
Higher-Order Ranking and Link Prediction:
From Closing Triangles to Closing Higher-Order Motifs

Ryan A. Rossi
Adobe Research
rrossi@adobe.com

Anup Rao
Adobe Research

anuprao@adobe.com

Sungchul Kim
Adobe Research

sukim@adobe.com

Eunyee Koh
Adobe Research

eunyee@adobe.com

Nesreen K. Ahmed
Intel Labs

nesreen.k.ahmed@intel.com

Gang Wu
Adobe Research

gang.wu@adobe.com

ABSTRACT

In this paper, we introduce the notion of motif closure and describe
higher-order ranking and link prediction methods based on the no-
tion of closing higher-order network motifs. The methods are fast and
efficient for real-time ranking and link prediction-based applica-
tions such as web search, online advertising, and recommendation.
In such applications, real-time performance is critical. The pro-
posed methods do not require any explicit training data, nor do
they derive an embedding from the graph data, or perform any
explicit learning. Most existing methods with the above desired
properties are all based on closing triangles (common neighbors,
Jaccard similarity, and the ilk). In this work, we investigate higher-
order network motifs and develop techniques based on the notion
of closing higher-order motifs that move beyond closing simple
triangles. All methods described in this work are fast with a runtime
that is sublinear in the number of nodes. The experimental results
indicate the importance of closing higher-order motifs for ranking
and link prediction applications. Finally, the proposed notion of
higher-order motif closure can serve as a basis for studying and
developing better ranking and link prediction methods.

KEYWORDS
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1 INTRODUCTION

Link prediction generally refers to predicting the existence of edges
(node pairs) in G such that the predicted edges (node pairs) are
not in the original edge set E of G. The goal of this task may be
to predict future links at time t + 1 or to simply predict links that
were not observed (e.g., to improve the quality of downstream
tasks) [9]. Notice that nearly all link prediction methods first com-
pute a weightWi j = f (i, j) between node i and j and then use
Wi j to decide whether to predict a link (i, j) or not. We denote the
task of estimating a weightWi j = f (i, j) between node i and j as
link weighting or link strength estimation. The weights are then
used to derive a ranking of potential links. The potential links may
refer to items j that a user i is likely to purchase, or songs that a
user is likely to prefer, and so on. In this work, we focus on fast

Figure 1: Higher-OrderMotif Closures. The unshaded/white

nodes are node i and j. Given a node pair (i, j) < E (un-

shaded/white nodes) and anymotif/induced subgraphH , the

“edge” between i and j (dotted gray line) is said to close an in-

stance F of H if the edge (i, j) were to actually exist in G.

and efficient methods for computing link weights based on closing
higher-order network motifs. Such weights based on higher-order
motif closures can then be used for ranking-based applications
(such as recommender systems and the ilk).

Ranking is a key component of many real-world applications
such as web search, online advertising, and recommendation [7].
In these applications, real-time performance is critical, e.g., in web
search users expect an answer to their query in the order of a few
hundred milliseconds [2, 4]. This makes it impossible to learn a com-
plex ranking function. Instead, there are usually two components
to such a system. In the first component, a fast online approach is
used to identify the top-k most relevant results in real-time (where
k is typically small), which are then displayed to the user. In the
second component, a more accurate but computationally expensive
model is trained to improve the initial ranking. The ranking learned
from the model can be used directly or combined with simpler ap-
proaches to obtain a final re-ranking of the web pages (or items).
In this work, we primarily focus on the first component.

