
ORIGINAL ARTICLE

Parallel collective factorization for modeling large heterogeneous
networks

Ryan A. Rossi1 • Rong Zhou1

Received: 13 June 2015 / Revised: 15 September 2015 / Accepted: 14 June 2016

� Springer-Verlag Wien 2016

Abstract Relational learning methods for heterogeneous

network data are becoming increasingly important for

many real-world applications. However, existing relational

learning approaches are sequential, inefficient, unable to

scale to large heterogeneous networks, as well as many

other limitations related to convergence, parameter tuning,

etc. In this paper, we propose Parallel Collective Matrix

Factorization (PCMF) that serves as a fast and flexible

framework for joint modeling of a variety of heterogeneous

network data. The PCMF learning algorithm solves for a

single parameter given the others, leading to a parallel

scheme that is fast, flexible, and general for a variety of

relational learning tasks and heterogeneous data types. The

proposed approach is carefully designed to be (1) efficient

for large heterogeneous networks (linear in the total num-

ber of observations from the set of input matrices), (2)

flexible as many components are interchangeable and

easily adaptable, and (3) effective for a variety of appli-

cations as well as for different types of data. The experi-

ments demonstrate the scalability, flexibility, and

effectiveness of PCMF for a variety of relational modeling

tasks. In particular, PCMF outperforms a recent state-of-

the-art approach in runtime, scalability, and prediction

quality. Finally, we also investigate variants of PCMF for

serving predictions in a real-time streaming fashion.

Keywords Recommender systems � Missing value

estimation �Matrix completion � Relational learning � Low-
rank approximation � Parallelization � Scalable graph

models � Matrix factorization � Collective factorization �
Coupled matrix–tensor factorization � Cyclic coordinate

descent � Heterogeneous networks � Prediction � Social
networks � Link prediction � Role discovery � Network
analysis

1 Introduction

In many real-world settings, there are often many large

networks of different types that are important to model.

Modeling these networks in a joint fashion is often critical

for quality and accuracy. This work aims to develop a fast,

flexible, and scalable approach for jointly factorizing these

heterogeneous data sources into a set of low-rank factors

that approximate the original data. Besides flexibility and

scalability, our approach is general and serves as a basis for

use in a variety of predictive and descriptive modeling

tasks.

Low-rank matrix factorization is a key component of

machine learning and lies at the heart of many regression,

factor analysis, dimensionality reduction, and clustering

algorithms (with applications in signal and image pro-

cessing, recommender systems, bioinformatics, among

others). However, the majority of work has focused on

techniques for factorizing a single matrix and thus is very

limited in their ability to exploit the numerous heteroge-

neous data sources available in most real-world applica-

tions. Recently, matrix factorization methods for

recommendation have gained significant attention. More

specifically, there have recently been numerous efforts on

scaling up traditional matrix factorization methods for use

& Ryan A. Rossi

rrossi@parc.com

Rong Zhou

rzhou@parc.com

1 Palo Alto Research Center (PARC, a Xerox Company), 3333

Coyote Hill Rd, Palo Alto, CA 94304, USA

123

Soc. Netw. Anal. Min. (2016) 6:67

DOI 10.1007/s13278-016-0349-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-016-0349-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-016-0349-6&domain=pdf

on large data such as a single user-item rating matrix

(Zinkevich et al. 2010; Niu et al. 2011; Yu et al. 2012).

Matrix factorization-based recommendation systems learn

a model to predict the preferences of users (Koren et al.

2009). Due to the significant practical importance of rec-

ommendation (e.g., suggesting movies, products, friends),

there have been a number of recent proposals to speed up

matrix factorization and the optimization methods that lie

at the heart of these techniques. In particular, the main

optimization schemes for factorizing a single user-item for

recommendation have recently been parallelized, including

stochastic gradient descent (SGD) (Zinkevich et al. 2010;

Niu et al. 2011; Vorontsov et al. 1997; Gemulla et al.

2011; Recht and Ré 2013, cyclic coordinate descent (CCD)

(Yu et al. 2012), and alternating least squares (ALS) is

easily parallelized via rows (Zhou et al. 2008). Impor-

tantly, Yu et al. (2012) introduced a parallel CCD approach

called CCDþþ that factorized a single user-item matrix for

the task of recommendation and demonstrated a significant

improvement over the other state-of-the-art parallel

schemes.

However, these approaches are limited to only a single

matrix, while in reality there are often multiple heteroge-

neous data sources available that are of importance (Sun

and Han 2012; Tsai et al. 2014; Jiang et al. 2013). Fur-

thermore, not only are multiple data sources common in

practice, but are useful and may significantly improve

model accuracy when leveraged. For instance, in the case

of recommendation, it is known that personal preferences

such as which product to buy (e.g., the brand and type of

laptop that a user will ultimately purchase) are directly

influenced by our social connections and close contacts

(Singla and Richardson 2008). This assumption has been

confirmed and used in many domains including sociology

(homophily) (McPherson et al. 2001), web/recommenda-

tion (Singla and Richardson 2008), and relational learning

(autocorrelation) (Rossi et al. 2012). In contrast, this article

proposes a fast parallel method for factorizing and ulti-

mately fusing multiple network data sources.

In the context of recommendation, some work has

combined multiple data sources in order to provide better

recommendations to users (Tang et al. 2013; Yang et al.

2013; Bonhard and Sasse 2006). More recently, Ma et al.

(2008) developed a social recommender system (SoRec)

based on probabilistic matrix factorization (PMF)

(Salakhutdinov and Mnih 2007) using SGD to combine the

social network with the user-item matrix. Other work used

the social network as a form of regularization (Yang et al.

2011, 2013; Tang et al. 2013; Jamali and Ester 2010).

Instead, we focus on parallel collective factorization

methods that are efficient, flexible, and general for use in a

variety of predictive and descriptive modeling tasks in

large heterogeneous data.

While recent work has scaled up traditional matrix

factorization techniques for recommendation, these

approaches use only a single matrix despite that multiple

data sources are common in practice and improve perfor-

mance when leveraged. Conversely, recent methods for

combining the social network and user-item matrix are

inefficient, sequential, do not scale, and have many other

issues with convergence, etc. Instead, this paper proposes a

general framework for Parallel Collective Matrix Factor-

ization (PCMF) that simultaneously factorizes multiple

heterogeneous data sources. We also point out that PCMF

naturally handles sparse and dense matrices, heterogeneous

and homogeneous networks consisting of multiple node

and edge types as well as dense feature matrices. Thus,

PCMF is extremely general for including additional

information in the factorization such as textual data rep-

resented as a word-document matrix for modeling topics or

for computing feature-based roles from a set of graphs and

feature matrices for each node type, among many other

possibilities.

This paper proposes a general learning algorithm for

PCMF that analytically solves for one parameter at a time,

given the others. The learning algorithm of PCMF is gen-

eralized for jointly modeling an arbitrary number of

matrices (network data or feature matrices). In addition, we

propose a fast parallel learning algorithm that enables

PCMF to model extremely large heterogeneous network

data. Furthermore, the parallel learning algorithm of PCMF

is extremely flexible as many components are inter-

changeable and can be customized for specific relational

learning tasks. One important advantage of PCMF lies in

the flexibility of choosing when and how parameters are

selected and optimized. Our approach also has other ben-

efits such as its ability to handle data that is extremely

sparse. Despite the difficulty of this problem, PCMF

leverages additional information such as the social network

or other known information to improve prediction quality.

The experiments demonstrate the effectiveness of

PCMF for jointly modeling heterogeneous network data. In

particular, PCMF as well as our single matrix variant

PCMF-BASIC outperforms the recent state-of-the-art in

terms of the following: (1) runtime, (2) scalability and

parallel speedup, and (3) prediction quality. Furthermore,

even the most basic PCMF variant called PCMF-BASIC

(the single matrix variant) is significantly faster and more

scalable than CCDþþ—the recent state-of-the-art parallel

approach for recommender systems. While this approach is

for recommendation only and does not handle more than a

single matrix, it is nevertheless important as it helps us

understand the importance of the PCMF learning algorithm

and the key factors that lead to PCMF-BASIC’s significant

improvement, both in terms of runtime as well as quality of

the model learned for various relational prediction tasks.

 67 Page 2 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

The main contributions of this work are as follows:

• Novel algorithm We propose PCMF—a fast, parallel

relational model that jointly models a variety of

heterogeneous network data sources. At the heart of

PCMF lies a fast parallel optimization scheme that

updates a single parameter at a time, given all others.

• Effectiveness The experiments demonstrate the scala-

bility, flexibility, and effectiveness of PCMF for a

variety of predictive modeling tasks. In addition, our

collective factorization framework is especially useful

for sparse data with a limited number of observations as

PCMF naturally incorporates the additional data

sources into the factorization and leverages them to

improve the quality of inference. We also demonstrate

the effectiveness of PCMF for serving recommenda-

tions in real-time streaming environment.

• Nonparametric and data-driven For descriptive mod-

eling tasks, we propose a fast relaxation method for

automatic and effective search over the space of

models, selecting the appropriate model. The approach

is data-driven and completely automatic as it does not

require any user-defined parameters, making it suit-

able for many real-world applications.

• Scalability The runtime is linear with respect to the

number of nonzero elements in all matrices. Our

parallel method is also shown to scale extremely well

for a wide variety of data with different underlying

characteristics. Notably, even PCMF’s single matrix

variant PCMF-BASIC scales better than CCDþþ—the

recent state-of-the-art parallel approach for recom-

mender systems.

• Generality We demonstrate the generality of PCMF by

applying it for a variety of data types and recommen-

dation tasks as well as using it for serving recommen-

dations in a streaming fashion.

1.1 Scope and organization of this article

This article primarily focuses on designing efficient and

flexible methods for parallel collective factorization with a

special emphasis on fast coordinate descent methods. Prior

work has not exploited fast coordinate descent for these

types of problems, nor do they propose scalable parallel

schemes. Furthermore this article also focuses on the

generality of our approach for use on a variety of appli-

cations (e.g., heterogeneous link prediction, topic model-

ing) and input data (e.g., node/edge attributes, similarity

matrices, sparse and dense single/multi-typed graphs). In

contrast, recent work proposes specialized techniques

specifically for the recommendation problem and are

severely limited as a result of numerous assumptions used

in learning as well as input data. As a result, the class of

PCMF models are quite general for a number of predictive

and descriptive modeling tasks as demonstrated later in

Sect. 4.

We do not focus on stochastic gradient descent (SGD) or

other similar optimization schemes since they have been

extensively investigated and the problems and issues that

arise from these methods are well known. Moreover, we

also do not focus on sequential methods for collective

factorization. As an aside, many of the ideas discussed in

this article may be helpful in proposing collective opti-

mization schemes using SGD. Nevertheless, SGD-based

methods are outside the scope of this work. Instead, this

article investigates fast parallel collective coordinate des-

cent-based methods for jointly factorizing additional con-

textual and side information. We systematically investigate

a large number of such parallel coordinate descent-based

variants for parallel collective factorization. Furthermore,

the variants are compared empirically on a number of

predictive and descriptive modeling tasks and across a

variety of input data and characteristics. This article gives

intuition for when such variants should be used and the

impact of parameters, dimensionality of the model, among

many others. Since PCMF was designed for use in real-

time, we propose a data-driven nonparametric model that is

fully automatic and does not require user input. We also

propose an extremely fast relaxation method that essen-

tially searches the space of models using rough approxi-

mations. Results are shown to be strikingly accurate with

significant speedups compared to the general approach

from the PCMF framework.

Many other optimizations are detailed throughout the

manuscript including memory and thread layouts, careful

memory access patterns to fully utilize available cache lines,

the importance of selecting ‘‘good’’ initial matrices, ordering

strategies, and other techniques to minimize dynamic load

balancing issues, among many others. Although distributed

memory architectures are outside the scope of this work, we

nevertheless discuss a relatively simple distributed paral-

lelization scheme that avoids the problems and issues that

arise in many of the recent approaches for the simple one-

matrix factorization problem. A key observation allows us to

exploit the dependencies of the latent feature matrices to

ensure both theCPU and network are fully utilizedwhile also

avoiding the synchronization issues that are arise in many

other approaches (e.g., workers remain idle waiting for the

slowest worker to finish, known as the ‘‘curse of the last

reducer’’).

The remainder of this article is organized as follows.

Section 2 gives preliminaries and provides a running

example. Section 3 introduces PCMF—a fast parallel

approach for factorizing an arbitrary number of matrices

and/or attributes (PCMF). This approach is then evaluated

in Sect. 4. Section 5 concludes with future directions.

Soc. Netw. Anal. Min. (2016) 6:67 Page 3 of 30 67

123

2 Background

Let A ¼ aij
� �

2 Rm�n be a matrix with m rows (e.g., users)

and n columns (e.g., items). In the context of recommen-

dation, A 2 Rm�n is typically a weighted matrix (e.g.,

ratings for items, movies) with m� n and represents a

user-item bipartite graph where Aij is the rating given by

user i for item j. For other applications, the matrix A may

also be unweighted and/or symmetric where Aij ¼ 1 may

indicate that a user i is a friend of user j (e.g., social net-

works). Nevertheless, the algorithms developed in this

manuscript are suitable for graphs that are weighted/un-

weighted, homogeneous/heterogeneous, and for sparse/-

dense graphs. We also denote X � 1; . . .;mf g � 1; . . .; nf g
as the observed entries of A (nonzeros) where ði; jÞ 2 X
indicates that user i gave item j a rating of Aij. Furthermore,

let Xi:¼fj : ði; jÞ 2 Xg be the set of items rated by the ith

user, whereas �Xj:¼fi : ði; jÞ 2 Xg denotes the set of users

who rated the jth item. Hence, jXij and j �Xjj are the number

of nonzeros in row i and column j, respectively.

The goal of the traditional (single) matrix completion

problem is to approximate the incomplete matrix A by

UV>. More formally, given A 2 Rm�n, find U 2 Rm�d and

V 2 Rn�d where d � minðm; nÞ such that A � UV>.

