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Abstract—Relational models for heterogeneous network data
are becoming increasingly important for many real-world appli-
cations. However, existing relational learning approaches are not
parallel, have scalability issues, and thus unable to handle large
heterogeneous network data. In this paper, we propose Parallel
Collective Matrix Factorization (PCMF) that serves as a fast and
flexible framework for joint modeling of large heterogeneous
networks. The PCMF learning algorithm solves for a single
parameter given the others, leading to a parallel scheme that
is fast, flexible, and general for a variety of relational learning
tasks and heterogeneous data types. The proposed approach is
carefully designed to be (a) efficient for large heterogeneous
networks (linear in the total number of observations from the
set of input matrices), (b) flexible as many components are inter-
changeable and easily adaptable, and (c) effective for a variety of
applications as well as for different types of data. The experiments
demonstrate the scalability, flexibility, and effectiveness of PCMF.
For instance, we show that PCMF outperforms a recent state-of-
the-art parallel approach in runtime, scalability, and prediction
quality. Finally, the effectiveness of PCMF is shown on a number
of relational learning tasks such as serving predictions in a real-
time streaming fashion.

I. INTRODUCTION

Given heterogeneous network data consisting of one or
more networks (and/or attribute data), we want to automatically
learn a joint model that can be used for a variety of relational
learning tasks. More specifically, we require that the learning
algorithm be efficient and parallel for large-scale heterogeneous
networks, while also flexible and general for modeling a variety
of heterogeneous data types. To this end, we propose Parallel
Collective Matrix Factorization (PCMF) that serves as a fast
and flexible parallel framework for jointly modeling large
heterogeneous network data. PCMF jointly decomposes a number
of matrices into a set of low-rank factors that approximate
the original input matrices. Furthermore, PCMF is useful for
modeling (a) sparse and dense matrices, (b) heterogeneous
networks consisting of multiple node and edge types as well as
(c) dense feature and similarity matrices.

At the heart of PCMF lies an efficient parallel learning
algorithm that analytically solves for one parameter at a time,
given the others. The learning algorithm of PCMF is generalized
for jointly modeling an arbitrary number of matrices (network
data or feature matrices). In addition, we propose a fast parallel
learning algorithm that enables PCMF to model extremely large
heterogeneous network data. Furthermore, the parallel learning
algorithm of PCMF is extremely flexible as many components
are interchangeable and can be customized for specific relational
learning tasks. One important advantage of PCMF lies in the
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flexibility of choosing when and how parameters are selected and
optimized. Our approach also has other benefits such as its ability
to handle data that is extremely sparse. Despite the difficulty
of this problem, PCMF leverages additional information such
as the social network or other known information to improve
prediction quality.

The experiments demonstrate the effectiveness of PCMF for
jointly modeling heterogeneous network data. In particular,
PCMF as well as our single matrix variant PCMF-BASIC
outperforms the recent state-of-the-art in terms of the following:
(1) runtime, (2) scalability and parallel speedup, and (3) prediction
quality. Furthermore, even the most basic PCMF variant called
PCMF-BASIC (the single matrix variant) is significantly faster
and more scalable than the state-of-the-art parallel approach for
recommender systems called CCD++ [1]. That approach works
for single matrix factorizations only, and thus cannot handle the
types of data that PCMF can handle.

Besides factorizing an arbitrary number of sparse networks,
PCMF also allows for a set of attributes/features for each type of
node. The set of attributes (for each node type) are represented
as a dense matrix, whereas the network data is stored as a sparse
matrix (nonzeros only). The generalized PCMF framework is
also used for a variety of large-scale heterogeneous relational
learning tasks. Due to limitations of existing work, many of
these relational learning tasks have only been explored for
relatively simple and small network data. Nevertheless, PCMF
is shown to be effective and fast for solving a number of
these important and novel relational learning tasks for large
heterogeneous network data, including: edge role discovery (and
collective role discovery), estimating relationship/link strength,
collective/heterogeneous link prediction, improving relational
classification, and graph-based representation and deep learning.

The main contributions of this work are as follows:

e Novel algorithm. We propose PCMF—a fast, parallel
relational learning approach for jointly modeling a variety
of heterogeneous network data sources. At the heart of
PCMF lies a fast parallel optimization scheme that updates
a single parameter at a time, given all others.

o Effectiveness: The experiments demonstrate the accuracy
and predictive quality of PCMF for a variety of network
types and predictive modeling tasks.

e Scalability: The runtime is linear with respect to the number
of nonzero elements in all matrices.

o Generality: We demonstrate the generality of PCMF by
applying it for a variety of relational learning tasks and
network types.



PCMF has many other contributions/novel features which
are detailed throughout the paper, including memory and thread
layouts, careful memory access patterns to fully utilize available
cache lines, the importance of selecting “good” initial matrices,
ordering strategies, and other techniques to minimize dynamic
load balancing issues, among many others.

II. RELATED WORK
Related research is categorized and discussed below.

Recommender systems. Majority of research in recommender
systems focus on analyzing the user-item interactions [2]. Matrix
factorization methods have become increasingly popular as they
usually outperform traditional approaches such as k-nearest
neighbor [3]. Despite this improvement, these methods have
many limitations including scalability and sparsity issues, as
well as their inability to leverage additional contextual/side-
information.

