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ABSTRACT

Textual analysis is one means by which to assess commu-
nication type and moderate the influence of network struc-
ture in predictive models of individual behavior. However,
there are few methods available to incorporate textual con-
tent into time-evolving network models. In particular, mod-
eling both the evolution of network topology and textual
content change in time-varying communication data poses a
difficult challenge. In this work, we propose a Temporally-
Evolving Network Classifier (TENC) to incorporate the in-
fluence of time-varying edges and temporally-evolving at-
tributes in relational classification models. To facilitate this,
we use an evolutionary latent topic approach to automati-
cally discover and label communications between individuals
in a network with their corresponding latent topic. The top-
ics of the messages are incorporated into the TENC along
with time-varying relationships and temporally-evolving at-
tributes, using weighted, exponential kernel summarization.
We evaluate the utility of the TENC on a real-world classifi-
cation task, where the aim is to predict the effectiveness of a
developer in the python open-source developer network. We
take advantage of the textual content in developer emails
and bug communications, which both evolve over time. The
TENC paired with the latent topics significantly improves
performance over the baseline classifiers that only take into
account the static properties of the topics and communi-
cations. The results show that the TENC can be used to
accurately model the complete-set of temporal dynamics in
time-evolving communication networks.
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1. INTRODUCTION

Dependencies in relational and network domains have been
successfully exploited in classification models (see e.g., [6]).
This work focused primarily on modeling static network
data. For the numerous relational domains that have tem-
poral dynamics, researchers have generally analyzed static
snapshots of the data, which consist of all the objects, links,
and attributes that have occurred up to and including time
t (e.g., [5, 12]). This approach ignores the temporal infor-
mation present in the data and limits the applicability of
the models. In many datasets there are dependencies be-
tween the temporal and relational information that can be
exploited to improve model performance.

Recent work in statistical relational learning has started
to investigate these temporal dimensions. Some initial work
has focused on transforming temporal-varying links and ob-
jects into aggregated features [12] and other work has in-
vestigated the modeling of the temporal dynamics of net-
work structure [14]. This work has focused on classification,
but there has also been some efforts to exploit temporally-
varying links to improve automatic discovery of relational
communities or groups [3, 7].

In addition to network topology that changes over time,
many relational datasets contain textual content that changes
over time. As an example, consider email datasets, which
naturally evolve over time and often contain noisy link in-
formation (as a single email is not necessarily an indication
of a strong relationship). There are also other facets of com-
munication that evolve over time such as the topic of mes-
sages between two users over time. Although frequency of
communication may be indicative of relationship strength,
frequency count is limited in its ability to capture the com-
plexity of interpersonal iteractions between people. It is
quite possible that the topic, sentiment, and/or intimacy of
the email content is a stronger indicator of relationship type
and strength, compared to simple frequency.

While textual content offers a wealth of information for
predictive network modeling, there has not been a lot of
research investigating how to model the network topology
and message content, particuarly in the case where both are
evolving over time. There has been some work that mod-
els a static network of documents, using bag-of-word meth-
ods [4, 15]. In addition, there are also a number of clustering
techniques for discovering topics, roles, and groups in social



networks [9, 8]. These approaches learn topic distributions
based on email messages sent between users. The email mes-
sages are seen to be informative of the individual’s role and
consequently the groups to which they belong.

There are also other related text mining approaches for
social networks. Agrawal et. al [1] use newsgroups to com-
pare between statistical text analysis versus using only the
network structure as a basis for a given classification task.
Mei and Zhai [10] develop a temporal text mining techni-
queto find interesting evolutionary theme patterns. The ap-
proach focuses on the evolution and transition of themes
across time. In another approach by Mika [11], the tradi-
tional bipartite model of ontologies is extended to incorpo-
rate a social dimension, resulting in a tripartite model of
various actors, concepts and instances.

The goal of our work is to improve attribute prediction in
dynamic domains by incorporating time-varying links and
temporally-evolving attributes into statistical relational mod-
els. In particular we are interested in modeling the influence
of evolving latent topics corresponding to the textual se-
mantics of an individuals communication in our sequences
of graphs across time. We focus our analysis on the task
of predicting effectiveness within a python open-source de-
veloper communication network. We posit that the nature
or topic of the communication between two developers is
crucial in predicting the effectiveness of a developer. Tradi-
tional approaches treat the communications uniformly. Our
method assigns latent topics to the communications and in-
corporates the topic information into predictive models to
improve performance.