Intuitively, U 2 Rm�d represents the low-dimensional

latent user feature space, whereas V 2 Rn�d represents the

item feature space, respectively. Each row u>i 2 Rd of U

can be interpreted as a low-dimensional rank-d embedding

of the ith row in A (i.e., user if A is a user-item ratings

matrix). Alternatively, each row v>j 2 Rd of V represents a

d-dimensional embedding of the jth column in A (i.e.,

item) using the same low-rank-d-dimensional space. Also,

uk 2 Rm is the kth column of U and similarly vk 2 Rn is the

kth column of V. Further, let Uik be a scalar (kth element of

u>i or the ith element of uk). Similarly, let uik and vjk for

1\k\d denote the kth coordinate of the column vectors ui
and vj (and thus interchangeable with Uik and Vjk). For

clarity, we also use U:k to denote the kth column of U (and

Ui: for the i
th row of U). Similar notation is used for V and

Z.

2.1 Problem formulation

To measure the quality of our model, we use a nonzero

squared loss: ðAij � u>i vjÞ
2
. However, our optimization

method may use any arbitrary separable loss (as an

objective function). Regularization terms are also intro-

duced in order to prevent overfitting and predict well on

unknown ratings. Let us note that PCMF is easily capable

of handling a number of regularizers. In this work, we use

square-norm regularization. For the traditional single

matrix factorization problem (i.e., a special case of PCMF),

we have the following objective function:

min
U;V

X

ði;jÞ2X

n
ðAij � u>i vjÞ

2 þ kukuik2 þ kvkvjk2
o

where the regularization parameters ku [0 and kv [0 are

scalars that trade off the loss function with the regularizer.

The above problem formulation has a variety of limitations

in practice. For instance, the above problem uses only a

single data source in the factorization and has prediction

quality problems for rows (users) with very few or no

observations (ratings). To help solve the data sparsity

issues that arise in practice, we take advantage of corre-

lations between different data sets and simultaneously

factorize multiple matrices. Given two matrices A 2 Rm�n

and B 2 Rm�m, we formulate the collective factorization

problem as:

min
U;V;Z

n X

ði;jÞ2XA

ðAij � u>i vjÞ
2 þ kukUkF þ kvkVkF

þ
X

ði;jÞ2XB

ðBij � u>i zjÞ
2 þ akZkF

o ð1Þ

where U 2 Rm�d;V 2 Rn�d, and Z 2 Rm�d are low-rank

factor matrices.

2.2 Motivating example

For illustration purposes, we consider PCMF with two

types of input data shown in Fig. 1. More specifically, we

are given a weighted bipartite graph (bigraph) with two

types of nodes representing 8 users and 6 items along with

17 weighted edges, representing the fact that a user rated an

item. We also have a directed social network with 8 users

and 12 edges, representing friendships.1 Furthermore, the

social network has only a single node and edge type (i.e.,

homogeneous), whereas the user-item bigraph has two

types of nodes representing users and items. Apart from the

node types, this example also includes two edge types, i.e.,

ratings in A and friendships in B. Indeed, PCMF naturally

generalizes for many other types of data and scenarios not

covered by this simple example (e.g., dense matrices such

as feature or similarity matrices).

Following the intuition that a user is more likely to be

influenced by friends than random users, we jointly fac-

torize the user-item matrix and social network (from

Fig. 1) using UV> andUZ> where the low-dimensional

matrix U 2 Rm�d represents the shared user latent feature

space, and the low-dimensional matrix V 2 Rn�d repre-

sents the item latent feature space, and similarly, Z 2 Rm�d

1 Note that undirected homogeneous networks (symmetric matrices)

are a special case of our framework.

 67 Page 4 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

is the social latent feature space. Therefore, A � UV> and

B � UZ>. In this example, we set the rank d ¼ 2, and use

a ¼ 2 to control the influence of B on the factorization. For

the regularization parameters, we set k ¼ 0:1. The low-

dimensional matrices representing the latent feature space

of the users U, items V, and social interactions Z are shown

in Fig. 2 and colored by the coordinates magnitude. A key

advantage of PCMF is its flexibility for collectively fac-

torizing a wide variety of data (textual, features, similarity

matrices, images, etc) that goes well beyond the simple

example used here. However, the data sources must be

correlated w.r.t. the objective (or more generally the

application), otherwise the additional data may lead to

worse performance (due to noise/bias). This fundamental

assumption is not unique to PCMF but is required for any

such method.

(a) (b)

(c) (d)

Fig. 1 Example of the input

data leveraged by PCMF. In this

example, we show a bipartite

user-item graph in (a) and its

weighted adjacency matrix A 2
Rm�n in (c) as well as the
directed social graph in

(b) represented by the adjacency
matrix B 2 Rm�m in (d)

(a) (b) (c)

Fig. 2 Low-dimensional latent features of the users, items, and social

interactions. The initial input data from Fig. 1 are represented in a

low-dimensional space using 2 dimensions and can be viewed as a

rank-2 approximation such that A � UV> and B � UZ>. U 2 Rm�d

(a), V 2 Rn�d(b), Z 2 Rm�d (c)

Soc. Netw. Anal. Min. (2016) 6:67 Page 5 of 30 67

123

To motivate PCMF, we demonstrate its use for predic-

tion using our example. For evaluation, a fraction of the

known observations are withheld from learning to use as a

testing set. In the example, the testing set consists of

Xtest ¼ fðu4; v1; 5Þ; ðu6; v3; 3Þ; ðu8; v1; 5Þg. Using the low-

dimensional representation from Fig. 2, one can predict

these known ratings and measure the difference (model

error) using a metric that quantifies the ‘‘prediction qual-

ity.’’ We predict the missing value of Aij s.t. ði; jÞ 62 XA

using u>i vj. For instance, the missing value for user u4 and

item v1 (first test example) is given by

u>4 v1 ¼ 3:20:99
� � 1:7

�0:52

" #

¼ 4:92. Therefore, we use

PCMF to predict each test example in Xtest and use root-

mean-squared error (RMSE) to measure the error (predic-

tion quality). Using only the user-item matrix (PCMF-

BASIC), we obtain an error of 2.55 compared to 0.19 when

our collective factorization approach is used.

More generally, one may use PCMF for the matrix

completion problem which seeks to estimate all (or a subset

of) the missing nonzero values in a given matrix. This

problem is at the heart of many ranking tasks (e.g., search

engines must display only the top-k most relevant pages).

As such, we investigate using two PCMF variants for this

problem that differ in the information used to learn the low-

dimensional feature spaces. Results are shown and dis-

cussed in Fig. 3.

Another important problem where PCMF may be used

directly is the social network link prediction problem. The

goal here is to predict the existence of a future or missing

link. For this problem, one can use PCMF to find a low-

dimensional embedding of the large heterogeneous data,

then we can predict the likelihood of a link between i and j

using u>i zj directly. All such links may be weighted using

UZ>, which provides a ranking of the most likely potential

links for each user.

3 Parallel collective factorization

We now derive a scalar coordinate descent optimization

scheme that leverages fast and efficient element-wise

updates via the columns. The basic idea of coordinate

descent (CD) is to optimize one element at a time while

fixing other elements by decomposing the objective in (1)

into several one-variable subproblems. As previously

mentioned, we randomly initialize U 2 Rm�d;V 2 Rn�d,

and Z 2 Rm�d. Furthermore we apply a sparsification

technique which effectively sets a few entries to zero. As

shown later, this speeds up convergence while also

improving the model accuracy by generalizing better (in

fewer iterations). For each inner iteration denoted t, we

alternatively update V:k and Z:k and then use this to update

U:k and repeat. For clarity, we note that

V:k 2 Rn;Z:k 2 Rm, and U:k 2 Rm are used here to denote

(a)

(b)

Fig. 3 Matrix completion using PCMF and PCMF-BASIC. Observed

instances used in training were removed (see Fig. 1). Using PCMF to

leverage both the social network and user-item matrix gives the most

reasonable predictions as shown in (a) when compared to PCMF-

BASIC in (b) which uses only the user-item matrix. Strikingly, for

users with no ratings (u4 and u7), we find that PCMF is able to predict

reasonable ratings by leveraging the social information, whereas

predictions made using PCMF-BASIC are clearly less meaningful.

For items with no ratings (v5), PCMF gives slightly more reasonable

ratings than PCMF-BASIC. However, if we had another matrix for

items such as the latent topics from the textual information or another

form of item similarity, then PCMF is expected to provide signifi-

cantly better predictions for items with no ratings. For presentation

purposes, predicted values were rounded and limited to be no larger

than the max rating possible

 67 Page 6 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

columns of V;Z, and Z, respectively. In particular, a single

inner iteration updates the kth latent feature of V;Z and U

in the following order:

V1k;V2k; . . .;Vnk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
V:k

; Z1k; Z2k; . . .; Zmk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Z:k

; U1k;U2k; . . .;Umk|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
U:k

zffl}|ffl{inner iteration

and thus, each outer iteration updates the latent features in

the following order:

V:1;Z:1;U:1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
inner iteration

; . . .;V:k;Z:k;U:k|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
8t¼1;2;...

; . . .;V:d;Z:d;U:d|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
8t¼1;2;...

zffl}|ffl{s outer iteration

ð2Þ

Note that this is in contrast to the common update ordering:

V:1;V:2; . . .;V:d;Z:1;Z:2; . . .;Z:d;U:1;U:2; . . .;U:d ð3Þ

We have also experimented with different update strategies

such as: Z:1;V:1;U:1; . . .;Z:d;V:d;U:d, among more

sophisticated adaptive ordering variants.

We now give the update rules for a single element. We

allow Vjk to change with v and fix all other variables to

solve the following one-variable subproblem:

min
v

JðvÞ ¼
X

i2XA
j

�
Aij � ðUi:V

>
j: � UikVjkÞ � Uikv

�2
þ kvv

2

Since JðvÞ is a univariate quadratic function, the unique

solution is simply:

vH ¼
P

i2XA
j

Aij � Ui:V
>
j: þ UikVjk

� �
Uik

kþ
P

i2Xj
UikUik

ð4Þ

While a naı̈ve implementation takes OðjXAjdÞ, we effi-

ciently compute the update above in OðjXA
j jÞ linear time by

carefully maintaining the residual matrix Ea:

Ea
ij 	 Aij � Ui:V

>
j: ; 8ði; jÞ 2 XA ð5Þ

Therefore, we can rewrite the above equation in terms of

Ea
ij, the optimal vH is simply:

vH ¼
P

i2Xj
Ea
ij þ UikVjk

� �
Uik

kþ
P

i2Xj
UikUik

ð6Þ

Now, we update Vjk and Ea
ij in OðjXjjÞ time:

Ea
ij Ea

ij � ðvH � VjkÞUik; 8i 2 Xj ð7Þ

Vjk vH ð8Þ

Similar update rules for solving a single subproblem in Z

and U are straightforward to derive and may be computed

efficiently using the same trick. Thus, the update rules for

the one-variable subproblems Vjk; Zik, and Uik are as

follows:

vH ¼
P

i2XA
j

Ea
ij þ UikVjk

� �
Uik

kv þ
P

i2XA
j
UikUik

ð9Þ

zH ¼
P

j2XB
i

Eb
ij þ UjkZik

� �
Ujk

aþ
P

j2XB
i
UjkUjk

ð10Þ

uH ¼
P

j2XA
i

Ea
ij þ UikVjk

� �
Vjk

ku þ
P

j2XA
i
VjkVjk

þ
P

j2XB
i

Eb
ij þ UikZjk

� �
Zjk

aþ
P

j2XB
i
ZjkZjk

ð11Þ

These updates rules may be used regardless of the order in

which the one-variable subproblems are updated. Conse-

quently, this gives rise to the PCMF class of variants that

leverage adaptive strategies. Although we update V;Z, and

U via asynchronous column-wise updates, the order in

which the updates are performed may also impact perfor-

mance and convergence properties. The factorization using

a column-wise update sequence corresponds to the sum-

mation of outer products:

A � UV> ¼
Xd

k¼1
U:kV

>
:k ð12Þ

B � UZ> ¼
Xd

k¼1
U:kZ

>
:k ð13Þ

where V:k;Z:k, and U:k denote the kth column (or latent

feature) of V;Z and U, respectively. Let Touter and T inner be

the number of inner and outer iterations, respectively. Note

Touter is the number of times the kth latent feature is

updated. T inner is the number of times the kth latent feature

is updated before updating the k þ 1 latent feature. Fur-

thermore if the update order for each outer iteration is:

V:1;Z:1;U:1; . . .;V:k;Z:k;U:k; . . .;V:d;Z:d;U:d;

then each of the d latent features are updated at each outer

iteration (via T inner inner iterations). Since elements in vk
(or zk; zk) can be computed independently, we focus on

scalar approximations for each individual element. This

gives rise to a scalar coordinate descent algorithm. For

now, let us consider column-wise updates where the kth

latent feature of V;Z, and U is selected and updated in

arbitrary order. See Algorithm 1 for a detailed description.

