSE) is defined as:

DNRMSE(x, x̂) =
E[(x− x̂)2]

max(x, x̂)−min(x, x̂)
.

This measure is expressed as a percentage, where lower values
indicate less residual variance. If the vector of measures x is
identical to x̂ then the NRMSE is 0. If instead we consider
a time-series x(t), 0 ≤ t ≤ tmax of measures from real
data and a time-series x̂(t), 0 ≤ t ≤ tmax from a generator,
then NRMSE is simply computed at each time t. Since it is
normalized, we can simply average the values over time giving
us a single measure of how well a given generator tracks the
important characteristics over time.

Metrics for Node Measures. For node measures, we use
two metrics for quantitatively evaluating generators. The
Kolmogorov-Smirnov (KS) statistic assesses the distance be-
tween two CDFs. The KS-distance is computed as the max-
imum distance between two distributions where x represents
the range of the random variable and F1 and F2 represent
two CDFs: KS(F1, F2) = maxx |F1(x)− F2(x)| . KS varies
between 0 and 1. We also use the Kullback-Leibler divergence
(or simply KL divergence) to evaluate the difference between
two PDFs. KL divergence computes the average number of bits
required to represent a measure from the benchmark topology
when using the measure distribution from the generated topol-
ogy. KL measures the average number of extra bits required
to represent the benchmark topologies original distribution
when using the generated topologies distribution. It is defined
formally as

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
.

We add a small value ε to Q (and renormalize) before
computing KL divergence since it is undefined for distributions
that have some values with zero probabilities. One might also
smooth the distribution, but both approaches provide similar
results.

If needed, the values of each measure can be appropriately
binned to create a distribution. Unless otherwise specified, we
created 10 equally-spaced bins over the range of values from
the true distribution P and used these bins for Q as well.
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F. Learning Graph Measures

Instead of selecting a set of graph measures, we auto-
matically learn a representative set of graph measures recur-
sively [20].
1. The process starts by computing degree (in/out/total edges)

and egonet measures (in/out egonet). Note the egonet
includes the node, its neighbors, and any edges in the
induced subgraph on these nodes.

2. After computing these, the existing measures of a node are
aggregated using sum/mean. The measures are aggregated
over all neighbors, and also over in/out edges.

3. Next, the algorithm prunes correlated measures (eliminating
the redundant measures).

4. The aggregation proceeds recursively over the current set
of measures, until no new measures are retained.

For more details, see [20]. While the extracted measures
are more difficult to interpret, these measures are shown to
capture the main connectivity patterns present in the graph and
therefore they are extremely useful for comparing generators.

IV. METHODOLOGY

A. Datasets

We compare graphs from topology generators to AS topolo-
gies based on the Skitter traceroute [9], RouteViews’ BGP
tables (RV) [2], and RIPE’s WHOIS [1] datasets. These are
the same datasets used by Mahadevan et al. in [26] and all
except RouteViews data were obtained from the authors’ web
site. In addition to these AS-level topologies, we compare
to the HOT [25] and RocketFuel [34] router-level topologies.
The HOT topologies were also retrieved from the web site of
Mahadevan et al. The RocketFuel topologies were obtained
from RocketFuel project site.

To study the most recent evolutionary characteristics of
the Internet, we obtained time series of BGP routing tables
(in Cisco and Zebra format) from the Oregon RouteViews
project [2]. We estimated the AS-level topology by taking
the union of all AS-paths in the routing tables as performed
by Gao [16]. We extracted AS-level subgraphs for the years
2004 to 2012 from the last 25 BGP tables of March, June,
September, and December of the corresponding year (except
for 2012 when we consider the last 25 BGP tables from
February 2012). Unlike [13], we do not distinguish customer-
provider and peering links, and simply follow the approach
taken in WIT evaluation [37], [38].