More specifically, we extract and analyze the publicly avail-
able data about open-source software development from the
Python project (www.python.org). The communications be-
tween developers are each labeled with its corresponding la-
tent topic. The effects of the communication patterns with
respect to the latent topics are investigated for their impact
on developer effectiveness. We derive a temporally-evolving
network classifier to incorporate the temporal evolution of
both the relationships and attributes. This classifier is used
to learn predictive models of developer effectiveness and ex-
plore the utility of using the latent topics to predict devel-
oper effectiveness. Our analysis indicates the significance
of using the textual information and its evolution over time.
Furthermore we find that modeling both temporally evolving
topic attributes and time-varying relationships improves the
accuracy of the models even further, compared to baseline
models that only consider static snapshots of the networks.

The main contribution of our work is two-fold. We de-
velop a temporally-evolving network classifier (TENC) capa-
ble of modeling the influence of the complete-set of temporal
dynamics in relational domains. Secondly, textual analysis
techniques are used to derive a network where the edges
and nodes contain latent information which is used as the
basis to predict individual effectiveness within a communi-
cation network. These proposed techniques could be used
to explore other networks such as blogs, forums, or other
social media. The TENC is general enough to model the
complete-set of temporal dynamics for arbitrary relational
networks.

2. COMMUNICATION NETWORK

In this work, one of our goals is to derive a temporally-
evolving network classifier capable of modeling the evolu-

tion of the latent topics for the communications. In this
regards, we analyze observational data from a domain that
reflects some characteristics of communication and social re-
lationships. Open-source software development is one such
domain where the communication among developers is crit-
ical to the success of the project. Email is a common form
of communication among the developers, and often mailing
lists are used to ensure timely delivery of messages to all
interested parties. The textual content of both emails and
bug messages between developers are extracted and modeled
using our temporal classifier.

2.1 Data

We analyze email and bug communication networks ex-
tracted from the open-source Python development environ-
ment (www.python.org). In Python development, the pri-
mary location for communication is the python-dev mailing
list, which is publicly available for subscription or download.

We collected a subset of the python-dev mailing list archive
for the period 01/01/07—09/30/08. The sample contains
13181 email messages, among 1914 users. Each message con-
tains the following information: message id, sender email
address, sender name, timestamp, in-reply-to message id,
subject, body. From the set of messages, we constructed
an ematl communication network with nodes corresponding
to each unique email address, and edges from the sender of
each message to the author of the in-reply-to message.

In addition to mailing list discussions, the Python project
also has a public bug-tracking database (bugs.python.org),
which records information about projects errors (i.e., bugs)
and their associated fixes (i.e., solutions). Each bug is as-
sociated with the following information: report date, er-
ror type, component, status, assigned-developer, resolution
date. In addition, there is information describing the details
of the bug and the history of activity related to the bug.
There is also a set of messages that record discussion among
the developers during their attempt to resolve the bug. The
format of these messages is similar to the format of the email
messages.

Bug reports were collected for the same period listed above
(01/01/07—09/30/08) and we constructed a second bug dis-
cussion network, where nodes consisted of people with unique
email addresses and edges consisted of bug comments sent
in reply to a previous posting. The sample contained 69435
bug comments among 5108 users.

In addition to the bug and communication networks we
also extracted text from the bug and email messages. Using
the text from these messages we perform topic modeling
and label the links of the network with their appropriate
topic. We also assign developers to their most frequently

Python Communication Network Attributes

ALL ToriCs
Latent Topics | EMAIL TorIics
Bua Torics
Link EDGECOUNT EpceTopriC
Attributes EMAILEDGECOUNT EMAILEDGETOPIC
BUGEDGECOUNT BucEbpGEToPIC
Temporal [Aug - Oct ’07] [Nov ’07 - Jan ’08]
Snapshots [Feb - April "08] [May - July ’08]
[Aug - Sept ’08]

Table 1: Details of the Python communication net-
work dataset.
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Figure 1: Graph and Attribute Summarization Phase: Temporally evolving edges and attributes.

communicated topic. See Section 4.1 for more detail. For
our analysis, we used the set of 185 developers that appeared
in both networks (i.e., those that had at least one mailing
list message and at least one bug comment).