Ranking and link prediction [4] are important fundamental prob-
lemswithmany applications including recommendation of items [4],
friends [6], web pages [7], among many others [7, 9]. Common
neighbors and approaches based on common neighbors such as
Jaccard similarity are known to be strong baselines that are hard to
beat in practice [11]. These baselines are all fundamentally based on
the notion of “closing triangles” [1, 9]. They are both simple and fast
for ranking in an online real-time fashion. In this work, we investi-
gate higher-order network motifs and develop ranking techniques
based on the notion of closing higher-order motifs (Definition 1) that
move beyond “closing” simple triangles.
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Table 1: Mean average precision (MAP) results for ranking (and prediction) methods based on closing higher-order motifs.
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4-path 0.829 0.687 0.607 0.594 0.649 0.778 0.865 0.729 0.893 0.873 0.914 0.788 0.942 0.326 0.844 0.854 0.707
4-star 0.880 0.787 0.595 0.696 0.922 0.814 0.895 0.861 0.840 0.813 0.889 0.688 0.961 0.388 0.807 0.972 0.695

4-cycle 0.881 0.958 0.651 0.926 0.827 0.885 0.908 0.935 0.927 0.957 0.930 0.900 0.773 0.950 0.870 0.902 0.847
4-tailed-triangle 0.804 0.612 0.570 0.752 0.773 0.663 0.773 0.681 0.689 0.779 0.600 0.496 0.530 0.834 0.722 0.937 0.582
4-chordal-cycle 0.801 0.837 0.598 0.842 0.312 0.966 0.840 0.854 0.977 0.996 0.986 0.947 0.750 0.939 0.935 0.782 0.969

4-clique 0.804 0.838 0.595 0.843 0.293 0.963 0.842 0.847 0.972 0.997 0.986 0.965 0.759 0.939 0.960 0.798 0.982

CN 0.705 0.872 0.613 0.839 0.422 0.814 0.833 0.897 0.839 0.960 0.949 0.852 0.342 0.945 0.790 0.890 0.941
Jaccard Sim. 0.705 0.873 0.618 0.841 0.537 0.933 0.853 0.918 0.955 0.997 0.973 0.918 0.764 0.944 0.841 0.933 0.949

Adamic/Adar 0.705 0.883 0.621 0.842 0.549 0.940 0.856 0.920 0.959 0.997 0.976 0.919 0.777 0.945 0.848 0.935 0.953

While most existing work focuses on learning a ranking func-
tion [3, 5, 12], we instead focus on direct principled approaches
that are efficient (sublinear in the number of nodes), can be directly
computed in real-time, easily parallelizable, and naturally amenable
for online real-time ranking in the streaming setting. This work
introduces the general notion of closing higher-order motifs and
based on this notion we develop direct ranking techniques that are
efficient for real-time online ranking and prediction. Compared to
similar techniques that can be used for this setting such as Common
Neighbors and methods based on it (e.g., Jaccard similarity), the
proposed techniques are fundamentally more powerful as they nat-
urally generalize over these existing techniques that are all based
on closing triangles (a lower-order motif). The proposed notion of
higher-order motif closure can serve as a basis for studying and
developing better ranking (and prediction) methods based on the
higher-order motif closures.

2 CLOSING HIGHER-ORDER MOTIFS

We first introduce the notion of a higher-order network motif closure
that lies at the heart of this work.

Definition 1 (Motif Closure). A node pair (i, j) is said to
close a network motifH iff adding an edge (i, j) to E closes an instance
F ∈ I ′G (H ) of motif H where G ′ = (V ,E ∪ {(i, j)}) and I ′G (H ) is the
set of unique instances of motif H in G ′.

Figure 1 provides a few examples of higher-order motif closures.
The edge (i, j) shown as a dotted line in Figure 1 closes each motif.
For instance, the edge between node i and j in the rightmost motif in
Figure 1 closes a 4-clique. We now formally introduce the frequency
of higher-order motif closures for a node pair (i, j) as follows:

Definition 2 (Higher-OrderMotifClosureFreqency).

Let G ′ = (V ,E ′) where E ′ = E ∪ {(i, j)} and let I ′G (H ) be the set of
unique instances of motif H in G ′. Then the frequency of closing a
higher-order motif H between node i and j is:

Wi j =
∑

F ∈IG′ (H )
I
(
{i, j} ∈ E ′(F )

)
(1)

whereWi j is equal to the number of unique instances ofH that contain
nodes {i, j} ⊂ V (G ′) as an edge.