B. Evaluating Topology Generators

Let P denote the process (e.g., Orbis, WIT, or the actual
Internet) used to generate a set of graphs G of any size.
Further, let Gn be a generated graph of size n nodes from
the distribution of graphs from a generator denoted P (G|P).
The set of graph measures (e.g., degree, clustering coefficient)
computed over that graph is denoted as a function M(·). The
objectives of topology generators are formally defined as:

1) Given a graph G?
n of size n, generate a graph Gn of the

same size such that M(Gn) ≈M(G?
n)

2) Given a graph G?
n of size n, generate a graph Gm of size

m where m ≥ n such that M(Gm) ≈M(G?
n)

3) Given an ordered sequence of graphs G?
t for t =

1, 2, ...,m, generate a corresponding sequence of graphs
Gt for t = 1, 2, ...,m such that each Gt is the same size
as G?

t and M(Gt) ≈M(G?
t ),

where M(Gn) ≈ M(G?
n) represents the fact that the set

of measures applied to each graph (and the corresponding
distributions) are approximately equal. Objectives 1 and 2 are
for Orbis [26] while 3 is for WIT [38]. The first objective
is a relaxed version of WIT’s objective since it considers a
graph at a single time point. The second objective assumes
properties of the graph at a smaller size remain unchanged
(time-invariant) as the graph grows.

WIT does not estimate the parameters of a dataset and thus
can be compared directly with a graph such as RouteViews,
Skitter, and WHOIS. For Orbis, we estimate the parameters of
each dataset and generate the corresponding topology. To eval-
uate the rescaling algorithm of Orbis, we use the first snapshot
(of RouteViews) and apply the rescaling algorithm to generate
a sequence of topologies. This evaluation strategy allows us to
evaluate the objectives of each generator separately using the
benchmark topologies. We use the optimal parameters for WIT
given in [38]; for Orbis, we follow the methodology described
in [26] and use the implementation provided by the authors.

V. EVALUATION

As a case study, we apply our multi-level framework (graph,
node, and link measures) to evaluate each of the two generators
Orbis and WIT according to whether it produces graphs that
match its advertised claims. Several results have been removed
for brevity, but can be found in ref. [32].

A. Graph Measures

The Orbis topology generator attempts to preserve “any ar-
bitrary” set of measures as the size of the graph increases [26].
However, we find that as the number of nodes increases, the
measures from the generated topologies increasingly deviate

(a) Scree plot (b) Network values

Fig. 3. The WIT topologies are evaluated with three different AS topologies
(RouteViews, Skitter, and WHOIS) using two node measures (Scree and
top 100 network values). In all cases, WIT is very different. (a) WIT’s
eigenvalues, including the largest, are much smaller than the benchmark
topologies. The network values in (b) indicate two distinct clusters of nodes
which have different structural properties (shown by the backwards S shape).
The topologies analyzed above were from March 2004, but similar results are
obtained using topologies at different times.
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Fig. 4. Node Measures. Comparison of the generated graphs from WIT and
Orbis to RouteViews. Orbis is shown to generate graphs with distributions
closer to those of RouteViews.

TABLE III
QUANTITATIVE EVALUATION OF ORBIS USING KS DISTANCE.

Deg. CC Ecc. Kcores PR EigDiff Net-Value

HOT 0.009 0.000 0.000 0.078 0.067 0.588 0.131

RF 0.013 0.450 0.000 0.088 0.215 0.629 0.680

WHOIS 0.059 0.480 0.224 0.060 0.536 0.169 0.159

SKITTER 0.010 0.211 0.029 0.009 0.342 0.096 0.182

from the input topologies. This deviation is largest when
applying Orbis on the HOT, WHOIS, and Skitter topologies
(results removed for brevity). However, for generating topolo-
gies of the same size, we find that Orbis is able to accurately
preserve many of the graph measures.

The WIT model was designed and evaluated under the
assumption that the clustering coefficient and distance related
measures are time-invariant [38], but Fig. 1 indicates that
the structure of the Internet is changing. The figure shows
that average clustering is decreasing in the last few years,
in contrast to previous observations [37], [38]. One possible
explanation is that the tier 1-2 ISPs are merging leading
to a dense network core, while tier 3-4 ISPs (e.g., content
providers) are expanding [14]. These recent changes in the
Internet since 2007–2008 [24] impact models such as WIT
that directly rely on preserving the distance and clustering
coefficient over time. Thus, WIT does not preserve the scalar
measures over time, especially for the recent Internet AS data.
This result will be seen in Fig. 6.