The defect information (i.e., bugs) associated with the
Python dataset enables us to derive measures of individual
effectiveness that are consistent with the performance as-
pect of effectiveness measures. In broad terms, assessing
performance on a specific problem-solving task (i.e., prob-
lem: errors/bugs and solution: associated fixes) as a mea-
sure of effectiveness fits well within the context of a broader
theoretical approach to effectiveness in group settings. As
a measure of developer effectiveness we used the number of
bugs resolved by a developer in a given time window. A bi-
nary class label is created that recorded whether a developer
has fixed a bug during a three-month period.

2.2 Network Formulation

The Python Communication Network consists of a collec-
tion of temporal snapshots. Let D = {Di, Da, ..., Dy} be
a sequence of temporal snapshots from the relational com-
munication network. Every temporal snapshot corresponds
to the events that occured during the time period ¢, where
t=1,2,...,n. The size of the temporal snapshots are three
month periods where: D1 = (Feb07, Mar07, Apr07), D2 =
(May07, Jun07, Jul07), ..., D7 = (Aug08, Sep08). Note that
the last temporal snapshot has only two months.

The latent topics of the communications between develop-
ers are used to predict individual effectiness ([HAS CLOSED]).
Table 1 lists the topic features used in our models. We could
have also generated temporal centrality or other types of at-
tributes based on communication patterns. In this work,
we are only concerned with using the evolutionary latent
topics of the communications between developers in order
to predict effectiveness. This allows for the significance of
the actual semantics of the communications to be quantified
with respect to the measure of effectiveness.

In many relational classification methods, the textual con-
tent on links is discarded and the fact that a communication
occured between d; and d; is the only aspect taken into ac-
count. In this work, we are interested in using the textual
content of the communications to label both the edges and
vertices with their corresponding latent topics. Our model

uses the relational dependencies between the developers and
the latent topics extracted from the textual content of the
emails and bugs. More specifically, we focus on predicting
individual effectiveness given the latent topics of the com-
munications among individuals.

3. APPROACH

We represent the data as an attributed graph D = (G, X).
The graph G = (V, E) represents a set of N individuals as
nodes, such that v; € V' corresponds to individual ¢ and each
edge e;; € E corresponds to a communication event (e.g.,
email) between individuals ¢ and j. The attribute set:

X — ( X::’ = [Xl,Xf,...,X”;”], )
XE — [X'm,uﬁ» 7X77Lv+ 7“.7)(”11,4»77%}

may contain observed attributes on both the nodes (XV)
and the edges (X®). Below we use X™ to refer to the generic
mt" attribute on either nodes or edges.

There are three aspects of relational data that may vary
over time. First, the values of attribute X" may vary over

time:
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Second, relationships may vary over time. This results in a
different data graph G = (V, E) for each time step t, where
the nodes remain constant but the edge set may vary (i.e.,
E:, # By, for some ,j). Third, objects existence may vary
over time (i.e., objects may be added or deleted). This is
also represented as a set of data graphs G; = (V4, E:), but
in this case both the objects and edge sets may vary.

In this work, we aim to model a communication network
that evolves over time, with both edges and attributes (e.g.,
topics) changing. For simplicity, we assume that the set of
nodes remains constant. More specifically, let Dy = (G¢, X¢)
refer to the dataset set at time ¢, where Gy = (V, E;, W)
and X; = (XY, X7, W;). Here W; refers to a function that



assigns weights on the edges and attributes that are used
in TENC below. We define W (i,5) = 1 if e;; € E; and 0
otherwise. Similarly, we define W* (z7™) = 1 if X" = 2" €
X and 0 otherwise.