Some recent research has proposed parallel recommender
systems based on parallelizing traditional matrix factorization
techniques that analyze user-item interactions [1], [4]-[9]. PCMF
is fundamentally different from that work. In particular, (a) those
approaches are focused on recommender systems, (b) they are
designed for user-item matrices that are sparse, and therefore do
not generalize to the types and characteristics of data handled
by PCMF, and (c) they work only for matrix factorization,
and thus unable to handle multiple networks as well as the
variety of data types that PCMF models. Nevertheless, we show
empirically that a single-matrix factorization variant of PCMF
called PCMF-BASIC outperforms CCD++ (the recent state-of-
the-art parallel method) in runtime, parallel speedup/scalability,
and predictive quality.

There is another related body of work in recommender
systems, that leverage additional information to improve rec-
ommendations [10]-[15]. PCMF is different than this work, as
these approaches focus on improving the quality of predictions,
and have focused solely on the problem of recommendation
systems. In particular, the PCMF learning algorithm analytically
solves for each parameter given the others. This gives rise to
(a) an extremely flexible learning algorithm (e.g., update order),
that is (b) scalable with a runtime that is linear in the total
number of observed values, and (c) generalized for solving a
number of relational learning tasks and data types. Additionally,
PCMF is a completely parallel scheme for jointly modeling
large-scale heterogeneous networks. Existing work has focused
on improving the quality of recommendations, ignoring issues
with efficiency and parallel algorithms all together.

Mining heterogeneous networks. A number of approaches
have been proposed for mining heterogeneous networks [16],
including path-based similarity search [17], and many other [18§],
[19]. PCMF builds upon this work in numerous ways. Most
previous work has focused on quality and other measures of
usefulness, while this work focuses on scalability and efficiency
issues. Existing work is not parallel, and has mostly focused on
quality and various other measures of usefulness. In contrast,
PCMF is parallel and scales to large heterogeneous networks,
and shown empirically to scale better than recent methods
while also resulting in better quality predictions. Moreover,
we propose a parallel learning algorithm for modeling large

heterogeneous networks that is both general and flexible for a
variety of applications and data types.

Role discovery. We propose using PCMF for role discovery.
Roles have been used to investigate a variety of networks
including social, biological, and technological [20]-[22]. In [22],
the authors propose feature-based roles for nodes along with a
computational framework for computing them. PCMF is different
than existing role discovery methods. In particular, (a) PCMF is
parallel and able to scale to large networks; (b) PCMF jointly
factorizes heterogeneous network data as well as available
attributes; (c) PCMF is an edge-based role discovery method.

Link prediction. The existence of links have been predicted for
a number of data mining tasks [23]. In [24], the authors predict
future friendship links in social networks using topological
features. In [25], the authors predict missing and noisy hyperlinks
from the web graph to improve the quality of search engines.
In [26], the authors predict links to enhance relational represen-
tation for relational learning tasks such as classification. There
has also been some work on predicting links in heterogeneous
networks [27]-[29]. PCMF is different from these approaches. In
particular, (1) PCMF is a parallel heterogeneous link prediction
method; (2) PCMF is scalable (linear in the number of observed
links); (3) PCMF learning algorithm analytically solves for each
model parameter independently.

IIT. PARALLEL COLLECTIVE MATRIX FACTORIZATION

Given two matrices A € R™*"™ and B € R™*™, one can
formulate the collective factorization problem as:
min > (A —u V) + A Ur + X[ VIe+ (D)

U,v,Z
(4,5)€ Qa

> (By —uiz)’+alZlr
(1,5)€ OB

where U € R™*d V € R"*4 and Z € R™*4 are low-rank

factor matrices. Note that B € R™*™ for simplicity, but may
also be asymmetric. Further, let ©; := {j : (¢,7) € Q} be the set
of nonzero indices of the i*" row whereas Q; := {i : (i,j) € Q}
denotes the set of nonzero indices for the j*" column. The goal
is to approximate the incomplete matrix A by UV’ and B by
uz'. Thus, in this particular case, U € Rmxd represents the
shared low dimensional latent feature space. Each row uiT € R4
of U can be interpreted as a low dimensional rank-d embedding
of the i*" row in A. Alternatively, each row v € R of V
represents a d-dimensional embedding of the j*" column in A
using the same low rank-d dimensional space. Also, u;, € R™ is
the k" column of U and similarly v, € R™ is the k" column
of V. Further, let U;;, be a scalar (k*" element of uiT or the
iM element of uy). Similarly, let u;; and vy, for 1 < k < d
denote the k' coordinate of the column vectors u; and v; (and
thus interchangeable with U;; and Vj3). For clarity, we also
use U.;. to denote the k" column of U (and U, for the it
row of U). Similar notation is used for Z.

To measure the quality of our model, we use a nonzero
squared loss: (A;; —u; v;)?, though any arbitrary separable
loss may be used. Regularization terms are also introduced
in order to prevent overfitting. While this work mainly uses
square-norm regularization, PCMF is easily adapted for various

other regularizers.



A. Learning Algorithm

The PCMF learning algorithm optimizes a single parameter
at a time, while fixing all others. Moreover, PCMF analytically
solves for each model parameter independently. This gives rise
to a PCMF learning algorithm that is (a) fast and efficient, (b)
general for a variety of data and characteristics, and (c) parallel
for modeling large-scale heterogeneous networks. Further,
as we shall see, the parallel learning algorithm proposed in
Section III-B is extremely flexible as it allows us to solve the
parameters in parallel, while not restricting us to solve for the
parameters in any specific order.