Thus, during each inner iteration, we perform the following

updates:

Soc. Netw. Anal. Min. (2016) 6:67 Page 7 of 30 67

123

V:k vH

Z:k zH

U:k uH

where vH; zH, anduH are obtained via the inner iterations. As

an aside, PCMF performs rank-1 updates in-place so that we

always use the current estimate. To obtain the updates above

(i.e., vH; zH; uH), one must solve the subproblem:

min
u; v; z

(
X

ði;jÞ2XA

Ea
ij þ U

ðsÞ
ik V

ðsÞ
jk � uHik v

H

jk

� �2

þ
X

ði;jÞ2XB

Eb
ij þ U

ðsÞ
ik Z

ðsÞ
jk � uizj

� �2

þ kukuk2 þ kvkvk2 þ akzk2
)

ð14Þ

where Ea ¼ A� ukv
>
k and Eb ¼ B� ukz

>
k are the initial

sparse residual matrices for A and B, respectively. The

residual term for A is denoted as A� UV> ¼ AðkÞ � ukv
>
k

where the k-residual AðkÞ is defined as:

AðkÞ ¼ A�
X

f 6¼k
uf v
>
f

¼ A� UV> þ ukv
>
k ; for k ¼ 1; 2; . . .; d

ð15Þ

Similarly, the residual term for B is B� UZ> ¼ BðkÞ �
ukz
>
k where the k-residual BðkÞ is defined as:

BðkÞ ¼ B�
X

f 6¼k
uf z
>
f

¼ B� UZ> þ ukz
>
k ; for k ¼ 1; 2; . . .; d

ð16Þ

For a single residual entry, let us define A
ðkÞ
ij and B

ðkÞ
ij as:

A
ðkÞ
ij ¼ Ea

ij þ UikVjk; 8ði; jÞ 2 XA and ð17Þ

B
ðkÞ
ij ¼Eb

ij þ UikZjk; 8ði; jÞ 2 XB ð18Þ

Equivalently, let AðkÞ ¼ Ea þ ukv
>
k and BðkÞ ¼ Eb þ ukz

>
k .

Now a straightforward rewriting of Eq. (14) gives the exact

rank-1 matrix factorization problem from Eq. (1),

min
u; v; z

(
X

ði;jÞ2XA

A
ðkÞ
ij � uikvjk

� �2
þkukuk2kvkvk2

þ
X

ði;jÞ2XB

B
ðkÞ
ij � uikzjk

� �2
þakzk2

) ð19Þ

Using Eq. (19) gives an approximation by alternating

between updating v; z, and u via column-wise updates. Note

that when performing rank-1 updates, a single subproblem

can be solved without any further residual maintenance.

Thus, each one-variable subproblem may benefit from T inner

iterations. The inner iterations are fast to compute since we

avoid updating the residual matrices while iteratively

updating a given k latent factor via a number of inner itera-

tions. As previously mentioned, updates are performed in-

place and thus the most recent estimates are leveraged. This

also has other important consequences as it reduces storage

requirements, memory locality, etc. Furthermore, after the

T inner inner iterations, we update E
a and Eb,

Ea
ij A

ðkÞ
ij � uHi v

H

j ; 8ði; jÞ 2 XA and ð20Þ

Eb
ij B

ðkÞ
ij � uHi z

H

j ; 8ði; jÞ 2 XB ð21Þ

For convenience, we also define Ea ¼ AðkÞ � ukv
>
k and

Eb ¼ BðkÞ � ukz
>
k . Finally, the scalar coordinate descent

algorithm updates each element independently using the

following update rules:

Vjk ¼
P

i2XA
j
A
ðkÞ
ij Uik

kv þ
P

i2XA
j
UikUik

; j ¼ 1; 2; . . .; n ð22Þ

Zik ¼
P

j2XB
i
B
ðkÞ
ij Ujk

aþ
P

j2XB
i
UjkUjk

; i ¼ 1; 2; . . .;m ð23Þ

Uik ¼
P

j2XA
i
A
ðkÞ
ij Vjk

ku þ
P

j2XA
i
VjkVjk

þ ð24Þ

P
j2XB

i
B
ðkÞ
ij Zjk

aþ
P

j2XB
i
ZjkZjk

; i ¼ 1; . . .;m ð25Þ

Thus, the above update rules perform n element-wise

updates on vk, then we perform m updates on zk, and finally

m updates are performed for uk. Furthermore, that approach

does not define an element-wise update strategy (assumes a

natural ordering given as input) nor does it allow for partial

updates. For instance, one may update a single element in

Vjk, then Zik, and Uik and continue rotating until all ele-

ments have been updated once. Nevertheless, this work

leverages such flexibility by defining both column-wise and

element-wise update ordering strategies. We also relax the

strict update pattern used in previous work where a single

column is updated in its entirety before updating elements

in any of the other columns. Intuitively, finer-grained

control of the updates may have caching or other benefits

due to memory access patterns.

Solving the problem in (1) that has many free parame-

ters (i.e., ð2mþ nÞd) from sparse graph data typically leads

to overfitting. Thus, we use the following weighted regu-

larization term that penalizes large parameters.

ku
Xm

i¼1
jXij � kuik2 þ kv

Xn

j¼1
jXjj � kvjk2 þ a

Xm

i¼1
jXB

i j � kzik
2

 67 Page 8 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

where j � j is the cardinality of a set (i.e., number of

nonzeros in a row or col of A or B) and k � k2 is the L2
vector norm. where each regularization term is essentially

weighted by the degree (in/out). We use a simple yet

effective graph sparsifier for speeding up the general

method. Outside of coordinate descent, it has been used for

many applications (Spielman and Teng 2004; Satuluri et al.

2011; Liu et al. 2010). This technique works quite well

with cyclic coordinate descent as shown in Sect. 4. Due to

known issues, we also use a custom random number gen-

erator, see Sect. 3.2 for details. On many problems, we

have observed faster convergence and consequently better

predictions in fewer iterations.

3.1 Sparsity and non-negativity constraints

A number of important problems may warrant other con-

straints. We now discuss a few of the most important

alternatives and derive them for the PCMF collective fac-

torization framework.

3.1.1 Sparsity constraints

An important variation of PCMF is the use of sparsity con-

straints on one or more factors. Sparsity constraints may be

enforced using the ‘1-norm to obtain a sparse model. For

imposing sparsity constraints, the previous objective func-

tion is replaced with the following penalized objective:

min
U;V;Z

X

ði;jÞ2XA

Aij � u>i vj
� �2þb

X

ði;jÞ2XB

Bij � u>i zj
� �2

þ ku
Xm

i¼1
kuik1 þ kv

Xn

j¼1
kvjk1 þ a

Xm

i¼1
kzik1

Now let us define

h ¼ �2
X

i2XA
j

A
ðkÞ
ij Uik

then we have the following update rules:

V
ðtÞ
jk ¼

�sgnðhÞmaxðjhj � kv; 0Þ
2
P

i2XA
j
UikUik

ð26Þ

Similar element-wise update rules are easily derived for the

other factors.

3.1.2 Nonnegative collective factorization

It is straightforward to extend our approach for nonnegative

collective factorizationwith a simple projection to constrain

the element-wise updates to be positive. For instance, one

may simply check whether the update is negative and if so

then it would be set to zero, otherwise the update is carried

out in one of the followingways previouslymentioned. Thus,

the corresponding update rule for ‘2-norm is,

V
ðtÞ
jk ¼ max

0;

P
i2XA

j
A
ðkÞ
ij Uik

kv þ
P

i2XA
j
UikUik

!

ð27Þ

Analogous update rules are easily derived for the other

factors. In addition, one may easily adapt other types of

update rules for nonnegative collective factorization. For

instance, the non-negativity constraint is trivially added to

other update rules that employ other constraints such as the

update rule for sparsity constraints shown in Sect. 3.1.1,

among many others.

3.2 Parallel algorithm

Nowwe introduce a general parallel approach for the PCMF

framework that succinctly expressesmany of the variants. As

mentioned previously, PCMF optimizes the objective func-

tion in (19) one element at a time. A fundamental advantage

of this approach is that all such one-variable subproblems of

a k latent feature are independent and can be updated

simultaneously. While our current investigation focuses on

shared memory and thus suitable for parallelization on both

CPU and GPU, we describe the parallelization procedure

such that it could be used with a distributed memory archi-

tecture using MPI and others. Details to optimize the pro-

cedure for distributedmemory architectures are given later in

the discussion. Further, the parallelization procedure easily

handles any arbitrary number of matrices (data sources) and

is a straightforward extension.

We denote a parallel computing unit as a worker2, and

we let p denote the number of workers. A job (or task) is an

independent unit of work, and a block is defined as a

ordered set of b jobs. Note that a job and task are inter-

changeable as well as the terms rows, row indices, and

vertices. Further, all sets are assumed to be ordered and can

be thought of as queues.

3.2.1 Simple parallel approaches and challenges

Notice that the coordinates in each of the rows ofV;Z, andU

are independent and thus can be updated simultaneously.

Thus, a simple naı̈ve parallel approach is to partition the rows

of V (vertices) into p sets of approximately equal size such

that I v ¼ fI v1; . . .; I vpg where jI vwj ¼ dn=pe. Now each

worker w 2 f1; . . .; pg updates the set of row indices I vw
assigned to them. The fundamental assumption of the above

static scheduling scheme is that each update takes approxi-

mately the same time to update. However, the time to

2 A worker is a thread in shared memory setting and machine in

distributed memory architecture.

Soc. Netw. Anal. Min. (2016) 6:67 Page 9 of 30 67

123

perform updates may vary significantly and depends on

many factors. For instance, it may depend on the underlying

characteristics of each node vi 2 I vw (i.e., memory access

pattern and number of memory accesses). Therefore, per-

forming an update on a node with only a few neighbors is

significantly faster than a node with many such neighbors.

For a worker w, this leads to
P

j2I vw 4jX
A
j j time and likely

differs for each worker. Furthermore, many of the graphs

found in the real-world have skewed degree distributions and

thus only a handful of vertices are likely to have extremely

large degrees, whereas all other vertices are likely to have

only a few connections. That finding essentially guarantees

load balancing issues if not handled properly.

To further understand the fundamental importance of

ordering, suppose all vertices of a given type (i.e., row

indices ofV;U, etc.) are ordered from smallest to largest by a

graph property f ð�Þ such as degree. Further, suppose b jobs

are initially assigned in a round-robin fashion such that the

first worker w is assigned the initial b vertices from the

ordering p, whereas the second worker is assigned the next b
vertices to update, and so on. Therefore, this gives us,

v1; . . .; vb�1; vb|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
w

; vbþ1; . . .; vpb�1; vpb
zffl}|ffl{

initial jobs assigned

; vpbþ1; . . .; vn�1; vn

where worker w is assigned the b vertices with largest

degree and therefore this ordering initially ensures that the

jobs assigned to worker w take at least as much time as the

wþ 1 worker and so on. Moreover, if b is large enough, the

load is likely to be extremely unbalanced and therefore the

jobs are fundamentally uneven as their cost depends on the

number of nonzeros (i.e., observations/training instances).

This clearly illustrates the fundamental importance of

selecting an appropriate ordering strategy that distributes

the work load evenly among the p workers.

We note that previous single matrix factorization

approaches (such as CCDþþ) use explicit barriers between
each rank-1 updates. Hence, after performing a rank-1

update on V, all workers must wait before performing a

rank-1 update on Z;U, and any others. These approaches

are slow due to the synchronization and static assignment

of jobs to the workers.

3.2.2 Locking and blocking problems

For parallel algorithms to scale, it is important that all

workers remain busy. Unfortunately, many parallel matrix

factorizationmethods includingCCDþþ suffer from locking

problems (also known as ‘‘the curse of the last reduced’’) that

are typically due to ineffective load balancing strategies.

Intuitively, this issue arises when workers must wait for the

slowest worker to finish.While other problemsmay also lead

to these locking problems, they are usually an effect and not

the fundamental cause. For instance, as we shall see later,

requiring explicit synchronization after each rank-1 update

may not significantly impact runtime and scalability as well

as work load is appropriately balanced across the p workers

such that all workers remain busy.

To gain intuition of our approach, we first present an

oversimplification of our approach in Algorithm 1 that

serves to highlight a few of the fundamental differences

with our fast improved approach presented later in

Sect. 3.2.3. Most importantly, that approach does not

leverage asynchronous updates and does not allow an

arbitrary order for performing the element-wise updates. In

particular, the updates are performed in natural ordering

(e.g., j ¼ 1; . . .; n) and the kth latent factor of V;Z, and U is

updated in full. Instead, since single elements in vk; zk, and

uk may be computed independently, then one can easily

imagine more complex orderings for updating the vari-

ables. For instance, one can update a single element in vk
then update an element in zk; uk, then continue alternating

in this manner. Besides the two fundamental limitations of

a fixed and simple ordering and synchronization between

each rank-1 update, that approach is also constrained by the

specific update performed, despite there being many other

 67 Page 10 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

updates that could just as easily be used (e.g., nonnegative

updates, ‘1-norm updates, among others).

3.2.3 Fast asynchronous approach

In this section, we introduce a fast generalized parallel collec-

tive factorization approach shown in Algorithm 2. Most

importantly, that approach serves as a fundamental basis for

studying different objective functions/regularizers, ordering

strategies, asynchronous updates, among many other varia-

tions.Algorithm2 starts by initializing the latent factormatrices

V;Z, and U using some strategy (Line 1), e.g., one may use

vjk
UniformReal 0; 1=
ffiffiffi
d
p� �

for 1� j� n; 1� k� d, and

similarly forU andZ. Line 2 applies graph sparsifiers to reduce

the computational complexity. Both have been shown to be

effective in reducing the runtime.Next, Line 3 obtains an initial

orderingP using a predefined metric or graph property f, e.g.,

from largest to smallest in/out-degree. Now one may compute

the initial residual matrices (Line 4). The algorithm proceeds

iteratively using amaximumofTouter iterations (Line 5) or until

convergence or stopping criterion is reached (Line 19). Every

outer iteration s consists of updating the k latent factors via

rank-1 updates (Line 6). For the case that the observations inA

and B are sparse (and/or dense but small enough to fit in

memory), then we maintain a sparse k-residual matrix (Line 7

andLine 17). NowweperformT inner rank-1 updates for each of

the kth latent factors.

Previous work assumed the one-variable subproblems

are updated in the order given as input (i.e., natural

ordering). This approach typically leads to load balancing

issues and may significantly decrease the performance due

to long wait times between updates. For instance, suppose

vertices/rows are given as input to CCDþþ in the order of

degree, thus if b is large enough, then the first worker is

assigned the first b rows/vertices with the largest degree

which corresponds to the fundamentally difficult and time-

consuming jobs. This leads to load balancing issues since

the other p� 1 workers are likely to finish very rapidly and

must wait until all such workers are finished. Using a

smaller block b of jobs may reduce load balancing issues at

the expense of increasing communication and overhead

costs.