3.1 Temporally-Evolving Network Classifier

The Time Varying Relational Classifier (TVRC) [14] is
a recent approach that has been developed to incorporate
temporal dependencies into statistical relational models. We
define the Temporally-Evolving Network Classifier (TENC)
as an extension of the TVRC to incorporate the influence
of temporally evolving attributes (e.g., topics) on both the
edges and the nodes. The TENC uses a two-step process
that first transforms the dynamic relational dataset into a
statically weighted summary graph and set of summary at-
tributes using kernel smoothing. The second phase then
incorporates the static edge and attribute weights into a
modified relational classifier to moderate the conditional at-
tribute dependencies throughout the relational data graph.

The graph summarization phase follows the TVRC pro-
cess by summarizing a temporal sequence of relational graphs
into a weighted summary graph. Let G; = (V, E,, WF)
be the relational graph at time step ¢, where W are unit
weights on the edges as defined above. We define the sum-
mary graph Gs, = (V,Es,,W&) at time ¢ as a weighted
sum of the temporal graphs up to time ¢ as follows:

Es, =FE1UE,U---UE,

t
Wslvi = a1W1E + 062W2E + -+ OétWtE = Z KE(Gi;tv 0)
i=1
where E; is the edge set of the temporal snapshot G, and
W are the unit weights associated with the edges of Gy.
The o weights determine the contribution of each temporal
snapshot in the summary graph. For weighting, we use an
exponential kernel function Kg with parameter 6 to deter-
mine the influence of each edge of snapshot graph G; in the
summary graph:

Kg(Git,0) = (1—0) " "ow,”

With the exponential kernel function, we can compute the
summary graph weights recursively, as a combination of the
summary graph weights at time t—1 and the snapshot graph
weights at time t:

B (1-0OWE_ | +0WF ift>t
WSt = E .
QWt lf t= tl

where t; refers to the first timestep of the data.

In addition to summarizing the graph changes over time
as in the TVRC, the TENC also summarizes the attribute
changes in a similar fashion. Let X; = (XE/,X{E,WtX) be
the attribute data at time step ¢, where W;X are unit weights
on the attribute values as defined above. We define the
summary attribute set Xs, = (XY,,X§,, Wg) at time ¢ as
a weighted sum of the temporal attribute sets up to time ¢
as follows:

X§ =X/ UXyu---uXxy

Xg, =X UXFu---UXy

t
W3, = BT + BoWs' + -+ BW =) Kx(Xist,A)

i=1

b b 5 % Summary Network

T (1-A)3A + A
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O
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Figure 2: The TENC models the complete-set
of temporal dynamics, including node attributes
changing over time (top row), edges changes over
time (middle row), and link attributes changing over
time (bottom row).
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where X is the attribute set of the temporal dataset D;, and
WX are the unit weights associated with the attribute val-
ues of X;. The (8 weights determine the contribution of each
temporal snapshot in the summary network. For weighting,
we again use an exponential kernel function Kx with pa-
rameter A to determine the influence of each attribute value
of X; in the summary network:

Kx(Xiit,A) = (1= N)"Aw™

We can also compute the summary attribute weights recur-
sively, as a combination of the summary attribute weights
at time t — 1 and the snapshot attribute weights at time ¢:

X (L=XNWg_, + AW ift>t
Wst = .
9”1 lft:tl

The exponential kernel weights attribute values (and edges)
that have occurred in the recent past highly and then de-
cays those weights exponentially as time passes. The pa-
rameters 0 and A determines the rate of decay for edges and
attributes, respectively. The kernel smoothing operation on
the input temporal sequence {D1, Da, ---, D;} can also be
expressed as a recursive computation on the weights {WIE ,
WE, ., WEY and {Wi*, W5, ..., W} through time as
shown above.

The second phase of the TENC algorithm is similar to
the weighted relational classification of the TVRC. Once we
have summarized the temporal graph and attribute infor-
mation into edge and attribute weights, respectively, in the
summary network (Gg,,Xs,). We then learn a predictive
model on the summarized data using the edge and attribute
weights to moderate the influence of the weighted relational
topic attributes. This approach exploits the temporal infor-
mation in both the communications and the attribute val-
ues to improve the prediction results. More specifically, the
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Figure 3: (a) The TVRC feature calculation that includes only the summary edge weights. (b) The TENC
feature calculation that incorporates both the summary attribute weights and the summary edge weights.

set of attributes that are used for learning include the set
of attribute values in X, and each attribute value zj" is
weighted by its summary weight W (z}*). When relational
attributes are considered by the model, the attributes are
weighted by the product of their temporal attribute weight
and the link weight of the appropriate link in the summary
graph. For example, if node ¢ and j are linked in Gg, and
the model uses attribute X* on node j to predict the class
label on node ¢, then if Wft (¢,7) = w and ng(xéc) = 1,
the attribute value mf will be given a weight of w - ¢ during
learning.