To start, we randomly initialize U € R™*¢, V € R™*? and
Z € R™*% and apply a sparsification technique. As shown later,
this speeds up convergence while also improving the model
accuracy by generalizing better (in fewer iterations). For each
inner iteration denoted ¢, we alternatively update V., and Z.j
and then use this to update U.; and repeat. In particular, a
single inner iteration updates the k" latent feature of V, Z and
U in the following order:

inner iteration

Vik, Vakos ooy Vs 21k, Zoks -y Lk, Uiy Uag, -

V.i Z.y, U.k

o Umik (2)

and thus, each outer-iteration updates the latent features in the
following order:

T outer iteration
V:17 Z:l; U:la seey V:k7 Z:k:a U;k;, ..

Vi=1,2,...

-aV:da Z:d;U:d (3)

Vi=1,2,...

inner iteration

Note that this is in contrast to the common update order-
ing: V;l, V:Q, vesy V:d, Z;l, Z:Q, vesy Z;d, U;l, U;g, ceey U;d. ‘We
have also experimented with different update strategies such
as: Z.1,V.1,U.,..., Z.4, V.4, U.4, among more sophisticated
adaptive ordering variants.

We now give the update rules for a single element. We allow
Vir to change with v and fix all other variables to solve the
following one-variable subproblem:

2
minJ(v) = (Aij — (U V], = UnVix) — Uikv) v
v ienh
J
Since J(v) is a univariate quadratic function, the unique solution

1S:
Zieszf (Aij = Ui V], + Uir Vi) Uin

At Yieo, UinUin

The update is computed efficiently taking O(|Q24) linear time
by carefully maintaining the residual matrix E®:

El=A;; —U V., V(i,j)ear

v =

Therefore, we can rewrite the above equation in terms of E7,
the optimal v* is simply:
. Yiea, (B + UnVik) Ui 4)
v =
A+ ZiEQj Uik Uik

Now, we update V), and Ef; in O(|€2;]) time using

Ejy « Ej— (" =Vig)Uk, Vi€l )
Vie « V7 ©)

Similar update rules for solving a single subproblem in
Z and U are straightforward to derive and may be computed
efficiently using the same trick. Thus, the update rules for the
one-variable subproblems V;y, Z;i, and Uy, are as follows:

= Zieﬂ;‘ (E% + Uiijk)Uik 7
Av + Zieg? UinUs
. > jean (B + UpnZin)Ujn

o a+3 eor UikUjk ®

Yjean (B + UnVir) Vin
Aut 2 jean VieVik

> jean (EY; + UirZj1) Zijk
a+2 eor ZikZjk

(€))

These updates rules may be used regardless of the order in
which the one-variable subproblems are updated.

Although we update V, Z, and U via column-wise updates,
the order in which the one-variable updates are performed may
also impact complexity and convergence properties. The factor-
ization using a column-wise update sequence corresponds to the
summation of outer-products: A ~ UV = Zzzl U:kV:—Z and
B~UZ' = 22:1 U;;.CZIC where V.., Z.;, and U.;, denote
the k'™ column (or latent feature) of V, Z and U, respectively.
Let Tyyuter and Tipner be the number of inner and outer iterations,
respectively. Note Toyuter 1S the number of times the k™ latent
feature is updated. Tinper iS the number of times the kR latent
feature is updated before updating the k£ + 1 latent feature.
Furthermore if the update order for each outer iteration is:
V:17 Z:la U:la B aV:ka Z:k7 U:k7 s aV:da Z:d7 U:da then each
of the d latent features are updated at each outer-iteration (via
Tinner inner-iterations). Since elements in v (or zg, zx) can
be computed independently, we focus on scalar approximations
for each individual element. For now, let us consider column-
wise updates where the kP latent feature of V, Z, and U is
selected and updated in arbitrary order. See Alg 1 for a detailed
description. Thus, during each inner iteration, we perform the
following updates: V., < v*, Z. < z*, U, < u* where v*,
z*, and u* are obtained via the inner iterations. For efficiency,
PCMF performs rank-1 updates in-place so that we always use
the current estimate. To obtain the updates above (i.e., v*, z*,
u*) one must solve the subproblem:

min {0 @ UV - i)

ueR™ veR",zeR™

(i,5)€QA

> (B U 2R i)+
(4,7)€QB
Mol 4+ A vI2 +alizl?} (10)

where E* = A — ukva and E’ = B — ukzg are the initial
sparse residual matrices for A and B, respectively. The residual
term for A is denoted as A — UV ' = A®) _ ukvz where



the k-residual A® is defined as:
AP = A—>"upv] =A-UV' +upv], fork=1,2,..,d (11)
F#k
Similarly, the residual term for B is B — UzZ' =B® _ ukzz
where the k-residual B® is defined as:
B® =B-> usz{ =B-UZ" 4wz, fork=1,2,...d (12)
f#k

For a single residual entry, let us define Agf) and Bz(jk ) as:
(k) _
A =

B

ij

Ef + U Vir, ¥(i,j) € Q% and  (13)
B} + UinZj, ¥(i, j) € QP (14)

Equivalently, let A®®) = E* 4 u,v, and B = EP + w7, .