We provide a simple routine in Algorithm 1 for computing the
weightWi j representing the frequency of closing motif H between
node i and j. The approach has two simple steps. First, given an
arbitrary node pair (i, j), a motif H of interest, and the current
graph G = (V ,E), we simply add the node pair (i, j) as an edge by
setting E ′ ← E ∪ {(i, j)} and G ′ = (V ,E ′) (Alg. 1 Line 1).1 As an
aside, this can be performed implicitly without any additional work.
However, it is shown in Algorithm 1 since after adding (i, j) to the
edge set, we can use the fastest known algorithm for counting the
occurrences of motif (induced subgraph/graphlet) H between node
i and j in G ′. Nevertheless, we can always modify the best known
algorithm [1] so that it implicitly treats the pair of nodes (i, j) given
as input as being connected for the sake of determining the number
of instances of H that would be closed if (i, j) were to really exist
as an edge in G. Second, we compute the number of instances of
motif H that contain nodes i and j in G ′ (Alg. 1 Line 2). Given a
set Y = {y1,y2, . . . ,yj , . . .} of nodes (items, ads, songs, friends)
to be ranked, Algorithm 1 can be used to obtainWi j = f (xi ,yj ),
∀j = 1, . . . , |Y|.

Algorithm 1 Higher-Order Motif Closures
Input: a graphG = (V , E), node pair (i, j), and network motif/graphlet H
Output: the frequencyWi j of motif closures of H for nodes i and j

1 Set E′ ← E ∪ {(i, j)} and G′ = (V , E′)
2 Use fast algorithm [1, 10] to computeWi j = # of occurrences of motif

H between node i and j in G′

Extending Other Measures using Motif Closure. Given two nodes
i and j, Common Neighbor-based methods are those that use the
quantity |Γi ∩ Γj | where Γi and Γj are the set of neighbors for node
i and j, respectively. Common neighbors is simplyWi j = |Γi ∩ Γj |
1Note that if edges are arriving continuously over time in a streaming fashion, then
we may also encounter a node i (or j ) such that i < V . In this case, we also set
V ′ ← V ∪ {i } and G′ = (V ′, E′).
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Table 2: Coverage (↓) results for the ranking methods based on closing higher-order network motifs. Lower is better.
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4-path 0.606 0.964 0.822 0.962 0.537 0.958 0.828 0.980 0.963 0.911 0.936 0.976 1 0.999 0.970 0.579 0.991
4-star 0.637 0.950 0.815 0.944 0.024 0.911 0.972 0.963 0.945 0.998 0.985 0.915 0.088 0.999 0.953 0.245 0.986

4-cycle 0.300 0.375 0.922 0.645 0.457 0.942 0.542 0.483 0.869 0.801 0.952 0.942 0.995 1 0.971 0.366 0.897
4-tailed-triangle 1 0.910 1 1 0.451 0.967 0.654 0.756 0.986 0.893 0.997 0.964 1 1 0.981 0.404 0.992
4-chordal-cycle 1 0.913 1 0.913 0.936 0.613 1 1 0.228 0.211 0.217 0.796 0.965 1 1 0.620 0.390

4-clique 1 1 1 1 1 0.709 1 1 0.322 0.216 0.315 0.521 0.989 1 0.902 0.62 0.409

CN 1 0.732 1 0.826 0.652 0.705 0.752 0.739 0.788 0.224 0.782 0.894 0.972 1 0.864 0.461 0.766
Jaccard Sim. 1 0.732 1 0.826 0.658 0.707 0.752 0.739 0.824 0.225 0.782 0.902 0.960 1 0.885 0.462 0.762