Soc. Netw. Anal. Min. (2016) 6:67 Page 11 of 30 67

123

Instead, PCMF generalizes the previous work to allow

vertices to be updated in any arbitrary order. This addi-

tional flexibility results in a significantly faster paral-

lelization with shorter wait times between respective

updates. Let pv ¼ fv1; . . .; vng; pz ¼ fz1; . . .; zmg; pu ¼
fu1; . . .; umg denote an ordering of the rows in V;Z, and U,

respectively. For now, pv; pz, and pu are assumed to be

independently permuted in an arbitrary manner (largest

degree, k-core, max error, etc.). From this, let us denote P
as:

P ¼ fv1; . . .; vn|fflfflfflfflffl{zfflfflfflfflffl}
pðtÞv

; z1; . . .; zm|fflfflfflfflffl{zfflfflfflfflffl}
pðtÞz

; u1; . . .; um|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pðtÞu

g
ð28Þ

where t denotes the inner iteration. This implies that one-

variable updates are performed in the order given by pv,
then pz, and so on. Hence, the parallel method selects the

next b row indices (i.e., vertices) to update in a dynamic

fashion from the P ordering above.

More generally, our approach is flexible for updating

individual elements in any order and is not restricted to

updating all elements in pv first (or the kth factor of v)

before updating pz, and thus one can select the elements to

update at a finer granularity. This is possible since we are

focused on the approximation between a single element a
ðkÞ
ij

in the k-residual matrix and the multiplication of Uik and

Vjk and similarly we are interested in the approximation

between b
ðkÞ
ij and the multiplication of Uik and Zjk. There-

fore, let us redefine P as an arbitrary permutation of the set

fv1; . . .; vn; z1; . . .; zm; u1; . . .; umg. The ordering may also

change at each inner iteration and is not required to be

static (Line 15). As an example, one may adapt the

ordering at each inner iteration based on the error from the

previous inner iteration. Further, we may choose to update

only the top-x elements with largest error in the previous

iteration. This ensures we focus on the variables that are

most likely to improve the objective function and also

ensures work is not wasted on fruitless updates that are

unlikely to lead to a significant decrease in error.

In PCMF, each of the p workers are initially assigned a

disjoint set of b vertices (i.e., row indices) to update. After

a worker w completes its jobs (e.g., updating all vertices in

its assigned queue/vertex set), Line 9 in Algorithm 2

dynamically assigns the next set of b rows to update (in the

order of P). Thus, we assign jobs dynamically based on the

availability of a worker. More formally, each worker w 2
f1; . . .; pg has a local concurrent queue which contains a

set of ðj; vjÞ pairs to process where vj 2 Rk. Further, every

such pair ðj; vjÞ is known as a job and corresponds to a one-

variable update (from Sect. 3). Thus, a worker w pops the

next job of its local queue (Line 11), performs one or more

updates (Line 12), and repeats. At the start, each worker

w 2 f1; . . .; pg initially pushes b job pairs onto its own

queue using the ordering P. If a worker w’s local queue

becomes empty, an additional set of b jobs are dynamically

pushed into the queue of that worker. The specific set of

jobs assigned to the w worker is exactly the next b jobs

from the orderingP (i.e., starting from the job last assigned

to the p workers). Note that these jobs correspond to the

rows that have yet to be updated in the current (inner)

iteration (which are given by the ordering defined above).

For instance, consider the case where p ¼ 2 and b ¼ 3,

then fv1; v2; v3g and fv4; v5; v6g are initially assigned to

each of the two workers. Now, once a workers queue is

empty, it requests additional work, and the next batch of

one-variable subproblems from the ordering P is assigned.

Thus, the first worker to complete the set of one-variable

updates is assigned the next set of b jobs in the ordering,

i.e., fv7; v8; v9g, and so on until all such rows have been

updated. This dynamic scheduling strategy effectively

balances the load as it significantly reduces wait times

between updates. Furthermore, it has been shown to be

significantly faster than the previous state of the art for

real-world networks with skewed degree and triangle dis-

tributions. The number b of such ðj; vjÞ job pairs assigned

to a worker w is parameterized in PCMF so that the number

of jobs assigned at a given time may be adapted automat-

ically or set by the user.

To store the result from a single update, we index

directly into the proper vertex/row position in the array and

store the updated value. This has two implications. First,

we avoid additional storage requirements needed to store

the intermediate results as done with previous approaches.

Second, the result from the update is stored using the same

array and thus the current estimate may be used immedi-

ately. Let us note that CCDþþ requires additional arrays of

length m and n to store the intermediate results computed at

each iteration. The results are then copied back afterward.

A key advantage of the proposed PCMF framework is

the ability to perform updates asynchronously without

synchronization barriers between each rank-1 update.

Previous work in traditional matrix factorization usually

requires that updates are completed in full for U:k before

moving on to V:k and is explicitly implemented using

barriers to ensure synchronization between rank-1 updates.

For instance, CCDþþ has multiple synchronization barriers

at each inner iteration. However, this may cause most

workers to wait for long periods while waiting for another

worker that is either slow or assigned an extremely skewed

work load. We relax such a requirement to allow for the

inner iterates to be completely asynchronous. The rank-1

updates for V;Z, and U are completely asynchronously,

and when there is no more jobs to be assigned to a worker

w, that worker immediately grabs the next set of b jobs

 67 Page 12 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

from the ordering P. Our approach avoids the inner syn-

chronization altogether by dynamically assigning the next

b jobs in the ordering P to the next available worker w

regardless of the rank-1 update. Thus, workers do not have

to remain idle while waiting for other workers to finish. We

note that while there is a slight chance of a conflict, in

practice it is hardly ever a problem (and even if a vertex

gets an old update, then it is fixed within the next iteration).

We found that the job size used by CCDþþ significantly

impacts the parallel performance and leads to strikingly

worse runtimes. As an aside, these issues may not have

been noticed in the initial evaluation of CCDþþ as it is

proposed for the single matrix recommendation problem

and evaluated on a relatively small number of recom-

mender data sets. The shared memory implementation

significantly benefits from an effective work-stealing

strategy. To avoid these problems, we use a work-stealing

strategy so that workers do not remain idle waiting for the

slowest to finish. Instead, jobs are pushed into each of the

local worker queues (in some order), and once a worker

completes the assigned jobs, we pop the last k jobs from the

queue of the slowest worker and assign them to an avail-

able worker. Clearly this parallel approach significantly

improves CCDþþ as workers are never idle and always

making progress by partitioning the jobs assigned to the

slowest worker. For implementation, one may use the TBB

library.3 Note that this offers a far better dynamic load

balancing since it keeps all workers fully utilized while not

requiring us to optimize the number of jobs dynamically

assigned upon completion. However, we still must select

the worker to steal jobs from, the number of jobs to steal,

and what specific jobs to steal. Here, one may efficiently

estimate the number of optimal jobs to steal by using the

total number of nonzero entries as a proxy.

Importantly, PCMF is naturally amendable for stream-

ing, multi-core, and MapReduce architectures. This is in

part due to the efficient, yet independent rank-1 updates

and the limited number of passes over the matrices (com-

pared to the state-of-the-art). In the PCMF framework, the

number of updates b that is dynamically assigned to the

workers is automatically optimized based on the size of the

data (number of rows/cols), nonzero density, and number

of latent dimensions. However, the experiments in Sect. 4

do not use this technique for comparison. The other key

advantages of this approach are summarized below:

• Computations performed asynchronously whenever

appropriate The inner iteration is completely asyn-

chronous. We also update the residual matrices in a

non-blocking asynchronous fashion and carry out many

other computations in a similar manner whenever

possible.

• Flexible ordering strategy allows finer granularity

Flexible ordering strategy for performing updates and

improving load balancing. Additionally, the previous

CCDþþ method and various others assume a natural

ordering of the vertices (one-variable subproblems),

which is the ordering given by the input graph data. In

contrast, we propose using various other ordering

strategies based on graph parameters such as degree,

k-core, triangle counts, among others. We also propose

other adaptive techniques based on maximum error in

the previous iteration.

• Updates performed in-place and current estimates

utilized Furthermore, updates are performed in-place

and thus the current estimates are immediately utilized.

This also reduces the storage requirements.

• Memory and thread layout optimized for NUMA

architecture In addition, we also have optimized PCMF

for NUMA architecture (Yasui et al. 2013) using

interleaved memory allocations in a round-robin fash-

ion between processors. Results are discussed in

Sect. 4.3.

• Column-wise memory optimization The latent factor

matrices are stored and accessed as a k � m contiguous

block of memory. Thus, this memory scheme is

optimized for column-wise updates where the k latent

feature of V;Z, and U are updated via T inner iterations

before moving on to the k þ 1 latent feature. Using this

scheme allows us to exploit memory locality while

avoiding caching ping-pong and other issues by utiliz-

ing memory assignments that carefully align with cache

lines.

We also note that the latent feature matrices V;Z, and U

are initialized to be uniformly distributed random matrices

where each entry is set by independently sampling a uni-

formly random variable. In contrast, the state-of-the-art

matrix factorization method CCDþþ initializes each entry

of V to be zero, whereas U is initialized using the standard

C?? random number generator. Other strategies such as

placing zero-mean spherical Gaussian priors on the latent

feature matrices were also investigated. Additionally, we

also investigated a variety of ranges such as ð0; 1ffiffi
d
p Þ for

independently sampling a uniformly random variable.

3.2.4 Remarks

Now we briefly discuss an approach for distributed archi-

tectures. We divide the rows of V;Z, and U as evenly as

possible across p workers. Thus each worker only stores

1 / p rows of each. Additionally, each worker stores only

the nonzero entries of the residual matrices that correspond3 https://www.threadingbuildingblocks.org/.

Soc. Netw. Anal. Min. (2016) 6:67 Page 13 of 30 67

123

https://www.threadingbuildingblocks.org/

to the partitioned rows assigned to the worker. Now for

communication, we only require each worker w 2
f1; . . .; pg to broadcast the rows of Vw

:k;Z
w
:k, and Uw

:k that

were updated locally such that each worker has the latest

V;Z, and U to update the residual matrices after the inner

iterations. Thus, we avoid broadcasting the residual

matrices. However, we send each rank-1 update to all

workers upon completion. Thus, for each inner iteration,

worker w must broadcast the latest Vw
:k to the other

workers before updating Uw
:k. However, observe that

unlike the prior work where a communication step must

be performed followed by a computation step (sequen-

tially), we can instead transfer the Vw
:k rows, thereby

keeping the network fully utilized while updating Zw
:k in

parallel and thus keeping the CPU busy as well. This is

in contrast to other strategies that utilize bulk synchro-

nization between updates and suffers from the fact that

when the CPU is busy, the network remains idle, and

vice versa. Notably this arises due to the dependencies of

the latent feature matrices. Similarly, we may transfer

Zw
:k utilizing the network while (partially) updating Uw

:k

by fixing Vw
:k. Finally, the partial updates of Uw

:k may be

transferred while finishing the updates to Uw
:k by fixing

Zw
:k. This ensures both the network and CPU are busy

simultaneously. Nevertheless, a worker w must wait until

all Uw
:k entries that are required to update their respective

row indices of Vw
:k and Zw

:k are received. However, once a

worker w receives the updates of Uw
:k required for even a

single row index of Vw
:k and Zw

:k, we may immediately

perform the update and continue in this manner. This fast

distributed parallelization scheme arises from the

dependencies between the latent feature matrices.

Clearly, additional matrices may give rise to other types

of dependencies which may lead to better parallelization

and/or further improvements. For the updates where both

the CPU and network are fully utilized, each machine

reserves a few workers for communication (sending the

updates), whereas the remaining workers compute the

rank-1 the updates in parallel.

The proposed distributed parallelization scheme ensures

both the CPU and network are fully utilized by exploiting

dependencies between the latent feature matrices. In

comparison, CCDþþ suffers from the fundamental prob-

lems with bulk synchronization since CCDþþ alternates

between communicating the rank-1 updates and computing

them. Therefore, the CPU and network are never used

simultaneously while also requiring both steps to be syn-

chronized, including computing the rank-1 update and

communicating it. More importantly, the synchronization

between the sequential steps forces all machines to wait for

the slowest machine to finish (i.e., ‘‘curse of the last

reduced’’ problem). Thus, majority of machines in CCDþþ

remain idle between the each of the synchronized com-

munication and computation steps.

Clearly, the PCMF-distributed parallelization scheme is

significantly superior in scalability since the drawbacks of

bulk synchronization are avoided as we the CPU and net-

work remain simultaneously busy while also providing

effective load balancing via an appropriate ordering strat-

egy (that evenly distributes the work). To further enhance

the scalability of our distributed scheme, we leverage

asynchronous dynamic load balancing. Using this approach

significantly improves scalability allowing us to scale up

our approach for use on 1000þ processors. Notably, we

avoid issues that arise from the naı̈ve ‘‘manager–worker’’

algorithm by eliminating the single manager as a bottle-

neck using a distributed work queue that is both asyn-

chronous and performs dynamic load balancing via work

stealing to ensure machines are always utilized and never

idle. In particular, we leverage a distributed shared queue

maintained across a number of servers in a hierarchical

fashion (all servers maintain a consistent view of the global

queue by communicating with one another directly,

whereas each worker maintaining the queue has a fixed

number of workers, and thus as the number of machines

increases, additional servers are allocated).