Any arbitrary relational model that can be extended to
use weighted instances is suitable for this phase. In this
work, we use the relational probability tree (RPT) [13] to
compare roughly equivalent models, both with and without
reasoning over the temporal dynamics.

The weights can be viewed as probabilities that a partic-
ular relationship or attribute value in the network is still
active at the current time step ¢, given that it was observed
at time (t—k). Further if we consider the exponential kernel,
then we have a geometric distribution with either parameter,
0 for edges or A for attributes. The distribution specifies the
probability that an edge or attribute value occured k time
steps in the past.

The edges in Figure 3 represent the communications be-
tween individuals and the topics on the nodes are denoted
71 (green), 72 (blue), and 73 (red). The thickness of the edge
represents the temporal strength of the communication and
the colors represent attribute values of either 71, 72, and 3.
The TENC Model has probability distributions of attribute
values for every node. The weighted relational neighborhood
is used in the prediction process.

Figure 3 shows the feature calculations of TVRC and
TENC. In particular, consider the weighted mode of the
linked topics in TVRC. It is obvious from Figure 3(a) that
the combined weight associated with the latent topic 73 (red)
is greater than the other observed latent topics. Never-
theless, consider the weighted mode of the linked topics in

TENC where both the influence of the edges and attributes
are incorporated. Clearly, the combined weight associated
with 72 (blue) is greater than the combined weight of 73
(red) as shown in Figure 3(b). Therefore by modeling the
complete-set of temporal dynamics we are able to more ac-
curately capture and exploit the evolutionary patterns to
improve predictions of relational classifiers.

In order to incorporate the weights from the summary
graph and summary attributes, we define a weighted RPT
by modifying the counts of the attribute value when com-
puting the RPT aggregate functions. The weighted rela-
tional neighborhood is incorporated in the feature calcula-
tion. More specifically, the product of the edge weight and
the corresponding attribute weight represents the combined
influence of an attribute X;; and edge E;; across time.

The RPT classifier takes a sequence of temporal snapshots
{D1, Da, ..., D} from the communication network. In every
timestep we predict effectiveness using the Has Closed at-
tribute. The other objects and links form the relational net-
work used as a basis for our predictions. The RPT algorithm
constructs a probability estimation tree for the temporal
sample D; to predict the effectiveness of a future D41 tem-
poral sample. The temporal latent topic attributes change
from Dt to Dt+1.

The temporal snapshots in TENC are summarized and
then weighted using the exponential kernel function. The
graph summarization phase summarizes a temporal sequence
of relational graphs which are then used to predict the ef-
fectiveness or the HAs CLOSED attribute. In TENC the
relational topic attributes are moderated by the summary
graph weights and the summary attribute weights.

For every temporal snapshot D; we learn a model and
apply it to D;41 a future temporal snapshot to predict the
effectiveness. The TENC uses the current summarized tem-
poral snapshot Ds, to predict the future Ds, , summarized
temporal snapshot.



3.2 Content Analysis

An edge between two developers in the python communi-
cation network represents an email or bug communication.
We use techniques based on Latent Dirichlet Allocation[2]
to extract topics of the communications. The latent topics
are used to label the communication links between users.
Let T = {71, 72, ..., Tx} be a set of latent topics extracted
from the bugs and email communications. In the task of
predicting effectiveness between individuals we might find
that 7; = {web programming} and 7; = {sports} there-
fore it is clear that individuals communicating about sports
may be less effective, while communications about web pro-
gramming might be a significant indicator of effectiveness.
The latent topics provide context for the links instead of the
uniform notion of a simple communication. This method
disambiguates and therefore assigns useful meaning for the
edges and consequently the nodes in a relational network.

