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ABSTRACT

Rossi, Ryan A. Ph.D., Purdue University, August 2015. Improving Relational Machine
Learning by Modeling Temporal Dependencies. Major Professor: Sunil Prabhakar.

Networks encode dependencies between entities (people, computers, proteins) and

allow us to study phenomena across social, technological, and biological domains.

These networks naturally evolve over time by the addition, deletion, and changing of

links, nodes, and attributes. Existing work in relational machine learning (rml) has

ignored relational time series data consisting of dynamic graphs and attributes, even

despite the importance of modeling these dynamics.

This dissertation investigates the problem of relational time-series learning (rtl)

from dynamic attributed graph data, with the goal of improving the predictive quality

of existing rml methods. In particular, we propose a framework for learning dynamic

graph representations, as well as methods for the three representation discovery

tasks of (i) dynamic node labeling, (ii) weighting, and (iii) prediction. In addition,

techniques for modeling relational and temporal dependencies are proposed, along

with efficient methods for discovering features, ensembles, as well as classification

methods. The results demonstrate the importance of modeling both the relational and

temporal dependencies as well as learning an appropriate graph data representation

that captures these fundamental patterns. Furthermore, while previous work has

focused on static graphs that are small, non-attributed, simple, or homogeneous, we

instead have carefully designed generalized relational time-series models that are: (a)

efficient with linear or nearly linear runtime, (b) scalable for big graph data, (c) flexible

for a variety of data types and characteristics, and (d) capable of modeling attributed

and heterogeneous relational time-series data. Finally, the proposed methods are

shown to be scalable, effective, and flexible for a variety of real-world applications.
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1. INTRODUCTION

This dissertation investigates the problem of learning dynamic relational representation

from a time series of attributed graph data. The purpose is to achieve better predictions

for relational time series classification and regression.

Recently, Statistical Relational Learning (SRL) [1] methods were developed to

leverage the relational dependencies [2] between nodes [3–8]. In many cases, the SRL

algorithms were shown to improve over traditional machine learning approaches [3,5,8].

This dissertation builds upon this body of knowledge by considering dynamic attributed

graphs and three main representation learning tasks including dynamic node labeling,

dynamic node weighting, and dynamic node prediction. In particular, we propose

novel methods and tools for modeling the relational and temporal dependencies of the

nodes, links, and attributes. Using the modeled dependencies, we automatically learn

a time series feature-based representation that captures the fundamental properties

of the data. The learned representation from the dynamic attributed network is

then used for relational time series prediction. Our work investigates the problem

of discovering a dynamic graph data representations for improving the accuracy of

predictive models as well as a variety of other machine learning tasks.

In addition, this dissertation seeks to answer the following main questions: (1)

How to represent, summarize, and incorporate the temporal dependencies in dynamic

attributed networks? (2) How to discover effective features from dynamic attributed

networks? (3) How to use these features to build accurate relational time-series

forecasting models? (4) How to use them for solving other problems in machine

learning such as temporal-relational pattern mining and clustering? In particular, our

main focus is on discovering representations of dynamic attributed graphs that capture

the fundamental relational and temporal dependencies for improving relational time

series prediction.
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(relational) dependencies among data instances are naturally encoded. More specifically,

relational autocorrelation is a correlation or statistical dependence between the values

of the same attribute across linked instances [29] and is a fundamental property of many

relational data sets. For instance, people are often linked by business associations,

and information about one person can be highly informative for a prediction task

involving an associate of that person. Recently, SRL methods [1] were developed to

leverage the relational dependencies (i.e., relational autocorrelation [2], also known

as homophily [30]) between nodes [3, 4, 6–8]. In many cases, these relational learning

methods improve predictive performance over traditional IID techniques [3, 5, 8].