Asynchronous dynamic load balancing has two key

advantages: First, it is extremely scalable as the number of

servers forming the distributed shared queue may be

increased dynamically (as the number of workers increa-

ses) to handle the extra demand and thus avoids commu-

nication bottlenecks as the number of machines assigned to

a server are fixed. Second, it provides instantaneous load

balancing via work stealing to ensure all machines remain

busy. Intuitively, work is stolen from machines with

unbalanced workloads and assigned to machines with sig-

nificantly fewer jobs that are nearly complete and thus

would otherwise be idle. This strategy effectively balances

the load automatically. A number of asynchronous

dynamic load balancing libraries exist for this purpose. For

instance, one may use the MPI-based ADLB library (Lusk

et al. 2010) and adapt it for the distributed PCMF.

3.3 Complexity analysis

Let jXAj and jXBj denote the number of nonzeros in A and

B, respectively (e.g., the user-by-item matrix A and the

user-interaction matrix B). As previously mentioned, d is

the number of latent features in the factorization. The time

complexity of PCMF is O d jXAj þ jXBj
� �� �

time for a

single iteration and therefore linear in the number of

nonzeros in A and B. Note that in the case that A and B

represent user-item ratings and social network information,

then jXAj usually dominates jXBj as it is usually more

 67 Page 14 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

dense than the social network matrix B (i.e., in epinions

approx. 13M ratings compared to 607k trust/friendship

relations). Observe that each iteration that updates U;V,

and Z takes O dðjXAj þ jXBjÞ
� �

;OðjXAjdÞ, and OðjXBjdÞ
time, respectively. Hence, the total computational com-

plexity in one iteration is O dðjXAj þ jXBjÞ
� �

. Therefore,

the runtime of PCMF is linear with respect to the number

of nonzero elements in the collection of matrices given as

input. Clearly, this approach is efficient for large complex

heterogeneous networks.

3.4 A fast nonparametric model

Nonparametric parallel collective factorization methods

NPCMF that are data-driven and completely automatic

requiring no input from a user are clearly important for

many real-world scenarios. In this work, we develop a

nonparametric data-driven PCMF that discovers the best

model completely automatic without user intervention

while also being efficient and scalable for large graph data.

Furthermore, we also introduce an extremely fast relax-

ation of PCMF which can be used to quickly search over

the space of PCMF models. Despite the practical impor-

tance of automatically determining the best model from the

given data, investigations into such approaches are extre-

mely rare, even for the well-studied single matrix factor-

ization problem. Yet, the number of dimensions as well as

regularization parameters and other model parameters may

significantly impact accuracy and efficiency (as demon-

strated later in Sect. 4). In addition, these parameters are

application and data dependent and require significant

interaction by the user to tune them appropriately. Our goal

is to automatically find the best model parameters given an

arbitrary set of graphs and attributes. The other objective is

to develop a fast relaxation method to search over the space

of models. In other words, a data-driven nonparametric

PCMF is completely automatic with no user-defined

parameters while also extremely fast and efficient for big

graph data sets. These two requirements are critical for

real-time systems where (1) the data may be significantly

changing over time and thus require constant tuning by the

user or (2) simply inefficient and unable to handle the large

continuous streaming graph data.

To search over the space of models from PCMF, one

must first choose a model selection criterion. In this work,

we primarily used information criterion of Akaike (AIC)

(Akaike 1974), though other model selection criterion may

also be used in PCMF such as Minimum Description

Length (MDL) and many others. The AIC value is CAIC ¼
2x� 2lnðLÞ where x is the number of parameters in the

model, that is, x ¼ dðmþ nÞ, and L is the maximized

likelihood. Thus, for a given U 2 Rm�d and V 2 Rn�d

computed using PCMF with d-dimensions gives the

following:

lnðLÞ ¼ � 1

2r2
kA� UV>k2F ð29Þ

where r2 is the variance of the error. This criterion balances
the trade-off between goodness of fit and the complexity of

the model (or number of free parameters). Hence, the

goodness of fit of a model is penalized by the number of

estimated parameters and thus discourages overfitting. The

model selected is the one that minimizes the information

criterion. Since efficiency is of fundamental importance, we

avoid precomputing a set ofmodels for selection viaAIC and

instead use a greedy approach to effectively search over the

space of reasonable or likely models from the bottom-up.

Hence, we begin computing models using low parameter

estimates and gradually increase each parameter until we

discover a model that leads to a larger CAIC than found thus

far. At this point, one may terminate or continue searching

the next few models and terminate if a better model is not

found in those few attempts. However, if such a model is

found, then we reset the counter indicating the number of

failed trials in a row. This last step is to provide more cer-

tainty that a global optimum was reached. To avoid storing

all such models, we only need to store the best model found

thus far. Thus, the method is space-efficient as well. In

addition, we avoid computing kA� UV>k2F since we

directly use the residual matrix Ea from PCMF.

Searching over the space of models is expensive and in

certain settings may be impractical, even using the relatively

fast search technique above. For this reason, we develop a

fast relaxation variant of PCMF. Intuitively, the relaxation

method performs a few iterations to obtain a fast rough

approximation. The method reuses data structures and

leverages intermediate computations to improve efficiency

when searching the space of models. Furthermore, the

relaxationmethod serves as a basis for exploring the space of

models defined by the PCMF framework (from Sect. 3).

Most importantly, it is shown to be strikingly fast and scal-

able for large complex heterogeneous networks, yet effec-

tive, obtaining near-optimal estimates on the parameters.

Models are learned using the fast relaxation method, and

our model search technique is used to find the ‘‘best per-

forming model’’ from the infinite model space. We also

compared to a naı̈ve method that is essentially the vanilla

PCMF from Sect. 3 using the early termination strategies.

Overall, the fast relaxation method is typically 20? times

faster than the naı̈ve method, yet is only marginally more

accurate than our fast relaxation. For instance, using the

eachmovie data set from Table 1, we automatically found

a nearly optimal model in only 9.5 s compared to 258 s

using the naı̈ve approach. The fast nonparametric relax-

ation automatically identified a model with d ¼ 65,

Soc. Netw. Anal. Min. (2016) 6:67 Page 15 of 30 67

123

whereas the slower but more accurate approach found

d ¼ 75. Nevertheless, once the parameters were learned

automatically, we then used the corresponding models to

predict the unknown test instances and used RMSE to

measure the quality of the models. The difference was

insignificant as the fast relaxation had 1.108, whereas the

much slower approach gave 1.107; thus, the difference in

RMSE between the two is insignificant. In a few instances,

the model learned from the fast relaxation using AIC was

of better quality (lower testing error).

Let us note that in previous work the model is typically

selected arbitrarily and typically varies for each data set

(Yu et al. 2012). Instead, we perform model selection

automatically using AIC and perform a fast relaxation

method for computing a rough approximation. As previ-

ously mentioned, this data-driven nonparametric PCMF

arose from necessity as it is essential for many practical

situations and real-time systems (i.e., tuning by users is not

possible or expensive and efficiency is critical due to the

sheer size of the streaming graph data). Note that if

external attributes are available, then another approach is to

search the space of models and select the one that gives rise

to the best performance (i.e., accuracy or application-

specific metric). Finally, it is also straightforward to adapt

the information criterion above for an arbitrary number of

matrices and alternate objective functions.4

3.5 Collective graph sparsifiers

Many real-world graphs are often sparse with skewed degree

distributions. This implies that a small set of nodes give rise to

the vast majority of links (i.e., nonzeros in the matrix repre-

senting ratings). We have also observed through numerous

experiments that removing links (ratings, etc.) from high-de-

gree nodes does not significantly impact accuracy/quality of

the model, but in some instances may reduce the time for

learning quite significantly. On the other hand, removing

observations from nodes with only few observed values may

significantly impact our ability to predict that node’s prefer-

ences, etc. From the above observations, we propose a strik-

ingly effective hybrid graph sampling approach that has two

main steps. First, we add the set of nodes and their edges that

satisfy jNðuiÞj � d where jNðuiÞj is the number of neighbors/

edges of ui and d is a threshold. For each of the nodes not

included previously, we sample uniformly at random d edges
from each of the remaining nodes 1-hop local neighborhood.

Here we set d ¼

1=m

Pm
i¼1 jXA

i j
�
. However, unlike the

previous node sampling where all edges are included, we

instead bias the sampling toward low-degree vertices (i.e.,

those with few ratings or friendships in social networks).

Intuitively, if a node with large degree is sampled, then a

fraction of its edges are sampled uniformly at random,5

otherwise all edges are sampled. This sampling method may

Table 1 Data description and statistics

Graph

data sets

(semantics)

Node and edge types

m n jXj max max �dout �din Weight

range

lout lin q jXtestj
dout din

Amazon users-rate-items 2.1M 1.2M 4.7M 9.8k 2.5k 2.18 3.79 1–5 3.57 3.77 10�6 1.2M

Dating users-rate-users 135k 169k 16M 24k 32k 121.83 97.7 1–10 5.93 6.03 \0.01 868k

Eachmovie users-rate-movies 1.6k 74k 2.2M 26k 1.2k 1.4k 30.22 1–6 3.99 3.45 0.02 562k

Epinions users-rate-items 120k 756k 13M 159k 1.2k 111.18 17.73 1–5 4.64 4.31 \0.01 137k

users-trust-users 120k 120k 607k 1.8k 3.2k 5.03 5.03 1 0.47 0.35 10�5

Flickr users-friend-users 1.9M 1.9M 18M 21k 13k 9.72 9.72 1 0.68 0.8 10�6

users-join-group 1.7M 104k 8.5M 2.2k 35k 4.94 82.45 1 0.23 1 10�5 4.5M

Lastfm users-listento-songs 992 1.1M 15M 146k 14k 15k 14.13 1 1 0.93 0.01

users-listento-band 992 174k 19M 183k 115k 19k 110.01 1 1 1 0.11 3.8M

Livejournal users-friend-users 5.2M 5.2M 39M 12k 928 7.56 7.56 1 0.55 0.95 10�6

users-join-groups 3.2M 7.5M 112M 300 1.1M 35.08 15 1 1 1 10�6 9.8M

Movielens10M users-rate-movies 72k 65k 9.3M 7.3k 29k 129.97 142.8 0.5–5 3.42 0.52 \0.01 699k

Stackoverflow users-favorite-posts 545k 97k 1.0M 4.0k 4.9k 1.91 10.78 1 0.86 0.92 10�5 260k

Yelp users-rate-businesses 230k 12k 225k 575 824 0.98 19.53 1–5 0.73 3.66 10�5 4.6k

YouTube users-friend-users 1.2M 1.2M 4.0M 23k 20k 3.42 3.42 1 0.46 0.86 10�6

users-join-groups 664k 30k 293k 1.0k 7.6k 0.44 9.75 1 0.14 1 10�5 989k

4 The likelihood expression assumes noise in the data is Gaussian.

5 Edges were also sampled inversely proportional to the degree of

each neighborhood node.

 67 Page 16 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

be repeated for each additional matrix or alternatively

weighted by the previously sampled nodes and edges of

multiple types.

Learning time is significantly reduced using hybrid

graph sampling while maintaining the quality of the solu-

tions. Furthermore the hybrid graph sampling also

improves load balancing as the resulting degree distribu-

tion is far less skewed than the original. Additionally, this

strategy forces many nodes to have approximately the same

edges and thus the individual jobs take about the same time

to compute. Finally, this approach may be directly lever-

aged for ensemble learning as well as our nonparametric

data-driven approach discussed in Sect. 3.4.

3.6 Further optimization details and improvements

3.6.1 Adaptive coordinate updates

There are a number of interesting PCMF variants based on

the strategy used to select the next coordinate to update.

One of the proposed adaptive variants selects the coordi-

nate that gave rise to the largest decrease in error in the

previous iteration. Thus, the coordinate with the largest

decrease in error is chosen to update first, and so on.

Consider solving the following one-variable subproblem:

uHi min
ui

JðuiÞ ¼
X

j2Xi

A
ðkÞ
ij � uivj

� �2
þku2i

where ui is updated to the optimal uHi . Thus, this leads to

the following decrease in the objective function:

JðuiÞ � JðuHi Þ ¼ ðuHi � uiÞ2
�
kþ

X

j2Xi

v2j

�

Therefore, we select the ith variable with largest decrease:

iH ¼ argmaxi JðuiÞ � JðuHi Þ; 81� i�m

We also proposed more efficient variants that use graph

parameters to determine an effective update ordering such

as vertex degrees, k-core numbers, triangle counts, trian-

gle-core numbers, and number of colors used to color a

vertex neighborhood. These update orderings only need to

be computed once and most are straightforward to paral-

lelize. Furthermore, we also proposed techniques to effi-

ciently compute the top-k variables with largest error and

perform a few additional updates on this set of variables.

3.6.2 Early stopping criterion

Given as input is a small positive ratio � (usually � ¼ 10�3),
then we terminate an inner iteration early: For each outer

iteration s, we have the maximum function reduction Dmax

given by the past iterations (for s). If the current inner

iteration reduces the localized objective function to be less

than �Dmax, then we terminate the inner iterations early and

update the residuals. For this, we need to sum up all the

function value reductions from the single variable updates:

X

i

uHi � ui
� �2� kþ

X

j2XA
i

vj

0

@

1

A

This value represents the total objective function reduction

from all i and represents a complete update of u for a single

iteration.

4 Experimental results

The experiments are designed to answer the following

questions:

• Parallel Scaling Does PCMF and its variants scale well

for large data and how does it scale for different types

of data?

• Effectiveness Is PCMF useful for a variety of data and

applications? How does it compare to recent state-of-

the-art coordinate descent approaches? Does incorpo-

rating additional information (e.g., social, group,

attributes) improve the quality of the learned model

compared to using only a single data source such as the

user-item ratings matrix?

• Generality Is PCMF effective for a variety of hetero-

geneous data sources and prediction tasks?

To demonstrate the generality of our approach, we apply

PCMF for a number of predictive tasks and data sets.

4.1 Data and experimental setup

4.1.1 Platform

For our experiments, we use a 2-processor Intel Xeon

X5680 3.33 GHz CPU. Each processor has 6 cores (12

hardware threads) with 12MB of L3 cache. Finally, each

core has 2 threads and 256KB of L2 cache. The server also

has 96GB of memory in a NUMA architecture. The PCMF

framework was implemented entirely in C??, and we also

deployed it in our fast high-performance RECommenda-

tion PACKage called RECPACK. Note that the case where

we have only a single matrix to factorize is a special case

of PCMF which we denote as PCMF-BASIC.