Adamic/Adar 1 0.732 1 0.826 0.653 0.706 0.747 0.739 0.823 0.218 0.783 0.905 0.923 1 0.866 0.462 0.761
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Figure 2: Precision at k = 1, . . . , 40 for different network motif closure rankings.

whereWi j represents the number of potential triangles thatwould be
closed if there were an edge between i and j . The notion of “closing”
triangles lies at the heart of many other existing methods that are
based on |Γi ∩ Γj | such as Jaccard similarity, Adamic/Adar (AA),
among others. All of these methods can be viewed as extensions of
Common Neighbors with some form of normalization, e.g., Jaccard
similarity isWi j = |Γi ∩Γj |/|Γi ∪Γj |. Extending the proposed higher-
order motif-based link ranking and prediction techniques is left
for future work. This includes extending the notion of “closing”
higher-order network motifs for other measures such as Jaccard
similarity, Adamic/Adar, among any others where the notion of
closing triangles can be replaced with the notion of closing a higher-
order motif introduced in this work.

3 EXPERIMENTS

The experiments are designed to evaluate the effectiveness of the
proposed methods that are based on the notion of “closing” higher-
order network motifs. These methods go beyond closing simple
triangles. To ensure the significance and generality of our findings
(as much as possible), we evaluate the proposed methods using a
wide variety of networks from different application domains. All
data was obtained from NetworkRepository [8].

We compare the proposed higher-order motif closure methods
against CN-based methods (CN, Jaccard similarity, Adamic/Adar)
since these are all based on closing triangles also have the same

desired properties as the higher-order motif closure methods de-
scribed in this paper. In this work, we only investigate the most
basic and fundamental higher-order motif closures. Developing
more sophisticated higher-order ranking measures based on these
fundamental motif closures is left for future work. However, we
did run a few experiments using an extended higher-order Jaccard
similarity (one for each motif closure, giving 6 total for 4-node
motifs) and higher-order Adamic/Adar ranking measures, again
giving 6 new rankings total. Since each variant provides 6 additional
rankings, the results were removed for brevity, but in some cases
performed better than the most basic motif closures introduced
in this paper. As such, the proposed notion of higher-order motif
closures serve as fundamental building blocks for developing better
higher-order ranking and prediction methods.

Unless otherwise mentioned, we hold-out 10% of the observed
node pairs and randomly sample the same number of negative node
pairs. We then use the methods to obtain a ranking of the node
pairs in this set.2 Recall the proposed techniques do not require
learning a sophisticated model nor do they require training data.
As such, the notion of motif closure proposed in this work can
be used in a real-time streaming fashion and has many obvious
advantages to more sophisticated model-based approaches. Mean

2In recommender systems, the set of node pairs to be ranked is actually a smaller set
of “relevant items” Yi = {y1, . . . , yj , . . . } ⊂ Y for a user i . Nevertheless, this can
also be viewed as a ranking of node pairs where user i is fixed.
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Table 3: Robustness results (MAP). See text for discussion.
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4-path 0.764 0.698 0.495 0.582 0.774 0.812 0.899 0.847
4-star 0.868 0.781 0.52 0.645 0.920 0.81 0.894 0.836

4-cycle 0.763 0.915 0.482 0.871 0.665 0.855 0.863 0.872

4-tailed-triangle 0.684 0.700 0.444 0.755 0.725 0.708 0.765 0.658
4-chordal-cycle 0.781 0.816 0.440 0.811 0.237 0.942 0.812 0.776

4-clique 0.781 0.825 0.440 0.809 0.205 0.944 0.807 0.761

CN 0.686 0.800 0.458 0.801 0.283 0.806 0.791 0.819
Jaccard Sim. 0.693 0.809 0.461 0.803 0.357 0.910 0.808 0.828

Adamic/Adar 0.704 0.809 0.462 0.803 0.375 0.912 0.808 0.831

Average Precision (MAP) results are provided in Table 1 whereas
coverage is provided in Table 2.

Conclusion 1. Ranking based on closing higher-order motifs
outperforms other direct methods that are based on closing triangles.