Now a straightforward rewriting of Eq. 10:

. 2
min{ S (A~ wn) A VI (15)
T G, j)ena
c 2
> (B~ uaze)” + Nl + allal?
(i,§)ENB

Using Eq. 15 gives an approximation by alternating between
updating v, z, and u via column-wise updates. Note that
when performing rank-1 updates, a single subproblem can
be solved without any further residual maintenance. Thus, each

one-variable subproblem may benefit from Tjy,., iterations.

The inner iterations are fast to compute since we avoid updating
the residual matrices while iteratively updating a given & latent
factor via a number of inner iterations. As previously mentioned,
updates are performed in-place and thus the most recent estimates
are leveraged. This also has other important consequences as it
reduces storage requirements, memory locality, etc. Furthermore,
after the Ti,pe, inner iterations, we update E* and Eb,
k . A
EG o« AP —wvi, W(i,j) € Q* and  (16)
b k .o B
EY « BY —uzi, (i, j) e Q (17)

For convenience, we also define E* = AR ukv;r and

E® = B® — ukz;. Finally, the PCMF learning algorithm
updates each element independently via the following update
rules:

k
Zienf Ai'j)Uik

Vi = L i=1,2,...n 18
TN Y icon UinUik J (18
J
ZjeQB BEJI'C)UJ"C
Zig = : Li=1,2,...m 19
k a+zjeﬂ? U;rUji 9
k k
U Zjesz;’\ AE;‘)VM + Z]’esz? B'Ej)ij 1
= j 3 vi=1,...,m
FTN A Siean Vit Vi | a+ X cqn ZinZik
(20)

Thus, the above update rules perform n element-wise updates
on vy, then we perform m updates on zy, and finally m updates
are performed for uy. Furthermore that approach does not define
an element-wise update strategy (assumes a natural ordering
given as input) nor does it allow for partial updates. For instance,
one may update a single element in Vjy, then Z;, and Uy, and

continue rotating until all elements have been updated once.

To avoid overfitting, we leverage the following weighted reg-
ularization term that penalizes large parameters: A, > .-, || -
el 4+ A0 S0 19 v 12+ @ S QB |z 2 where ||
is the cardinality of a set (i.e., number of nonzeros in a row
or col of A or B) and || - ||? is the Ly vector norm. Further, a
simple yet effective graph sparsifier is used for speeding up the
PCMF framework as seen in Section IV. On many problems
we have observed faster convergence and consequently better

predictions in fewer iterations.

B. Parallel Scheme

Using the proposed PCMF learning algorithm as a basis, we
derive a parallel scheme for the PCMF framework that is
general for expressing many of the important PCMF variants
(such as non-negative PCMF ). As shown previously, PCMF
optimizes the objective function in (15) one element at a time.
A fundamental advantage of this approach is that all such one-
variable subproblems of a k latent feature are independent
and can be updated simultaneously. Alg. 1 serves as a basis
for studying different objective functions/regularizers, ordering
strategies, asynchronous updates, among many other variations.

A key advantage of PCMF lies in it’s flexibility to choose the
order in which updates are performed. This additional flexibility
results in a significantly faster parallelization with shorter wait
times between respective updates. Let m, = {v1,...,vn}, T, =
{21, .-y Zm}, mu = {u1, ..., Uy } denote an ordering of the rows
in V, Z, and U, respectively. For now, m,, 7., and 7, are
assumed to be independently permuted in an arbitrary manner
(largest degree, k-core, max error, etc.). From this, let us denote

II as:
U } 21

yUns 21,0 5 Zm, UL, "+

H:{U17"'
——

Tr,gt) Trit) 7_‘_1(})

where ¢t denotes the inner iteration. This implies that one-variable
updates are performed in the order given by m,, then 7., and

Algorithm 1 PCMF Framework

1: Initialize U, V, and Z uniformly at random
2: Obtain an initial ordering IT
3:Set E*=A and EP =B

4: repeat > outer iterations 7 = 1,2, ..., Touter
5 for k=1,2,...,d do

6: Compute A®) and B in parallel asynch. via (13), (14)

7 for t =1,2,..., Tinner do

8 parallel for next b jobs in II in order do

9: while worker w has updates to perform in local queue do
10: Obtain parameter to update (dequeue job)

11: Perform update via Eq. (18), (19), (20)

12: end while

13: end parallel

14: Recompute ordering IT (if adaptive ordering strategy)

15: end for

16: Update E? and EP in parallel asynch. via (16), (17)

17: end for

18: until stopping criterion is reached
19: return factor matrices V, Z, and U




so on. Hence, the next b row indices (i.e., vertices) to update
are selected in a dynamic fashion from the II ordering above.

More generally, PCMF is flexible for updating individual
elements in any order and is not restricted to updating all elements
in 7, first (or the k*" factor of v) before updating ., and thus
one can select the elements to update at a finer granularity.
This is possible since we are focused on the approximation
between a single element agf) in the k-residual matrix and the

multiplication of Uy, and Vj;, and similarly we are interested in

the approximation between bgk) and the multiplication of Uy
and Z ;. Therefore, let us redefine II as an arbitrary permutation
of the set {v1, ..., Upy 21, -ovy Zims UL, -oo, Upy . The ordering may
also change at each inner iteration (adaptive approaches) and
is not required to be static (Line 14). For instance, the order
may adapt based on the error from the previous inner iteration.
Further, we may choose to update only the top-z elements with
largest error in the previous iteration. This ensures we focus
on the variables that are most likely to improve the objective
function and also ensures work is not wasted on fruitless updates
that are unlikely to lead to a significant decrease in error.