4.1.2 Data

For evaluation, we used a variety of data types with dif-

ferent characteristics. The collection of data used in the

evaluation is summarized in Table 1. Whenever possible,

Soc. Netw. Anal. Min. (2016) 6:67 Page 17 of 30 67

123

we used cross-validation with the original training/test

splits for reproducibility. For the others, test sets were

generated by randomly splitting the instances repeatedly.

Test sets consisted of f1%; 20%; 50%; 80%g of the

instances. Many results were removed due to brevity, but

are consistent with the reported findings. Unless otherwise

specified, we used only the bipartite graph, social network,

or other additional data if it exists (see Table 1). To eval-

uate PCMF, we focused primarily on the large Epinions

data (Massa and Avesani 2007) as it has both user-product

ratings (1–5 rating) and a user–user social network. These

data have also been extensively investigated and are sig-

nificantly different than the traditional single matrix

problems used in recommendation. Note that some

results/plots were removed for brevity as well as other data

sets. Let us also note that some plots compare only PCMF-

BASIC due to data containing only a single graph (see -

Table 1). The data used in our experiments are accessible

online at Network Repository6 (NR) (Rossi and Ahmed

2016).

4.1.3 Evaluation metrics and comparison

For evaluation, we hold out a set of observations for test-

ing, then learn a model with the remaining data, and use it

to predict the held-out known observations. Let Xtest denote

the instances in the test set (e.g., ratings held out in the

learning phase). Given a user i and item j from the test set

ði; jÞ 2 Xtest, we predict the rating for the (i, j) th entry in A

as ui; vj
�

where �; �h i is the inner Euclidean product of the

user and item vectors, respectively. To measure the pre-

diction quality (error) of PCMF and its variants against

other approaches, we use root-mean-squared error (RMSE)

(Yang et al. 2011, 2013; Tang et al. 2013). It is simply,
ffi
P
ði;jÞ2Xtest Aij � ui; vj

�
� �2

Xtestj j

vuut ð30Þ

The mean absolute error (MAE) is also preferred in some

instances. It is defined as:

1

Xtestj j
X

ði;jÞ2Xtest

abs Aij � ui; vj
�
� �

ð31Þ

where absð�Þ is used for absolute value to avoid ambiguity

with set cardinality Xtestj j and abs Aij � ui; vj
�
� �

denotes

the absolute value of the difference. Results for Normalized

RMSE are reported in a few instances. This metric is

normalized using the min and max values predicted by the

model and is defined as:

RMSE ðEq:30Þ
max
ði;jÞ2Xtest

ui; vj
�

� min
ði;jÞ2Xtest

ui; vj
�
 ð32Þ

where the error is bounded between 0 and 1 (i.e., a NRMSE

of 0 indicates perfection) and can be easily interpreted.

Additional evaluation metrics such as Symmetric MAPE

(SMAPE) were also used; however, results were removed

due to brevity. We also report time in seconds for training.

We set kv ¼ ku ¼ 0:1 and Touter ¼ T inner ¼ 5, unless

otherwise noted. For comparison, we used the exact code

from Yu et al. (2012).

4.2 Parallel scaling

This section investigates the speed and scalability of PCMF

for single factorization and collective factorization.

Speedup (and efficiency) is used to evaluate the effec-

tiveness of a parallel algorithm since it measures the

reduction in time when more than a single worker is used.

We vary the number of workers and measure the running

time of each method. Speedup is simply Sp ¼ T1
Tp

where T1

is the execution time of the sequential algorithm, and Tp is

the execution time of the parallel algorithm with p workers

(cores). Further, let efficiency be defined as Ep ¼ T1
pTp

where

p is the number of workers. Note that the machine has a

total of 12 cores and thus each worker typically represents

a unique core. However, we also investigate using up to 24

threads with the use of hyper-threading (and its potential

advantages).

4.2.1 Speedup and efficiency

How does PCMF and PCMF-BASIC (single matrix) scale

compared to other coordinate descent methods? To answer

this question, we systematically compare the speedup of

PCMF, PCMF-BASIC, and CCDþþ7 on the epinions

data. In particular, models are learned using different

amounts of training data and for each we also vary the

number of latent dimensions. As shown in Fig. 4, both

PCMF and PCMF-BASIC are found to significantly out-

perform CCDþþ across all models learned using different

amounts of training data and dimensions. This finding is

also consistent using various other parameter settings as

well. See Sect. 4.2.3 for a detailed discussion into the

factors that contribute to the significant improvement. We

also find that PCMF-BASIC scales slightly better than

PCMF, though this is expected since PCMF factorizes

significantly more data and thus more likely to have

6 http://networkrepository.com.

7 A recently proposed parallel coordinate descent method for

recommendation.

 67 Page 18 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

http://networkrepository.com

performance issues due to caching or other effects. Similar

results are found for other data sets, see Fig. 6.

To further understand the effectiveness of the strategies

leveraged by PCMF such as the asynchronous updates and

appropriate ordering of updates, a simple PCMF variant

that factorizes only a single matrix is evaluated. While

PCMF collectively factorizes an arbitrary number of

matrices, we can nevertheless investigate the special case

of PCMF that factorizes a single matrix. Figure 5 evaluates

the scalability of our approach on the MovieLens where we

vary the number of latent factors learned. For each model,

we measure the time in seconds versus number of pro-

cessing units, speedup, and efficiency. Just as before,

PCMF-BASIC outperforms the others in all cases. Notably,

we find the single matrix variant of PCMF outperforms

CCDþþ (and consequently the other optimization schemes

using ALS, SGD, etc. as shown in Yu et al. (2012)). This

indicates the effectiveness of our approach that uses

asynchronous updates, ordering, and other strategies that

help avoid the locking problem.

Figure 7 compares the efficiency of the methods across

a variety of data sets that have significantly different

characteristics. Just as before, we find the PCMF variants

outperform the other method. In particular, the individual

processing units of the PCMF variants are shown to be

more effectively utilized in parallel. A few of the inter-

esting speedup results are also shown in Fig. 8.

We have also used many other benchmark data sets in

our comparison and in all cases found that PCMF con-

verged faster to the desired error. For instance, in the dating

agency data (users-rate-users) it took us 95 s compared to

138 given by the best state-of-the-art method, whereas for

yelp (users-rate-businesses) it took us 2 s compared to 5,

and similar times were observed for each movie (users-

rate-movies). We also experimented with numerous other

variants with different update strategies. Regardless of the

variant and parameters, the best scalability arises from

using one of the PCMF variants. We also compare the

methods using performance profiles across a number of

data sets. Performance profile plots allow us compare

algorithms on a range of problems (Dolan and Moré 2002).

One example is shown in Fig. 9. Just like ROC curves, the

best results lie toward the upper left. Suppose there are N

problems and an algorithm solvesM of them within x times

CCD++
PCMF−Basic
PCMF

1 2 4 8 12 16 20 24
1

2

3

4

5

6

Processing units

S
pe

ed
up

(a)

CCD++
PCMF−Basic
PCMF

1 2 4 8 12 16 20 24
1

2

3

4

5

6

Processing units

S
pe

ed
up

(b)

1 2 4 8 12 16 20 24
1

2

3

4

5

6

7

Processing units

S
pe

ed
up

(c)

1 2 4 8 12 16 20 24
1

2

3

4

5

6

7

Processing units

S
pe

ed
up

(d)

1 2 4 8 12 16 20 24
1

2

3

4

5

6

7

Processing units

S
pe

ed
up

(e)

1 2 4 8 12 16 20 24
1

2

3

4

5

6

7

Processing units

S
pe

ed
up

(f)

Fig. 4 Varying amount of training data and dimensionality of

models. The above plots demonstrate the scalability of PCMF and

PCMF-BASIC on the epinions benchmark data set. Similar results

arise for d ¼ f10; 20; 40g. d ¼ 5; 99% (a), d ¼ 50; 99% (b), d ¼
500; 99% (c), d ¼ 5; 20% (d), d ¼ 50; 20% (e), d ¼ 500; 20% (f)

Soc. Netw. Anal. Min. (2016) 6:67 Page 19 of 30 67

123

the speed of the best, then we have the point ðs; pÞ ¼
ðlog2 x;M=NÞ where the horizontal axes reflect a speed

difference factor of 2s.

4.2.2 Hyper-threading

For each processor core (physically present), hyper-

threading addresses two logical cores and shares the

workload between them whenever possible. Performance

increases of up to 30 % have been observed, though per-

formance improvement is highly dependent on the appli-

cation and may vary depending on the nature of the

computation as well as access patterns. Thus, an ideal

speedup is about 15.6 on a 12-core system. However, in

some cases overall performance may decrease with the use

of hyper-threading.

To evaluate the utility of hyper-threading, methods are

compared when the number of processing units is greater

than the number of cores. In our case, this corresponds to

the case where the number of processing units is greater

than 12. As the number of processing units is increased

from 12 to 24 shown in Fig. 4, hyper-threading consistently

improves performance for both PCMF and PCMF-BASIC,

whereas the performance of CCDþþ is found to decrease

with additional processing units via hyper-threading.

Similar results are found for other data and parameter

settings, see Figs. 5, 6, and 8 among others. Hyper-

threading typically decreases the runtime of the PCMF

variants, and thus in most cases, there is an advantage.

However, PCMF-BASIC and other methods result in

longer runtimes due to synchronization issues and the fact

that updates are not computed in-place as done by PCMF

and thus require additional storage.

4.2.3 Discussion

Furthermore, many factors contribute to the significant

improvement in scalability observed using the PCMF

framework and its variants. First, the dynamic load bal-

ancing of CCDþþ may lead to large wait times and is

largely due to the fact that jobs are dynamically assigned

for each rank-1 update and workers must wait until each

update is entirely completed. Since the jobs assigned to

each processor are defined at the level of individual updates

and each update is likely to require a different number of

computations, then it is straightforward to see that the jobs

assigned to the workers in CCDþþ are fundamentally

uneven. As a result, CCDþþ may have a number of

workers idle between the rank-1 updates. Instead PCMF

performs updates asynchronously and therefore does not

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
0

2

4

6

8

10

12

14

Processing units

T
im

e
(s

ec
.)

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
0

5

10

15

20

Processing units

T
im

e
(s

ec
.)

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
0

5

10

15

20

25

30

35

Processing units

T
im

e
(s

ec
.)

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
1

2

3

4

5

Processing units

S
pe

ed
up

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
1

2

3

4

5

Processing units

S
pe

ed
up

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
1

2

3

4

5

Processing units

S
pe

ed
up

Fig. 5 Scalability. We use the MovieLens 10M data and vary the

number of latent factors. For each model we measure the time in

seconds, speedup, and efficiency. From these results, we compare

PCMF-BASIC (i.e., PCMF using only single data source) compared

to CCDþþ. In all cases, PCMF-BASIC outperforms CCDþþ. This is

due to the asynchronous nature of PCMF and its variants whereas

CCDþþ has a variety of locking and synchronization problems and

thus more likely to result in significant slowdowns due to the fact that

all workers must wait for the slowest worker to finish between each

inner iteration

 67 Page 20 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

suffer from the CCDþþ problems (e.g., frequent synchro-

nization). We also note that CCDþþ does not perform the

updates in any special order. However, we observed that

significant speedups may arise by ordering the updates

appropriately. In particular, the updates may be ordered by

degree or by the residual difference, among others. Fur-

thermore, the scalability of CCDþþ is fundamentally

dependent on the chunk-size used in their implementation.

4.3 Memory and thread layout

In addition, we also have optimized PCMF for NUMA

architecture (Yasui et al. 2013). Since the local memory

of a processor can be accessed faster than other memory

accesses, we explored two main memory layouts

including bounded where memory allocated to the local

processor (socket) and interleaving memory allocations in

a round-robin fashion between processors. Overall, we

found the layout of memory to processors had a large

effect on scalability and in particular, the best scalability

arises from interleaved memory (due to caching benefits).

Note that we also experimented with thread layout and

found no significant difference. Speedups were computed

relative to the fastest run with a single thread, which

always occurred using memory bound to a single pro-

cessor. A representative sample of the results across a

variety of data sets using different number of latent

dimensions is provided. Speedup of the various memory

and thread layout combinations are shown in Fig. 10.

Interleaved memory typically outperforms the bounded

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
1

2

3

4

5

Processing units

S
pe

ed
up

(a)

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
1

2

3

4

5

6

Processing units

S
pe

ed
up

(b)

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24

2

4

6

8

Processing units

S
pe

ed
up

(c)

CCD++
PCMF−Basic
PCMF

1 2 4 8 12 16 20 24
1

2

3

4

5

6

7

8

Processing units

S
pe

ed
up

(d)

Fig. 6 Comparing speedup across different types of data and

characteristics. Models are learned from each data source using d ¼
40 for comparison across the various data sources. See Table 1 for

data set statistics. d ¼ 40 (Yelp) (a), d ¼ 40 (Stackoverflow) (b),
d ¼ 40 (Amazon) (c), d ¼ 40 (Flickr) (d)

Soc. Netw. Anal. Min. (2016) 6:67 Page 21 of 30 67

123

memory layout, regardless of the thread layout strategy

used. Additionally, this finding is consistent across the

various data sets and dimensionality settings. Therefore,

PCMF leverages the interleaved memory layout, unless

specified otherwise.