In nearly all cases, the higher-order motif closures achieve better
precision and coverage than techniques based on closing lower-
order triangles.

Conclusion 2. The best performing motif closure is consistent
across different evaluation measures. The motif closure that achieves
the best precision (Table 1) is typically the same motif that achieves
the best coverage (Table 2).

Conclusion 3. There is no single higher-order motif closure that
performs best for all graphs. The best motif depends highly on the
structural characteristics of the graph and its domain (biological vs.
social network) as shown in Table 1 and Table 2.

In Table 1-2, biological and brain networks achieve best perfor-
mance using the ranking given by 4-cycle and 4-star closures. This
also holds true for the interaction (ia-reality) and road network
investigated. The 4-star and 4-cycle motif closures are more sparse
compared to the 4-chordal-cycle (paw motif) and 4-clique motif
closure. In the web graph, economic, and social networks, both
the 4-chordal-cycle (diamond motif closure) and 4-clique motif clo-
sure achieves significantly better performance than the other motif
closures. Notice that both these motif closures are composed of
two or more triangles and thus can be seen as a stronger triadic
closure motif. The 4-path, 4-tailed-triangle, and triangle (CN) motif
closures did not perform the best in any of the graphs investigated.
That is, there were always a higher-order motif closure with better
performance as shown in Table 1 and Table 2. In Figure 2, we also
show the precision at k = 1, . . . , 40 for closing different higher-
order network motifs. In nearly all cases, the rankings given by the
4-node motif closures are better than the lower-order CN approach
that is based on closing triangles.

Robustness of Ranking from Higher-Order Motif Closures. In ad-
dition, we investigate the robustness of the higher-order motif
closures to noise in the graph, i.e., random link additions. To un-
derstand the robustness of the motif closure methods for graphs

with noisy and spurious links, we select pairs of nodes uniformly
at random that are not linked in G and create a link between each
pair. In this set of experiments, we sample |E |/2 node pairs (nega-
tive/unobserved edges) and add them to G. Results are shown in
Table 3. Due to space, we show only a subset of the networks used
in Table 1-2.

Conclusion 4. Robustness of the ranking by higher-order motif
closures is comparable, and slightly better than techniques based on
closing triangles.
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Figure 3: Average runtime in milliseconds to compute all

motif closures for each node pair.

Runtime performance. We report the average runtime in millisec-
onds to compute all motif closures for each node pair in G. For
most graphs, it takes less than a millisecond on average as shown
in Figure 3 and therefore is fast for large-scale ranking problems.

Conclusion 5. For any 4-node motif H , counting the number
of motif closuresWi j that would arise if (i, j) was added to G is fast
taking less than a millisecond on average (across all graphs).

The runtime can be significantly improved for certain problem
settings: Suppose we are interested in only the top-k most relevant
node pairs (or items for a user i) given by a ranking from an arbitrary
motif closure for motif H , then for possibly many such node pairs,
we can avoid computingWi j (i.e., # of instances of motif H in G
that would be closed if the node pair (i, j) actually existed/observed
in G) altogether by first deriving an upper bound UB ofWi j in o(1)
constant time and only computingWi j if UB > δ where δ is the
weight of the node pair in the top-k ranking with minimum weight
(the node pair with rank k). Since otherwise we knowWi j is not
large enough to beat the node pair with the k-th largest weight.

4 CONCLUSION

This work proposed the notion ofmotif closure and described higher-
order ranking and link prediction techniques based on the notion
of closing higher-order network motifs. Such techniques were shown
to be effective for online real-time ranking (and prediction) as they
often outperformed a number of baselines that are based on closing
triangles. Future work will investigate using the notion of closing
higher-order motifs to extend other techniques such as a higher-
order Jaccard similarity or higher-order Adamic/Adar measures
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based on closing higher-order network motifs such as 4-cliques,
4-cycles, among others.
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