The bug and email communications are from developers
who work on distributed teams. Let C = {c1, c2,...,cm} bea

set of bug and email communications and W = {w1, wa, ..., wn }

be a set of words from the communications between devel-
opers. We use the vector-space representation. We define
an n X m matrix denoted M where the coefficents represent
the frequency of w; € W appearing in ¢; € C. The matrix
is of size 191607 words x 82616 communications. A stan-
dard list of stopwords were removed. Every communication
is represented by an edge between two people in the rela-
tional network. Using the text from the communication we
assign the edge an attribute that corresponds to the topic
of communication. We introduce a latent class variable for
the topics 7 = {71, T2, ..., Tx} where x is the number of
topics to be discovered. This can be thought of as a type

Developer Developer

Developer

Developer |- Developer

Figure 4: Communication links with uniform seman-
tics.

Developer Developer

Developer

Developer |- Developer

Figure 5: Adding textual information by labeling
links in the network with latent topics.

of dimension reduction where the communications are pro-
jected into k dimensions (or topics). Every communication
edge is labeled with its most likely topic and conversely ev-
ery individual is labeled with their most frequent topic of
communication. The topic discovery is extended temporally
by considering every timestep separately. Therefore at time
t the topic of a communication between d; and d; might be
71, but at ¢t + 1 the topic of conversation might evolve into
topic 72 and a similar temporal transition could occur at the
individual or attribute level as well. The next obvious step is
to use the full distribution of the topic likelihood instead of
selecting the most likely topic. Further details are discussed
in section 4.1 on topic discovery.

4. RESULTS

In our experiments, we evaluate the various temporal di-
mensions of communication networks, with respect to the
task of predicting node behavior. The PyComm Network is
a complete-temporal real-world dataset where nodes, edges,
and attributes are rapidly evolving over time. Additionally,
the class label based on developer productivity is also chang-
ing across time. In our empirical evaluation, we specifically
consider the effects of modeling the latent topics of the com-
munication networks and their evolution over time.

4.1 Topic Discovery

The number of topics to estimate depends on many fac-
tors including the type of corpus (web content, open source
development, ..) and also on the size of the collection. We
chose k = 20 as the majority of communications are most
likely to focus on some aspect of the 18 Python projects
under development.

We removed a standard list of stopwords from the com-
munications and also other technical words that appeared
with high frequency (e.g., python). A topic can be viewed
as a cluster of words that are frequently used together. We
used a version of Latent Dirichlet Allocation [2] to model the
K topics. To estimate the parameters we used Expectation-
Maximizatiom (EM) and Gibbs sampling for inference.

We modeled the topics in three different sets of communi-
cations: (1) the email communication, (2) the bug commu-
nications, and (3) the joint set of email and bug messages.
After extracting the latent topics from the email and bug
communications we label the edges of our relational com-
munication network with their appropriate latent topic. The
edges are labeled by performing inference on a communica-
tion and assigning it to the topic with the greatest liklihood
and consequently a nodal attribute is defined as the mode
of the neighbors latent topics.

We generate three object attributes {ALLTOPIC, EMAIL-
Toric, BucToric} where a developer is assigned to the
most prevalent topic in a particular set of communications.
As an example if a developer most often discusses ’testing’
in her bug messages for a particular timestep then she would
be assigned to the BUGTOPIC corresponding to testing.

The text of the messages between individuals in the Py-
Comm network are used to predict individual effectiveness.
Using this text we automatically extract hidden semantics
of the messages and assign an arbitrary message to a la-
tent topic by considering the latent topic with the greatest
liklihood.

In Table 2 we list the most likely words for five of the 20
topics when we combine bug and email communication to-



(a) Initial Network (b) Uniform semantics

(d) Nodal attributes assigned

(c) Edges labeled

Figure 6: Defining a network using only the evolving textual information. The edges are labeled with their
corresponding latent topic. (a) The initial network has only the textual information associated with the
messages between developers. As an example, C;; = {wi,ws,...,w.}. (b) All edges and topic attributes are
initially semantically uniform. (c) Edges are labeled with their corresponding latent topic using maximum
liklihood. (d) Nodal attributes are assigned a latent topic based on the mode of the neighboring latent topics.