B. Node Measures

Following the multi-level framework, we analyze the topolo-
gies and generators in more detail using node measures. In
Fig. 2, we observe a clear transition in the node measures,
indicating that the structure of the Internet AS graph during
2004 to 2012 is indeed changing.

Fig. 3 plots the largest network values and singular-values of
WIT and compares these with the corresponding benchmark

topologies. Both significantly deviate (the values are shifted
and are of a different shape), even compared to RouteViews
(used in the design and validation of WIT). Preserving the
properties of a single graph in time is a relaxation of the
WIT objective. However, while WIT reasonably tracks the
graph measures over time, it is not as good at preserving node
measures at any given time (Fig. 3).

We also evaluate Orbis using these measures and k-walks
(see [32]). Overall, we observe that Orbis preserves the scree
plots with reasonable accuracy (for topologies of equivalent
sizes), but the rescaled topologies become increasingly differ-
ent as a function of the number of nodes.

In Table III, we use KS distance (range is from 0 to 1) to
measure the difference between the node measures on the orig-
inal graph and those on the graphs Orbis generated (KL gave
similar results). Clearly, Orbis does not preserve many of the
node measures from RocketFuel (RF). For the other graphs,
Orbis has trouble preserving the clustering coefficients and
global measures such as PageRank or EigDiff. As expected,
Orbis does preserve the degree distribution.

In Fig. 4, we compare RouteViews to WIT and Orbis.
Overall, Orbis better matches the distributions than WIT.

C. Link Measures

For evaluating the link structures of the topologies, we first
order the nodes using the principal singular-vector. Ordering
the nodes by their distance from the main direction (how well
they fit with the most significant connectivity patterns and
link structures) as shown in Fig. 5 provides evidence of the
formation of clusters or groups (shown as block structures).

(a) WHOIS (b) HOT (c) RocketFuel

(d) Orbis (WHOIS) (e) Orbis (HOT) (f) Orbis (RocketFuel)

Fig. 5. Evaluating the connectivity and clustering of the generated
topologies. The x-axis and y-axis of the above plots represent nodes of
the adjacency matrices which are ordered by the principal singular-vector.
(a)-(c) visualize the adjacency matrices for the benchmark topologies. The
adjacency matrices for the corresponding generated topologies from Orbis
are shown in (d)-(f). The clustering properties (block structures) are found
to be different in all topologies. For instance, (c) clearly shows signs of
clusters (blocks/perpendicular lines), but the corresponding Orbis topology
in (f) has no signs of the clusters previously observed and is much smoother.
The main reason is that Orbis randomly rewires the links without considering
the community structure.
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TABLE IV
EVALUATING THE COMMUNITY STRUCTURE OF THE TOPOLOGIES.

Communities Q Nodes Edges Degree CC Assortativity C-path Radius Diameter

2004
ROUTEVIEWS 24 0.65 3951 13360 3.38 0.45 -0.56 2.74 3 6
ORBIS 46 0.48 957 2254 2.36 0.10 -0.39 3.01 4 8
WIT 57 0.92 755 2653 3.51 0.64 -0.25 2.75 4 7

2011
ROUTEVIEWS 34 0.68 6048 18496 3.06 0.22 -0.42 3.27 5 9
ORBIS 60 0.48 2347 5640 2.40 0.12 -0.49 2.91 4 8
WIT 66 0.94 2095 11727 5.60 0.45 -0.08 3.44 5 10

In Fig. 5, we evaluate whether Orbis generates topologies
(and rescaled topologies) that preserve the link structures,
communities and their connectivity. Communities can be
loosely defined as sets of vertices with more connections
inside the set than outside. We find that Orbis (WIT gives
similar results [32]) does not capture the community structure
(rewires links without considering communities). Intuitively,
there are many graphs that preserve local properties (e.g.,
degree, clustering), but of these graphs, there are significantly
fewer that preserve the underlying communities.