4.4 Predictive quality

How effective is the proposed parallel collective factor-

ization approach compared to the current state-of-the-art

coordinate descent method? Recall the hypothesis was

CCD++
PCMF−Basic
PCMF

1 2 4 8 12 16 20 24
1

2

3

4

5

6

7

8

Processing units

S
pe

ed
up

(a)

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
1

2

3

4

5

6

Processing units

S
pe

ed
up

(b)

1 2 4 8 12 16 20 24
1

2

3

4

5

Processing units

S
pe

ed
up

(c)

Fig. 8 Comparing the methods using speedup. Models are learned using d ¼ 100. d ¼ 100 (YouTube) (a), d ¼ 100 (Dating) (b), d ¼ 100

(LastFM) (c)

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Processing units

E
ffi

ci
en

cy
CCD++
PCMF−Basic
PCMF

1 2 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Processing units

E
ffi

ci
en

cy

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Processing units

E
ffi

ci
en

cy

CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Processing units

E
ffi

ci
en

cy

CCD++
PCMF−Basic
PCMF

1 2 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Processing units

E
ffi

ci
en

cy
CCD++
PCMF−Basic

1 2 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Processing units

E
ffi

ci
en

cy

(a) (b) (c)

(d) (e) (f)

Fig. 7 Comparing efficiency of various methods across a variety of

different types of data. For each data set, we learn a model with

d ¼ 100 dimensions and measure efficiency. The efficiency measure

captures the fraction of time a processing unit is used in a useful

manner. As mentioned previously, it is defined as the ratio of speedup

to the number of processing units and thus in an ideal system where

speedup of p processing units is p also has an efficiency of one.

Though in practice, efficiency is between 0 and 1 depending on the

effectiveness of each processing unit and how well they are utilized.

a Efficiency (Dating), b Efficiency (LastFM), c Efficiency (EachMo-

vie), d Efficiency (StackOverflow), e Efficiency (YouTube), f Effi-
ciency (Yelp)

 67 Page 22 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

that incorporating an arbitrary number of potentially

heterogeneous networks represented as matrices will

improve the quality of the learned model. Therefore, we

first use PCMF to jointly factorize the target matrix used

for prediction as well as any number of additional data

(e.g., social network, group memberships, user-item

matrix). Using the learned model from PCMF, we mea-

sure the prediction quality using an evaluation criterion

(e.g., RMSE, NRMSE) that quantifies the quality of the

model for prediction of the held-out set of observations

from the target matrix (not used in learning). The pre-

diction quality of PCMF is compared to the state-of-the-

art parallel approach (CCDþþ) that uses only the target

matrix. Results are summarized in Fig. 11 for a variety of

different data sets. This experiment uses NRMSE since

the error is bounded between 0 and 1 and allows us to

easily compare the relative error of the models across

different data sets. In all cases, we find that PCMF out-

performs the baseline as expected. Intuitively, this indi-

cates that modeling the additional matrix collectively is

useful and includes useful information that is leveraged in

PCMF. The lowest NRMSE is found for epinions,

whereas the largest difference in NRMSE is from the

YouTube and Flickr data sets. Most importantly, both

Flickr and YouTube are also the most similar as they both

contain social information as well as group membership

information. Similar results are found when a and k vary

as shown later in Sect. 4.5. Overall, we find that PCMF

improves the accuracy of predictions (e.g., recommenda-

tions) and the improvement is statistically significant. We

also compare the single matrix variant of PCMF called

PCMF-BASIC and find essentially very similar results. To

understand the accuracy gain with PCMF, we also eval-

uated variations of PCMF that performed the rank-1

updates in a different order, used different regularization,

and a variant that updated entries in a biased manner

(top-k entries with largest error). Similar results were

observed in majority of cases (plots removed for brevity).

Figure 12 compares the PCMF and PCMF-BASIC

variants that arise from specifying the various combina-

tions of inner and outer iterations. For this experiment,

MAE is used to quantify the quality of the learned models.

The PCMF model with the best quality is found when 2

inner and 5 outer iterations are used. In contrast, the best

PCMF-BASIC model arises from 2 inner and 3 outer

iterations. For both PCMF and PCMF-BASIC, the fastest

variants arise when a single outer iteration is used,

regardless of the inner iterations. Thus, the runtime

depends more strongly on the number of outer iterations

than the inner iterations as each outer iteration requires

updating the residual matrices.

4.5 Impact of a

PCMF seamlessly allows for additional information to be

used in the factorization. In these experiments, we vary the

a parameter in the collective factorization framework and

measure the effects. The a parameter controls the amount

of influence given to the interaction matrix in the model. In

particular, if a ¼ 0, then the additional information (e.g.,

social interactions) is ignored and only the initial target

matrix of interest is used in the factorization (e.g., the user-

item matrix). Conversely, if a ¼ 1 (or becomes large

enough), then only the social interactions are used (as these

dominate). Figure 13 evaluates the impact of a used in our

PCMF and includes PCMF-BASIC along with CCDþþ as a

baseline. We find that a significantly impacts performance.

This indicates that incorporating additional information

(e.g., social network) improves performance over what is

obtainable using only the user-item matrix. In particular,

the prediction accuracy increases as a increases, but then

begins to decrease as a becomes too large. Hence, the

optimal accuracy is achieved when all data sources are

used in the factorization.

To understand the impact of a when k changes and vice

versa, we learn models for a 2 f0; 0:1; 0:5; 1; 5; 100g and

k 2 f0; 0:1; 0:5; 1; 5; 100g and use RMSE to evaluate the

quality of the model learned from each combination. Fig-

ure 14 searches over the parameter space defined by a and

k. Models learned using a ¼ 0 indicate the additional

information is essentially not used and similarly for k ¼ 0.

For this particular data set, the best model as quantified by

RMSE is found when a ¼ 1 with k ¼ 0:1. Nevertheless,

other types of data sets give rise to different optimal

parameter settings, though in general we find similar

behavior when using extremely small or large parameter

settings.

CCD++
PCMF−Basic

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

P
(r

 ≤
τ)

τ

Fig. 9 Performance profile comparing methods on a number of

problem instances

Soc. Netw. Anal. Min. (2016) 6:67 Page 23 of 30 67

123

4.6 Impact of the latent dimension

For this experiment, we investigate the impact on accuracy

and scalability of PCMF when learning models with dif-

ferent dimensions. Using a smaller number of dimensions d

leads to faster convergence as updates are linear to d as

noted in Sect. 3. Alternatively, as the dimensionality

parameter d increases, the model parameter space expands

capturing weaker signals in the data at the risk of overfit-

ting. The scalability of both PCMF and PCMF-BASIC does

not significantly change as we vary the number of latent

dimensions learned. One example of this behavior is shown

in Fig. 4 for d 2 f5; 50; 500g and for each of the different

amounts of training data available for learning. Similar

results are found for other parameter settings as well.

Another example is shown in Fig. 5. In most cases,

models learned using a relatively small number of

dimensions are likely to be more useful in practice. Since

learning models with additional dimensions are unlikely

to significantly increase quality, whereas increasing the

number of latent factors increases the storage require-

ments as well as the time taken for learning and prediction

(at a constant rate as d increases). Furthermore, models

with a large number of dimensions also impact the ability

to make predictions in real-time. Thus, the additional

quality gained using a significantly larger number of

dimensions are likely not worth the additional cost in

terms of time and space.

4.7 Serving predictions in real-time streams

We also developed fast and effective methods for serving

recommendations in a streaming fashion (Aggarwal 2007;

Aggarwal et al. 2003; Ahmed et al. 2013; Fairbanks et al.

2013). In this section, we investigate PCMF-based methods

in a streaming setting where user requests are unbounded

and continuously arriving over time. However, the rate of

requests may be fluctuating over time with temporal pat-

terns such as bursts, periodicity, and seasonality at different

compact and interleave
compact and membind
scatter and interleave
scatter and membind

0 1 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

Processing Units

S
pe

ed
up

compact and interleave
compact and membind
scatter and interleave
scatter and membind

0 1 2 4 6 8 10 12
0

1

2

3

4

5

Processing Units

S
pe

ed
up

compact and interleave
compact and membind
scatter and interleave
scatter and membind

0 1 2 4 6 8 10 12
0

1

2

3

4

Processing Units

S
pe

ed
up

compact and interleave
compact and membind
scatter and interleave
scatter and membind

0 1 2 4 6 8 10 12
0

1

2

3

4

5

Processing Units

S
pe

ed
up

compact and interleave
compact and membind
scatter and interleave
scatter and membind

0 1 2 4 6 8 10 12
0

1

2

3

4

5

6

Processing Units

S
pe

ed
up

compact and interleave
compact and membind
scatter and interleave
scatter and membind

0 1 2 4 6 8 10 12
0

1

2

3

4

Processing Units

S
pe

ed
up

(a) (b) (c)

(d) (e) (f)

Fig. 10 Comparing the speedup of different memory and thread

layouts. Speedup of PCMF and its variants for the four methods that

utilize different memory and thread layouts. For the above experi-

ments, we set k ¼ 0:1 and a ¼ 0:1. We use various data sets and use

different number of latent dimensions for representativeness. Others

were removed for brevity. a LastFM (d ¼ 40), b StackOverflow

(d ¼ 100), c Yelp (d ¼ 200), d YouTube (d ¼ 40), e Amazon

(d ¼ 100), d EachMovie (d ¼ 200)

CCD++
PCMF

epinions flickr lastfm youtube
0

0.1

0.2

0.3

0.4

0.5

N
R

M
S

E

Fig. 11 Comparing quality of the models learned

 67 Page 24 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

time scales. The problem we focus on is as follows: Given

a continuous stream S ¼ fS1; . . .;Sk;Skþ1; . . .g of user

requests, the objective is to predict a set of personalized

recommendations for each active user in the system (i.e.,

begins browsing a retail site such as Amazon or eBay). The

stream of requests is generated synthetically using resam-

pling to select users uniformly at random. Resampling

sequentially induces an implicit ordering on the requests

which is a fundamental requirement of streams. In the

experiments, users are assumed to be arriving faster than

can be served, allowing for a more principled evaluation.

Moreover, this also allows us to compare the parallel

properties of the methods without worrying about the

stream rate. As an aside, the streaming methods are also

tunable,8 e.g., as d decreases, the number of requests per

second increases at the expense of accuracy.

The first method called PCMF-naı̈ve uses PCMF to

compute weights for each item using V and keeps track of

the top-k items with the largest likelihood. As a baseline for

comparison, we use the basic PCMF to compute weights

for each item using V and keep track of the top-k items

with the largest likelihood. The computational cost for a

single user is OðndÞ (worst case) since we must compute

uiV
> where ui 2 Rd and V> 2 Rd�n and therefore depen-

dent on the number of items n and latent dimensions

d. Note items already purchased by a user are ignored.

The key intuition of the second method PCMF-NN is to

leverage the users set of purchased items to limit the

computations necessary while improving accuracy by

examining a smaller refined set of items (finds a better

candidate set). Given the next active user i from the stream

S and the set of items purchased by that user denoted

P NðiÞ, we compute the set of users NðPÞ who also

purchased the items in P. For each of the users in NðPÞ, we
find the purchased items that were not purchased previ-

ously by user i (i.e., not in P) and use this set of items for

(a) (b)

(c) (d)

Fig. 12 Comparing the

effectiveness of inner and outer

iterations. Maximum absolute

error is used to evaluate the

space of models learned when

varying the outer and inner

iterations. We also measure the

runtime for each of the learned

models. This demonstrates the

effectiveness of relaxation

methods that require only a few

iterations while being

sufficiently accurate. Note

results above are from the

epinions data using

d ¼ 20; a ¼ 1, and k ¼ 0:1.
a PCMF MAE, b PCMF time,

c PCMF-BASIC MAE,

d PCMF-BASIC time

CCD++
PCMF−Basic
PCMF

0 2 4 6 8 10
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

R
M

S
E

Fig. 13 Varying a (epinions 20 % with d ¼ 10)

Fig. 14 Exploring the impact of the parameter space on the

predictive quality of the models

8 Speed may be fundamentally more important than accuracy.

Soc. Netw. Anal. Min. (2016) 6:67 Page 25 of 30 67

123

prediction in V (similar to previous). Many variants of the

above can also be exploited without increasing computa-

tional costs. For instance, instead of treating the items

uniformly, we also have a variant that weights them based

on the frequency a user in NðPÞ purchased it. This weight

can then be used to bias the scores computed from V. Note

that if a user has no items, we default to computing a score

for each item (i.e., PCMF-naı̈ve).

Alternatively, we may use the social network informa-

tion to restrict the items to score. For instance, given a user

i, compute scores using only the items purchased by friends

(social neighbors in B).9 This approach is called PCMF-

SOCIAL. Notice PCMF-SOCIAL obtains the set of users

directly, avoiding the initial BFS step in PCMF-NN and

therefore significantly more efficient (assuming similar

number of users/friends). Hybrid approaches that use ideas

from PCMF-NN and PCMF-SOCIAL are straightforward

extensions.

Now we analyze these methods in a practical setting on

a number of data sets. For this purpose, we measure the

number of requests each method is capable of processing

per second. Intuitively, methods for prediction in real-time

settings need to be fast and capable of handling hundreds

and thousands of users on the fly with minimum wait time.

Let us note that these requirements are often more impor-

tant than accuracy (to an extent), especially since PCMF is

significantly more accurate than other approaches. In

Table 2, we analyze the requests served per second for the

proposed methods across three different sets of data. Using

the friends in the social network allowed us to process

more requests per second. Two factors contribute to this

improvement. First, PCMF-SOCIAL resulted in a smaller

more refined set of products to score, and secondly similar

users are given directly, whereas PCMF-NN must compute

this set using the purchased items (i.e., an additional BFS

step). Other optimization’s such as caching, precomputing

the dense user–user graph from A, among others may lead

to further improvements. Additionally, PCMF-SOCIAL

directly leverages the notion of homophily (La Fond and

Neville 2010; Rossi et al. 2012; Bilgic et al. 2010) and

therefore more relevant items are likely to be ranked

higher.