In PCMF, each of the p workers are initially assigned a
disjoint set of b vertices (i.e., row indices) to update. After a
worker w completes its jobs (e.g., updating all vertices in its
assigned queue/vertex set), Line 8 in Alg 1 dynamically assigns
the next set of b rows to update (in order of II). Thus, we assign
jobs dynamically based on the availability of a worker. More
formally, each worker w € {1,...,p} has a local concurrent
queue which contains a set of (j,v;) pairs to process where
v; € R¥. Further, every such pair (4, v;) is known as a job and
corresponds to a one-variable update (from Section III). Thus
a worker w pops the next job off its local queue (Line 10),
performs one or more updates (Line 11), and repeats. At the
start, each worker w € {1, ..., p} initially pushes b job pairs
onto its own queue using the ordering II. If a worker w’s
local queue becomes empty, an additional set of b jobs are
dynamically pushed into the queue of that worker. The specific
set of jobs assigned to the w worker is exactly the next b jobs
from the ordering II (i.e., starting from the job last assigned to
the p workers). Note that these jobs correspond to the rows that
have yet to be updated in the current (inner) iteration (which are
given by the ordering defined above). This dynamic scheduling
strategy effectively balances the load as it significantly reduces
wait times between updates. Furthermore it has been shown to
be significantly faster than the previous state-of-the-art for real-
world networks with skewed degree and triangle distributions.
The number b of such (j,v;) job pairs assigned to a worker w
is parameterized in PCMF so that the number of jobs assigned
at a given time may be adapted automatically or set by the user.

To store the result from a single update, we index directly into
the proper vertex/row position in the array and store the updated
value. This has two implications. First we avoid additional
storage requirements needed to store the intermediate results as
done with previous approaches. Second the result from the update
is stored using the same array and thus the current estimate
may be used immediately. Let us note that CCD++ requires
additional arrays of length m and n to store the intermediate
results computed at each iteration. The results are then copied
back afterwards.

A key advantage of the proposed PCMF framework is the

ability to perform updates asynchronously without synchroniza-
tion barriers between each rank-one update. Previous work in
traditional matrix factorization usually requires that updates
are completed in full for U.; before moving on to V. and is
explicitly implemented using barriers to ensure synchronization
between rank-1 updates. For instance, CCD++ has multiple
synchronization barriers at each inner iteration. However, this
may cause most workers to wait for long periods while waiting
for another worker that is either slow or assigned an extremely
skewed work load. We relax such a requirement to allow for
the inner iterates to be completely asynchronous. The rank
one updates for V, Z, and U are completely asynchronously,
and when there is no more jobs to be assigned to a worker w,
that worker immediately grabs the next set of b jobs from the
ordering II. Our approach avoids the inner synchronization all
together by dynamically assigning the next b jobs in the ordering
II to the next available worker w regardless of the rank-one
update. Thus, workers do not have to remain idle while waiting
for other workers to finish. A work-stealing strategy is used so
that workers do not remain idle waiting for the slowest to finish.
In particular, jobs are pushed into each of the local worker
queues, and once a worker completes the assigned jobs, we pop
the last k jobs from the queue of the slowest worker and assign
them to an available worker. Clearly this parallel approach
significantly improves CCD++ as workers are never idle and
always making progress by partitioning the jobs assigned to the
slowest worker.

A summary of the key advantages over the state-of-the-art:

e Computations performed asynchronously whenever appro-
priate. The inner-iteration is completely asynchronous. We
also update the residual matrices in a non-blocking asyn-
chronous fashion and carry out many other computations
in a similar manner whenever possible.

o Flexible ordering strategy allows finer granularity. Our
parallel scheme for PCMF improves load balancing by
allowing a flexible ordering strategy to be used. Note that
prior work is unable to order the updates at this level of
granularity. Adaptive techniques based on max error from
the previous iteration are also proposed.

o Updates performed in-place and current estimates utilized.
Furthermore updates are performed in-place and thus the
current estimates are immediately utilized. This also reduces
the storage requirements.

e Memory and thread layout optimized for NUMA architecture.
In addition, we also have optimized PCMF for NUMA
architecture [30] using interleaved memory allocations in
a round robin fashion between processors. Results are
discussed in Section I'V-C.

o Column-wise memory optimization. An optimized memory
scheme for our particular update pattern is used where the
latent factor matrices are stored and accessed as a k x m
contiguous block of memory. This scheme exploits memory
locality while avoiding caching ping pong and other issues
by utilizing memory assignments that carefully align with
cache lines.

C. Complexity Analysis

Let |24 and |2B| denote the number of nonzeros in A and
B, respectively (e.g., the user-by-item matrix A and the user-
interaction matrix B). As previously mentioned, d is the number



of latent features in the factorization. For a single iteration,
PCMF takes O (d (]Q*| 4 |2B]) ), and therefore linear in the
number of nonzeros in A and B. Note that in the case that A
and B represent user-item ratings and social network information,
then |QA| usually dominates [2B| as it is usually more dense
than the social network matrix B. Observe that each iteration
that updates U, V, and Z takes O (d(|Q0*[+[QB)), O(|Q4|d),
and O(|2B|d) time, respectively. Hence, the total computational
complexity in one iteration is O (d(|Q2*|+|QB|)). Therefore the
runtime of PCMF is linear with respect to the number of nonzero
elements in the collection of matrices (network data) given
as input. This approach is clearly fast for large heterogeneous
networks.