D. Community Measures

In Table IV, we compute the communities of RouteViews
in 2004 and again in 2011, and do the same for the generated
graphs from Orbis and WIT. We find that WIT and Orbis
overestimate the number of communities in RouteViews (for
both 2004 and 2011), and this leads to underestimating the
size of the largest community (in nodes and edges). Overall,
the Q statistic from modularity indicates the degree to which
the networks can be subdivided into clearly delineated groups.
For this community measure, we find Orbis to be much closer
than WIT. We also evaluated the evolutionary objective of WIT
and the rescaling of Orbis in [32].

E. A Single Metric

We evaluate the generators quantitatively by measuring the
normalized root-mean-square error (NRMSE) of their com-
bined set of measures over time, using the RouteViews data as
ground truth. For this case study, we selected fourteen simple
measures: average degree, average clustering coefficient, assor-
tativity, average distance, radius, diameter, largest eigenvalue,
network conductance, average eigenvector difference, trace,
rank, and average number of k-walks for k = {2, 3, 4} and
learned 26 measures from RouteViews (Section III-F). The
combined set of measures over time (selected and learned) is
normalized so that each measure is given the same weight.
The results are shown and discussed in Fig. 6 and visualized
in Fig. 7. From this, we see that the generated and rescaled
topologies from Orbis are preserved with reasonable accuracy,
whereas WIT is worse at tracking the properties over time.

Using both the NRMSE and learning a set of measures
automatically allows generators to be evaluated systematically
using graph measures that are representative of the true struc-
tural features present.

VI. CONCLUSIONS

In this paper, we have proposed a multi-level framework for
understanding Internet topologies, and for comparing topology
generators. We used the framework to evaluate whether the

recent generators Orbis and WIT preserved a wide-range of
important network properties and compared their ability to
preserve these characteristics as the network evolves. We
identified several strengths and shortcomings of both gen-
erators. We also observed that recent Internet evolutionary
characteristics significantly differ from trends assumed by
many Internet topology generators.

Traditionally, topology generators have evaluated evolution-
ary properties using a few macro measures which often lead
to misleading conclusions. For this reason, we used a multi-
level approach that leverages both macro measures (graph) and
micro measures (node and link measures) to more accurately
compare topologies while capturing the important network
characteristics warranted by researchers. Our results suggest
that existing topology generators fail to accurately model the
evolution of the Internet AS topology. More unexpectedly, we
found that many generators fail to capture important static
characteristics.

In general, we found data-driven generators, e.g., Orbis, to
be more accurate than the generators based on a mechanism
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Fig. 6. Topology generators are evaluated over time (2004-2011) by
computing the NRMSE of their combined set of measures and the RouteViews
data (used as ground-truth). We find that Orbis preserves the properties of the
static topology with reasonable accuracy (used the 2004 RouteViews topology
as input), but as this topology is rescaled to a larger size, the properties diverge
more from the true distributions (shown by the increasing trend in (a) and
(b)). The combined set of measures from the WIT topologies over time do not
match the Internet AS (if WIT tracked the properties perfectly, then the WIT
curve would be a horizontal line on zero). In all cases, the Orbis topologies
are shown to be more similar (diverge less) to RouteViews.
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(a) RV (Internet) (b) Orbis (c) WIT

Fig. 7. Comparison of the learned graph measures across time (2004-2011)
for each topology generator. The Orbis generator is shown to be more similar
to the Internet while WIT appears more random. Interestingly, there is a
significant evolutionary transition in the Internet captured by the 15-19th graph
measures.

with no estimation (such as WIT). Data-driven generators
preserve the properties of an input topology, but generate static
topologies with low or no variance. However, for modeling the
evolution of the Internet, the properties become significantly
uncorrelated as the size increases. Conversely, parametric gen-
erators cannot model the Internet evolution if any key assump-
tion is violated or the assumed characteristics change [24].
Moreover, if their models lack parameter estimation, then
selecting a set of reasonable parameters becomes extremely
difficult in practice.

In future work, we plan to use our framework to investigate
additional topology generators. We will also develop a parame-
ter estimation technique for WIT and analyze its behavior with
the refined parameters. Another direction we plan to pursue is
an in-depth study of recent Internet evolution and the causes
for the changes we have observed.
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