We also experimented with the dimensionality param-

eter and found PCMF-naı̈ve to be impacted the most as d

increases, whereas PCMF-NN had less of an impact since

finding the smaller set of items is independent of d. For

instance, PCMF-naı̈ve in Table 2 processes a significantly

larger number of requests per second than PCMF-NN for

MovieLens with d ¼ 40, whereas using a larger number of

dimensions (e.g., d ¼ 200 for Yelp) brings the number of

requests processed for the two methods much closer. Fur-

ther, PCMF-SOCIAL is even more resilient since the set of

items from friends in the social network were often much

smaller than the set found in PCMF-NN. All methods scale

extremely well as we increase the number of workers

(processors and cores). This arises since requests are

independent, yet the computations to handle a request may

also be parallelized if necessary.

We have also explored various other models. In partic-

ular, how can we utilize the additional contextual/side

information (such as the social network) for predicting the

Table 2 Evaluation of

streaming prediction methods
Data Requests served per second

PCMF-naı̈ve PCMF-NN PCMF-SOC n d

Epinions 1482 122 5468 755k 5

MovieLens 3783 398 N/A 65k 40

Yelp 4505 3347 N/A 11k 200

NRMSE
MAE
MAPE
SMAPE

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

k
In

te
rs

ec
tio

n
S

im
ila

rit
y

Fig. 15 Intersection similarity of rankings derived from PCMF for

each of the evaluation metrics (compared to RMSE). Epinions is used

in the above plot with PCMF. Given two vectors x and y, the

intersection similarity metric at k is the average symmetric difference

over the top-j sets for each j� k. If X k and Yk are the top-k sets for x

and y, then isimkðx; yÞ ¼ 1
k

Pk
j¼1
jX jDYj j

2j
where D is the symmetric set-

difference operation. Identical vectors have an intersection similarity

of 0. All values were first normalized between 0 and 1

9 Undirected social networks give rise to variants based on in/

out/total degree.

 67 Page 26 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

unknown test instances (e.g., movie and item ratings)?

Recall the proposed framework uses the additional infor-

mation for learning where the latent factor matrices are

allowed to influence one another based on the dependen-

cies. Using the intuition that users and their social networks

should have similar ratings (more so then a user chosen

uniformly at random), we estimate the missing/unknown

instances in the test set as,

A0 ¼ Iþ bBð ÞUV>

where A0 is the reconstructed matrix, b[0 is a parameter

that controls the influence from B, and
X

ði;jÞXB

Biju
>
i vj

is the weighted sum of predicted ratings for item j from the

ith users social network.

4.8 Additional applications

Additional applications of PCMF are summarized below.

4.8.1 Heterogeneous link prediction via collective

factorization

The PCMF framework is also effective for predicting the

existence of links in large-scale heterogeneous social net-

works. Existing work in social network link prediction has

largely used only the past friendship graphs (Liben-Nowell

Fig. 16 Discovering edge roles.

Edges are colored by the role

with largest membership. We

visualize the diseasome

biological network. Node color

indicates the class label

(disease/gene)

Soc. Netw. Anal. Min. (2016) 6:67 Page 27 of 30 67

123

and Kleinberg 2007), whereas this work leverages PCMF

to jointly model heterogeneous social network data. To

evaluate the effectiveness of the heterogeneous link pre-

diction approach, we use the LiveJournal data collected by

Mislove et al. (2007). In particular, we use the social net-

work (user-friends-user) and the group membership

bipartite graph (user-joined-group) which indicates the set

of groups each user is involved. Note that PCMF may also

be used to predict the groups a user is likely to join in the

future (heterogeneous link prediction, link between multi-

ple node types) as well as links in a homogeneous context

such as friendships. PCMF is used to predict a set of held-

out links10 (i.e., future/missing) and use the NRMSE

evaluation metric for comparison. Overall, PCMF consis-

tently resulted in significantly lower error than the baseline.

In particular, we observed a 17.5 % reduction in the error

when PCMF is used instead of the base model that uses

only the social network for link prediction. This reveals the

importance of carefully leveraging multiple heterogeneous

networks for link prediction. We also evaluated the ranking

given by different evaluation metrics and found that some

of them lead to significantly different rankings as shown in

Fig. 15. In that example, we measure the intersection

similarity between RMSE and the others. In short, the

ranking given by NRMSE is identical, whereas the others

are significantly different (even for users with the largest

error).

4.8.2 Edge role discovery

Role discovery is becoming increasingly popular (Bor-

gatti et al. 2013). However, existing work focuses on

discovering roles of nodes and has ignored the task of

discovering edge roles. In this work, we investigate edge-

centric roles using a nonnegative factorization variant of

PCMF. Following the idea of feature-based roles pro-

posed in Rossi and Ahmed (2014), we systematically

discover an edge-based feature representation. As initial

features, we use a variety of edge-based graphlet features

of size 2,3, and 4. From these initial features, more

complicated features are discovered using the algorithm

proposed in Rossi and Ahmed (2014). Given this large

edge-by-feature matrix, PCMF is used to learn edge role

memberships. Importantly, PCMF provides a fast and

parallel method for collective role discovery in large

heterogeneous networks. Figure 16 demonstrates the

effectiveness of PCMF by visualizing the edge roles

learned from a biological network. The edge roles dis-

covered by PCMF are clearly correlated with the class

label of the node and make sense as they capture the

structural behavior surrounding each edge in the network.

4.8.3 Improving relational classification

PCMF may also be used to learn a more effective relational

representation for a variety of relational learning tasks. In

particular, Fig. 17 shows the impact on the network structure

when PCMF is used. Strikingly, PCMF creates edges

between nodes of the same class, making them significantly

closer compared to the original relational data (see Fig. 16).

Fig. 17 PCMF improves

relational/collective

classification by automatically

connecting up nodes of the same

label. This not only benefits

relational classification, but may

significantly improve collective

approaches that use label

propagation by reducing noise

and improving the quality of

messages passed between such

nodes. Nodes are colored by

class label (disease/gene) using

Ahmed and Rossi (2015)

10 Note that these are known actual relationships in the social

network, but are not used for learning.

 67 Page 28 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

5 Conclusion and discussion

This paper proposed a fast parallel collective factorization

framework for factorizing heterogeneous networks and

demonstrated its utility on a variety of real-world appli-

cations. The method is efficient for large data with a time

complexity that is linear in the total number of observations

from the set of input matrices. Moreover, PCMF is flexible

as many components are interchangeable (loss, regular-

ization, etc), and for descriptive modeling tasks it is fully

automatic (requiring no user-defined parameters) and data-

driven/nonparametric and thus extremely useful in many

real-world applications. Compared to recent state-of-the-art

single matrix factorization methods, PCMF as well as our

single matrix variant PCMF-basic is shown to be faster and

more scalable for large data while also in many cases

providing higher quality predictions. A main strength of

PCMF lies in its generality as it naturally handles a large

class of matrices (i.e., contextual/side information), from

sparse weighted single typed networks (e.g., social

friendship/comm. networks, web graphs) and multi-typed

networks (e.g., user-group memberships, word-document

matrix) to dense matrices representing node and edge

attributes as well as dense similarity matrices.

References

Aggarwal CC (2007) Data streams: models and algorithms, vol 31.

Springer, Berlin

Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for

clustering evolving data streams. In: Proceedings of the 29th

international conference on Very large data bases, vol 29. VLDB

Endowment, pp 81–92

Ahmed NK, Neville J, Kompella R (2013) Network sampling: from

static to streaming graphs. TKDD, pp 1–54

Ahmed NK, Rossi RA (2015) Interactive visual graph analytics on the

web. In: International AAAI conference on web and social media

(ICWSM), pp 566–569

Akaike H (1974) A new look at the statistical model identification.

Trans Autom Control 19(6):716–723

Bilgic M, Mihalkova L, Getoor L (2010) Active learning for

networked data. In: ICML, pp 79–86

Bonhard P, Sasse M (2006) Knowing me, knowing you using profiles

and social networking to improve recommender systems. BT

Technol J 24(3):84–98

Borgatti SP, Everett MG, Johnson JC (2013) Analyzing social

networks. SAGE Publications Limited, California

Dolan ED, Moré JJ (2002) Benchmarking optimization software with

performance profiles. Math Program 91(2):201–213

Fairbanks J, Ediger D, McColl R, Bader DA, Gilbert E (2013) A

statistical framework for streaming graph analysis. In: ASO-

NAM, pp 341–347

Gemulla R, Nijkamp E, Haas PJ, Sismanis Y (2011) Large-scale

matrix factorization with distributed stochastic gradient descent.

In: SIGKDD, pp 69–77

Jamali M, Ester M (2010) A matrix factorization technique with trust

propagation for recommendation in social networks. In: RecSys,

pp 135–142

Jiang D, Pei J, Li H (2013) Mining search and browse logs for web

search: a survey. TIST 4(4):57

Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques

for recommender systems. Computer 42(8):30–37

La Fond T, Neville J (2010) Randomization tests for distinguishing

social influence and homophily effects. In: WWW, pp 601–610

Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for

social networks. JASIST 58(7):1019–1031

Liu W, He J, Chang S-F (2010) Large graph construction for scalable

semi-supervised learning. In: Proceedings of the 27th interna-

tional conference on machine learning, pp 679–686

Lusk EL, Pieper SC, Butler RM et al (2010) More scalability, less

pain: a simple programming model and its implementation for

extreme computing. SciDAC Rev 17(1):30–37

Ma H, Yang H, Lyu MR, King I (2008) Sorec: social recommendation

using probabilistic matrix factorization. In: CIKM, pp 931–940

Massa P, Avesani P (2007) Trust-aware recommender systems. In:

Proceedings of the 2007 ACM conference on recommender

systems. ACM, pp 17–24

McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather:

homophily in social networks. Ann Rev Sociol 27:415–444

Mislove A, Marcon M, Gummadi K, Druschel P, Bhattacharjee B

(2007) Measurement and analysis of online social networks. In:

SIGCOMM, pp 29–42

Niu F, Recht B, Ré C, Wright SJ (2011) Hogwild!: a lock-free

approach to parallelizing stochastic gradient descent. NIPS

24:693–701

Recht B, Ré C (2013) Parallel stochastic gradient algorithms for

large-scale matrix completion. Math Program Comput

5(2):201–226

Rossi RA, Ahmed NK (2014) Role discovery in networks. TKDE

26(7):1–20

Rossi RA, Ahmed NK (2016) An interactive data repository with

visual analytics. SIGKDD Explor 17(2):37–41

Rossi RA, McDowell LK, Aha DW, Neville J (2012) Transforming

graph data for statistical relational learning. JAIR 45(1):363–441

Salakhutdinov R, Mnih A (2007) Probabilistic matrix factorization. In

NIPS, vol 1, pp 1–2

Satuluri V, Parthasarathy S, Ruan Y (2011) Local graph sparsification

for scalable clustering. In: Proceedings of the 2011 international

conference on Management of data. ACM, pp 721–732

Singla P, Richardson M (2008) Yes, there is a correlation: from social

networks to personal behavior on the web. In: WWW,

pp 655–664

Spielman DA, Teng S-H (2004) Nearly-linear time algorithms for

graph partitioning, graph sparsification, and solving linear

systems. In: Proceedings of the thirty-sixth annual ACM

symposium on theory of computing. ACM, pp 81–90

Sun Y, Han J (2012) Mining heterogeneous information networks:

principles and methodologies. Synth Lect Data Min Knowl

Discov 3(2):1–159

Tang J, Hu X, Liu H (2013) Social recommendation: a review. SNAM

3(4):1113–1133

Tsai M-H, Aggarwal C, Huang T (2014) Ranking in heterogeneous

social media. In: WSDM, pp 613–622

Vorontsov M, Carhart G, Ricklin J (1997) Adaptive phase-distortion

correction based on parallel gradient-descent optimization. Opt

Lett 22(12):907–909

Yang X, Guo Y, Liu Y, Steck H (2013) A survey of collaborative

filtering based social recommender systems. Comput Commun

41:1–10

Soc. Netw. Anal. Min. (2016) 6:67 Page 29 of 30 67

123

Yang S-H, Long B, Smola A, Sadagopan N, Zheng Z, and Zha H

(2011) Like like alike: joint friendship and interest propagation

in social networks. In: WWW, pp 537–546

Yasui Y, Fujisawa K, Goto K (2013) NUMA-optimized parallel

breadth-first search on multicore single-node system. In: Big

data, pp 394–402

Yu H-F, Hsieh C-J, Si S, Dhillon IS (2012) Scalable coordinate

descent approaches to parallel matrix factorization for recom-

mender systems. In: ICDM, pp 765–774

Zhou Y, Wilkinson D, Schreiber R, Pan R (2008) Large-scale parallel

collaborative filtering for the netflix prize. In: Algorithmic

aspects in information and management. Springer, pp 337–348

Zinkevich M, Weimer M, Smola AJ, Li L (2010) Parallelized

stochastic gradient descent. In: NIPS, vol 4, p 4

 67 Page 30 of 30 Soc. Netw. Anal. Min. (2016) 6:67

123

	Parallel collective factorization for modeling large heterogeneous networks
	Abstract
	Introduction
	Scope and organization of this article

	Background
	Problem formulation
	Motivating example

	Parallel collective factorization
	Sparsity and non-negativity constraints
	Sparsity constraints
	Nonnegative collective factorization

	Parallel algorithm
	Simple parallel approaches and challenges
	Locking and blocking problems
	Fast asynchronous approach
	Remarks

	Complexity analysis
	A fast nonparametric model
	Collective graph sparsifiers
	Further optimization details and improvements
	Adaptive coordinate updates
	Early stopping criterion

	Experimental results
	Data and experimental setup
	Platform
	Data
	Evaluation metrics and comparison

	Parallel scaling
	Speedup and efficiency
	Hyper-threading
	Discussion

	Memory and thread layout
	Predictive quality
	Impact of \alpha
	Impact of the latent dimension
	Serving predictions in real-time streams
	Additional applications
	Heterogeneous link prediction via collective factorization
	Edge role discovery
	Improving relational classification

	Conclusion and discussion
	References