D. A Fast Nonparametric Model

Existing work has one or more parameters that need to be
manually selected by the user, which is both time-consuming and
expensive for big data. These problems limit the applicability of
these techniques in many real-world applications. To overcome
these limitations, this work proposes a nonparametric variant of
PCMF, that is:

(a) Data-driven, completely automatic, requiring no manual
selection/tuning by the user.

(b) Fast relaxation method to efficiently search over the space
of models, taking a fraction of the time that PCMF takes.

To search over the space of models from PCMF, one must
first choose a model selection criterion. In this work, we primarily
used information criterion of Akaike (AIC) [31], though other
model selection criterion may also be used in PCMF such as
Minimum Description Length (MDL) and many others. The
AIC value is Cyrc = 22 — 2In(L) where z is the number of
parameters in the model, that is * = d(m + n), and L is
the maximized likelihood. Thus for a given U € R™*¢ and
V € R™*? computed using PCMF with d-dimensions gives
In(£) = —55|A — UV T ||% where 02 is the variance of the
error. This criterion balances the trade-off between goodness of
fit and the complexity of the model (number of free parameters).
Hence, the goodness of fit of a model is penalized by the
number of estimated parameters and thus discourages overfitting.
The model selected is the one that minimizes the information
criterion.

Since efficiency is of fundamental importance, the proposed
method avoids precomputing a set of (full PCMF) models (for
selection via AIC), and instead leverages the fast relaxation
method to effectively search the space of models that are likely
to maximize the selection criterion. Hence, we begin computing
models using low parameter estimates and gradually increase
each parameter until we discover a model that leads to a larger
Cy1c than found thus far. At this point, one may terminate or
continue searching the next few models and terminate if a better
model is not found in those few attempts. However, if a better
model is found, then the number of failed trials is reset, and
the search continues. This last step is to provide more certainty
that a global optimum was reached. Note that the method is
space-efficient as well as fast, since the relaxation method only
requires us to store the best model found thus far. Furthermore,
we avoid computing ||A — UV " ||2, by using the residual matrix
E® from PCMF.
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Fig. 1. Varying amount of training data and dimensionality of models
(epinions).

Searching over the space of models is expensive and in
certain settings may be impractical, even using the relatively
fast search technique above. For this reason, we develop a fast
relaxation variant of PCMF. Intuitively, the relaxation method
performs a few iterations to obtain a fast rough approximation.
The method reuses data structures and leverages intermediate
computations to improve efficiency when searching the space of
models. Furthermore the relaxation method serves as a basis for
exploring the space of models defined by the PCMF framework
(from Section III). Most importantly, it is shown to be strikingly
fast and scalable for large complex heterogeneous networks, yet
effective, obtaining near-optimal estimates on the parameters.

Models are learned using the fast relaxation method and our
model search technique is used to find the “best performing
model” from the infinite model space. We also compared to
a naive method that is essentially the vanilla PCMF from
Section III using the early termination strategies. Overall,
the fast relaxation method is typically 20+ times faster than
the naive method, yet is only marginally more accurate than
our fast relaxation. For instance, using the eachmovie data,
we automatically found a nearly optimal model in only 9.5
seconds compared to 258 seconds using the naive approach. The
fast non-parametric relaxation automatically identified a model
with d = 65 whereas the slower but more accurate approach
found d = 75. Nevertheless, once the parameters were learned
automatically, we then used the corresponding models to predict
the unknown test instances and used RMSE to measure the
quality of the models. The difference was insignificant as the
fast relaxation had 1.108 whereas the much slower approach
gave 1.107 and thus the difference in RMSE between the two is
insignificant. In a few instances, the model learned from the fast
relaxation using AIC was of better quality (lower testing error).

Let us note that in previous work the model is typically
selected arbitrarily and typically varies for each dataset [1].
Instead, we perform model selection automatically using AIC
and perform a fast relaxation method for computing a rough
approximation. As previously mentioned, this data-driven
nonparametric PCMF arose from necessity as it is essential
for many practical situations and real-time systems (i.e., tuning
by users are not possible or expensive and efficiency is critical
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Fig. 2. Speedup of methods from a variety of network types.

due to the sheer size of the streaming graph data). Note that
if external attributes are available, then another approach is to
search the space of models and select the one that gives rise
to the best performance (i.e., accuracy or application-specific
metric). Finally, it is also straightforward to adapt the information
criterion above for an arbitrary number of matrices and alternate
objective functions.

IV. EXPERIMENTS
A. Experimental Setup and Evaluation

Platform: For the experiments, we use a 2-processor Intel
Xeon X5680 3.33GHz CPU. Each processor has 6 cores (12
hardware threads) with 12MB of L3 cache and each core has
256KB of L2 cache. The server also has 96GB of memory in a
NUMA architecture. The PCMF framework is written in C++ and
deployed in our high-performance RECommendation PACKage
called RECPACK. To compare with the state-of-the-art (CCD++),
we used both a single matrix variant called PCMF-BASIC as
well as the more general PCMF approach.

Data: All methods are evaluated on a large diverse collection of
data with different properties and types. A complete summary
of the data, its semantics, and statistics are provided in the
supplementary material'. The data used for evaluation is from
network repository [32] and accessible online?>3.