Table 2: The first five topics from the email and bug
communications. The number of topics modeled is
twenty (x = 20).

Toric 1 | Toric 2 | TopriC 3 Toric 4 | TorIC 5
dev logged gt code test
wrote patch file object lib
guido issue It class view
import bugs line case svn
code bug 0s method trunk
pep problem import type rev
mail fix print list modules
release fixed call set build
tests days read objects amp
work created socket change error
people time path imple usr
make docu data functions | include
pm module error argument home
ve docs open dict file
support added windows add run
module check problem def main
things doc traceback | methods local
good doesnt mailto exception src
van report recent ms directory

gether. The table contains words with both positive and
negative connotation such as ‘good’ or ‘doesnt’ and also
words referring to the network domain such as bugs or ex-
ception. An intersting direction to pursue would be to use
sentiment analysis to automatically identify the communi-
cations with positive and negative tone and use those pre-
dictions in the analysis, to moderate relationships among
developers.

It is difficult to subjectively assess the high level mean-
ing of a given latent topic from the communications. This
is likely due to the fact that we are analyzing communica-
tion in a highly specific technical domain. Nevertheless we
identify some patterns from the topics. As an example, the
first topic seems to be about open source development in a
much broader sense. The word ‘guido’ appears significant,
since this is likely a reference to the author of the Python
programming language, Guido van Rossum.

4.2 Predicting Effectiveness

The experiments below are intended to investigate the fol-
lowing hypotheses in this domain:

e Relational latent topic information can improve model
performance over using simple intrinsic aggregate topic
features.

e Information about the temporal dynamics of the latent
topics can improve model performance.

e Modeling the topics influence of both the time-varying
edges and temporally-evolving attributes improves per-
formance over simply modeling the temporal dynamics
of edges.

The main facets of interest are whether incorporating the
influence of both time-varying edges and temporally-evolving
attributes (in the TENC) improves performance over simply
modeling the temporal dynamics of the time-varying edges
(in the TVRC). The second facet is if by using TENC, we
can successfully predict the effectiveness through the latent
topics of the communications between developers. Along
these lines, we evaluate the significance of TENC where the
influence of both edges and attributes are incorporated into
the model. These experiments provide insight into model-
ing the complete-set of temporal dynamics as well as using
textual analysis techniques to incorporate the temporal dy-
namics of the latent topics into networks.

We evaluate four different models for the classification
task of predicting effectiveness using the latent topics. The
TVRC, Window, and Union Models are used as baseline
classifiers to evaluate the significance of TENC where the
influence of the topics from both the temporally evolving
edges and attributes are incorporated to predict effective-
ness:

— TENC: We present the results of the TENC algorithm
using an exponential smoothing kernel for summariza-
tion of both the relationships and the attributes. The
TENC model first summarizes the network into Dg,
using all snapshots up to and including ¢, selecting
the weighing parameters 6 and A\ using k-fold cross
validation and then weights the relationships and at-
tributes appropriately during learning and prediction.



This model summarizes both the relationships and the
attributes from the latent topics.

— TVRC: This model summarizes the graph into Gs,
using all timesteps up to and including ¢, selecting the
weighting parameter 6 using k-fold cross validation.
The attributes are moderated using the temporal edge
strengths only.

— Union Model: The union model is a baseline model
that uses a graph D<;, which consists of all objects
and links up to and including the year t of the sample,
for learning. The union model does not weight the
attributes or the links.

— Window Model: The window model is again a base-
line model that uses the network D;_; for prediction
on network D;. In other words, it only uses the im-
mediate past information for prediction and ignores all
the other historical data. This model corresponds to
the RPT.

The models are learned using the latent topics of the com-
munications and the performance is evaluated using area
under the ROC curve (AUC). For every timestep ¢, we learn
a model on D; and apply the model to Diy1. The utility of
incorporating the various granularities of temporal informa-
tion is measured by comparing TENC to the TVRC. The
utility of the temporal information is further evaluated by
comparing against two baseline models that ignore the tem-
poral aspects.