Evaluation Metrics & Comparison: Let Q' denote the
instances in the test set. Given a row ¢ and column j from the
test set (i,7) € Q' (of either A or B), we predict the value
(e.g., rating, group membership, friendship tie) for the (i, j)t"
entry in A (or B) as (u;, v;) where (-,-) is the inner Euclidean
product of the row and column vectors (e.g., user and item
vectors), respectively. To measure the prediction quality (error),
we use root mean squared error (RMSE):

Z(i,j)eQ‘eS' (Aij -
|Qtesl|

(u;,v;))?

1
2

www.ryanrossi.com/pcmf /supp.pdf
www.networkrepository.com
3 www.networkrepository.com/graphML

In addition, we also used mean absolute error (MAE) and
Normalized RMSE. We set A\, = A, = 0.1 and Toyter =
Tinner = 5, unless otherwise noted. For comparison, we used
the exact code from [1].
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B. Parallel Scaling

Figure 1 investigates the scalability of the proposed methods
when varying the amount of training data and number of
latent dimensions (d). Overall, PCMF and PCMF-BASIC scale
significantly better than the recent state-of-the-art, which is
consistent across various amounts of training data and parameter
settings (Figure 1). Similar results are found using other networks
with different characteristics and types (Figure 2).

Figure 3 compares the efficiency of the methods across a
variety of network types with different characteristics. Just as
before, PCMF variants outperform the others, and in particular,
the workers are found to be more effectively utilized (due to
improved load balancing, and caching by careful ordering, etc.).
We have also used many other benchmark networks in our
comparison and in all cases found that PCMF converged faster
to the desired error. For instance, in the dating agency data
(users-rate-users) it took us 95 seconds compared to 138 given
by the best state-of-the-art method, whereas for yelp (users-rate-
businesses) it took us 2 seconds compared to 5, and similar
times were observed for eachmovie (users-rate-movies). We
also experimented with numerous other variants with different
update strategies. Regardless of the variant and parameters, the
best scalability arises from using one of the PCMF variants.

For comparing the algorithms across a wide range of
problems, we utilize performance profiles [33]. Just like ROC
curves, the best results lie towards the upper left. For a variety
of network problems, PCMF is shown to be significantly faster
than the state-of-the-art (Figure 4).

C. Memory and Thread Layout

Since the local memory of a processor can be accessed faster
than other memory accesses, we explored two main memory
layouts including bounded where memory allocated to the local
processor (socket) and interleaving memory allocations in a
round robin fashion between processors. Overall, we found the
layout of memory to processors had a large effect on scalability
and in particular, the best scalability arises from interleaved
memory (Figure 5). Interleaved memory typically outperforms
the bounded memory layout, regardless of the thread layout
strategy used. Additionally, this finding is consistent across
various types of data and dimensionality settings. Therefore,
PCMF leverages the interleaved memory layout, unless specified
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otherwise. Note that we also experimented with thread layout
and found no significant difference.

D. Predictive Quality

Results are summarized in Figure 6 for a variety of different
settings and network types. In all cases, we find that PCMF
outperforms the baseline as expected. Intuitively, this indicates
that modeling the additional matrix collectively is useful and
includes useful information that is leveraged in PCMF. Similar
results are found when a and A vary as shown later in
Section IV-E. Overall, we find that PCMF improves the accuracy

of predictions and the improvement is statistically significant.

To understand the accuracy gain with PCMF, we also evaluated
variations of PCMF that performed the rank-1 updates in a
different order, used different regularization, and a variant that
updated entries in a biased manner (top-k entries with largest
error). Similar results were observed in majority of cases (plots
removed for brevity). Figure 7 investigates the impact of accuracy
and runtime of PCMF and PCMF-BASIC when varying the
number of inner and outer iterations used in the learning.

051
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Fig. 6. Comparing quality of the models learned.
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Fig. 7. Comparing the effectiveness of inner and outer iterations.

E. Impact of o

PCMF seamlessly allows for additional information to be
used in the factorization. In these experiments, we vary the
o parameter that controls the influence/weight given to the
additional matrices (e.g., social interaction matrix). In particular,
if o = 0 then the additional information (e.g., social interactions)
are ignored and only the initial target matrix of interest is used in
the factorization (e.g., the user-item matrix). Conversely, if o =
oo (or becomes large enough), then only the social interactions
are used (as these dominate). We find that « significantly impacts
performance as illustrated in Figure 8, and thus incorporating
additional information (e.g., social network, group membership)
significantly improves the quality of the network model for
prediction. Importantly, the optimal accuracy is achieved when
all data sources are used in the factorization.

—o—CCD++
—o— PCMF-Basic
——PCMF

Fig. 8. Varying « (epinions 20% with d = 10).

Figure 9 investigates the impact of oz when A changes and
vice-versa. The best model is found when o« = 1 with A = 0.1,
emphasizing the utility of the proposed approach that collectively



factorizing multiple types of network data simultaneously.

A
0 0.1 0.5 1 5 100
0| 1.16 1.04 1.07 133 | 47 4.74
01| 34 21 095 101 25 471

Q 05| 35 094 098 113 24 4.64
1 26 093 1.02 121 3.8 4.69
5123 1 109 135469 471

100| 1.2 1.04 1.08 1.34 | 469 4.71

Fig. 9. Exploring the impact of the parameter space on the predictive
quality of the models

F. Impact of the Latent Dimension

For this experiment, we investigate the impact on accuracy
and scalability of PCMF when learning models with different
dimensions. Using a smaller number of dimensions d leads
to faster convergence as updates are linear to d as noted in
Section III. Alternatively, as the dimensionality parameter d
increases, the model parameter space expands capturing weaker
signals in the data at the risk of overfitting. The scalability of
both PCMF and PCMF-BASIC does not significantly change as
we vary the number of latent dimensions learned. One example
of this behavior is shown in Figure 1 for d € {5, 50,500} and
for each of the different amounts of training data available for
learning. Similar results are found for other parameter settings
as well.

G. Serving Predictions in Real-time Streams

We also proposed fast and effective methods for serving
predictions in a streaming fashion as shown in Table 1. In
particular, we investigate PCMF-based methods in a streaming
setting where user requests are unbounded and continuously
arriving over time.

TABLE 1. EVALUATION OF STREAMING PREDICTION METHODS
requests served per second (items) (dims)
Dataset PCMF-BASIC PCMF-NN PCMF-SOC n d
Epinions 1482 122 5468 755k 5
MovielLens 3783 398 N/A 65k 40
Yelp 4505 3347 N/A 11k 200

H. Heterogeneous Social Link Prediction

The PCMF framework is also effective for predicting the

existence of links in large-scale heterogeneous social networks.

Existing work in social network link prediction has largely
used only the past friendship graphs [24], whereas this work
leverages PCMF to jointly model heterogeneous social network
data. To evaluate the effectiveness of the heterogeneous link
prediction approach, we use the LiveJournal data collected by
Mislove et al., see [34]. In particular, we use the social network
(user-friends-user) and the group membership bipartite graph
(user-joined-group) which indicates the set of groups each user
is involved. Note that PCMF may also be used to predict the
groups a user is likely to join in the future (heterogeneous
link prediction, link between multiple node types) as well as
links in a homogeneous context such as friendships. PCMF is
used to predict a set of held-out links* (i.e., future/missing)

4Note that these are known actual relationships in the social network, but are
not used for learning.

and use the NRMSE evaluation metric for comparison. Overall,
PCMF consistently resulted in significantly lower error than
the baseline. In particular, we observed a 17.5% reduction in
the error when PCMF is used instead of the base model that
uses only the social network for link prediction. This reveals
the importance of carefully leveraging multiple heterogeneous
networks for link prediction.
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Fig. 10. Discovering edge roles. Edges are colored by the role with largest
membership. We visualize the diseasome biological network. Node color
indicates the class label (disease/gene).

1. Discovering Edge Roles

Role discovery is becoming increasingly popular [20].
However, existing work focuses on discovering roles of nodes,
and has ignored the task of discovering edge roles. In this
work, we investigate edge-centric roles using a non-negative
factorization variant of PCMF. Following the idea of feature-
based roles proposed in [22], we systematically discover an
edge-based feature representation. As initial features, we use
a variety of edge-based graphlet features of size 2,3, and 4.
From these initial features, more complicated features are
discovered using the algorithm proposed in [22]. Given this
large edge-by-feature matrix, PCMF is used to learn edge-role
memberships. Importantly, PCMF provides a fast and parallel
method for collective role discovery in large heterogeneous
networks. Figure 10 demonstrates the effectiveness of PCMF by
visualizing the edge roles learned from a biological network.
The edge roles discovered by PCMF are clearly correlated with
the class label of the node, and make sense as they capture the
structural behavior surrounding each edge in the network.

J. Improving Relational Classification

PCMF may also be used to learn a more effective relational
representation for a variety of relational learning tasks. In



particular, Figure 11 shows the impact on the network structure
when PCMF is used. Strikingly, PCMF creates edges between
nodes of the same class, making them significantly closer
compared to the original relational data (see Fig. 10).

Fig. 11.  PCMF improves relational/collective classification by automatically
connecting up nodes of the same label. This not only benefits relational
classification, but may significantly improve collective approaches that use label
propagation by reducing noise and improving the quality of messages passed
between such nodes. Nodes are colored by class label (disease/gene).

V. CONCLUSION

This paper proposed PCMF — a fast parallel approach
for jointly modeling large heterogeneous networks. Unlike
existing approaches that are either inefficient or sequential,
PCMF is parallel, non-parametric, flexible, and fast for large
heterogeneous networks, with a runtime that is linear in the
number of observations from the input data. Compared to the
recent state-of-the-art parallel method, both PCMF and PCMF-
basic (the proposed single matrix factorization variant) were
shown to be significantly more scalable, while also providing
better quality models for relational learning tasks. Moreover,
PCMF is flexible as many components are interchangeable
(update order/strategy, loss, regularization, etc.), as well as non-
parametric/data-driven (requiring no user-defined parameters),
and thus, well-suited for many real-world applications. In
addition, PCMF was shown to be effective for a variety of
relational learning and modeling tasks across a wide range of
network data. A main strength of PCMF lies in its generality as
it naturally handles a large class of matrices (i.e., contextual/side
information), from sparse weighted single typed networks (i.e.,
social friendship/comm. networks, web graphs) and multi-typed
networks (user-group memberships, word-document matrix) to
dense matrices representing node/edge attributes as well as
dense similarity matrices.
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