We first model the latent network semantics of communi-
cations (i.e, textual information) between developers through
topic discovery. Using these temporal latent topics, we apply
the four relational classifiers. In Figure 7 the results indicate
the necessity of appropriately modeling the complete-set of
temporal dimensions. Our TENC model that incorporates
both the temporal influence of the topic attributes and edges
drastically improves model performance over the baseline
models. Nevertheless, the TVRC model that incorporates
only the influence of time-varying edges also improves the
accuracy of our models over the Window and Union Models
which ignore the temporal aspects of the dataset.

The temporal dynamics must be modeled and incorpo-
rated to successfully predict effectiveness as the static mod-
els are seen to be poor predictors. This is an interest-
ing point since it implies that the static latent topics are
not very meaningful. The performance is substantially im-
proved only when the temporal-dynamics are incorporated
into the predictive models. Modeling the temporal influence
of attributes and edges improves performance significantly
over all the static models (Window/Union Models) in ev-
ery timestep as seen above. Therefore we have shown the
necessity to model the complete-set of temporal dynamics
of datasets to maximize the accuracy of the performance of
classifiers.

Evolutionary patterns between the topics of communica-
tions and the individuals themselves are clearly present within
the communication network. These results indicate that
productive developers usually communicate about similar
topics or aspects of development. An effective communica-
tion has a specific structure or latent meaning that conse-
quently enables others to become more effective. This latent
structure is captured more accurately through evolutionary
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Figure 7: AUC results for each timestep where
TENC is compared against the baseline models. The
models use only the latent topics of the communica-
tions to predict effectiveness. LDA is used to auto-
matically discover the latent topics as well as anno-
tating the communication links and individuals with
their appropriate topic in the temporal networks.

topic patterns. Moreover, there are indications of evolu-
tionary patterns within the topics. We posit that as the
semantics of a topic evolve over time, an effective individu-
als messages also transition to corresponding effective topics.
An effective topic might evolve over time into an uneffective
topic. As an example, suppose an effective topic at time
t is mainly about a specific set of functions. However, at
time t+1 the functions become depricated and therefore the
effective topic has evolved into an ineffective topic of com-
munication. It is likely that the individuals who are still ac-
tively pursuing development and discussing the depricated
operations are also becoming ineffective.

Our results indicate the necessity of appropriately mod-
eling the full set of temporal dimensions. The TENC per-
formance is significantly better than the static Window and
Union models at p < 0.01 and better than TVRC at p < 0.1
level. We have shown that by modeling and incorporating
the temporal influence of attributes and relationships leads
to a vast improvement in accuracy and an overall robust
model.

5. CONCLUSIONS

We presented a novel approach for modeling time-varying
relational data that incorporates textual content by use of
latent topics where both the communication links and top-
ics are evolving over time. The TENC framework is not
restricted to communication networks, but is applicable to
a wide array of relational domains where the relationships
between entities change over time as well as the entities at-
tributes. Furthermore, the latent semantic labeling tech-
nique is not restricted to natural languages and can be ap-



plied to label the edges and nodes of other types of networks.
We have shown the significant increase in performance by in-
cluding the temporal influence of the latent topics on both
the attributes and edges.

The temporal dynamics of the latent topics is a signifi-
cant aspect in the prediction of individual effectiveness. This
is shown using the Temporally-Evolving Network Classifier
where the performance is substantially increased when mod-
eling the influence of the temporal dynamics. The utility of
modeling a developers latent topic of communications across
time is important in determining future communications.
This means that a developers past topics of communications
are somewhat predictive of their future conversations with
their codevelopers and the influence should be modeled ac-
cordingly (i.e, decayed over time). These results indicate the
necessity of modeling both the time-varying communication
edges and the temporally-evolving latent topic attributes.
These findings warrant a more systematic investigation of
extending relational learning algorithms to take into account
the complete-set of temporal dimensions as well as using
similar textual analysis approaches for labeling edges and
creating attributes through latent temporal information.

Our future work will consider using the entire distribution
of topic liklihoods instead of selecting the most likely topic.
We are also interested in the temporal evolution of topics
with respect to the corresponding individuals communica-
tions. In particular the temporal patterns and transitions of
topics as they relate to the productivity of the individuals.
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