Relational learning methods have been shown to improve over traditional ML

by modeling relational dependencies, yet they have ignored temporal information

(i.e., explicitly assumes the data is independent with respect to time). In that

same spirit, our work seeks to make further improvements in predictive performance

by incorporating temporal information and designing methods to accurately learn,

represent, and model temporal and relational dependencies. The temporal information

is known to be significantly important to accurately model, predict, and understand

relational data [31, 32]. In fact, time plays a key role in many natural laws and is

at the heart of our understanding of the universe, i.e., the unification of space and

time in physics [33] and how time is related to space and vice-versa is fundamentally

important to our understanding and interpretation of the universe and its laws [33,34].

We make a similar argument here, that ignoring time in attributed networks can only

add further uncertainty, as time places a natural ordering on the network components,

including the changing of attribute-values, links, and nodes.

This dissertation formulates the problem of relational time series learning and

proposes a framework that consists of two main components as shown in Figure 1.2.

The first component learns a feature-based representation from a collection of dynamic

relational data (i.e., a time series of graphs and attributes) given as input which

incorporates the fundamental temporal dependencies in relational graph data. While

the second component leverages the learned feature-based representation for relational
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for a comprehensive survey on relational representation discovery (for static graph

data).

In this work, we use relational autocorrelation and along with two temporal

dependencies in dynamic attributed networks. More precisely, we observed two

fundamental temporal dependencies of dynamic relational network data including

the notion of temporal locality and temporal recurrence. We define these temporal

dependencies informally below since they apply generally across the full spectrum of

temporal-relational information including non-relational attributes, relational node

attributes, relational edge attributes, as well as edges and nodes in a graph.

Property 1 (Temporal Locality): Recent events are more influential to the current

state than distant ones.

This temporal dependency implies that a recent node attribute-value, edge attribute-

value, or link is stronger or more predictive of the future than a more distant one. In

terms of attribute-values on nodes (or edges) this implies that a recently observed

attribute-value (e.g., number of posts) at t is more predictive than past observations

at t − 1 and more distant. Hence, if xi(t) = α is observed at time t, then at time

t+ 1 it is likely that xi(t+ 1) = α. In the case of edges, this implies that a recently

observed edge (vi, vj) ∈ Et between vi and vj at time t implies that there is a high

probability of a future edge (vi, vj) ∈ Et+1 at t+ 1 will arise.

Property 2 (Temporal Recurrence): A regular series of observations are more likely

to indicate a stronger relationship than an isolated event

The notion of temporal recurrence implies that a repeated sequence of observations

are more influential or have a higher probability of reappearing in the future than an

isolated event. In other words, a repeated or regular sequence of node attribute-values

(or edge attribute-values) are more likely to reappear in the future than an isolated

node attribute-value. As an example, given a communication network and a node

attribute representing the topic of communication for each node in the network, if

node vi has a regular sequence of topics, i.e., xi(k) = α, fork = p, ..., t across a recent
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set of timesteps, then there is a higher probability that xi(t+ 1) = α is observed than

another topic of communication. In terms of edges, temporal recurrence implies that

a repeated or recurring series of edges (vi, vj) ∈ Ek, fork = p, ..., t between vi and vj

implies a higher probability of a future edge (vi, vj) ∈ Et+1 at t + 1. As an aside,

temporal recurrence is based on regular or recurring series of similar observations

whereas temporal locality is based on the notion that the most recent observations

are likely to persist in the future.

Learning accurate relational time series representations for nodes in dynamic

attributed networks remains a challenge. Just as SRL methods were designed to

exploit the relational dependencies in graph data, we instead leverage the relational

dependencies and the temporal dependencies of the edges, vertices, and attributes to

learn more accurate dynamic relational representations.

In this dissertation, we formulate the problem of dynamic relational representation

discovery and propose a taxonomy for the dynamic node representation tasks shown

in Figure 1.5. More specifically, the dynamic representation tasks for nodes include

(i) predicting their label or type, (ii) estimating their weight or importance, and (iii)

predicting their existence. We propose methods for each of the dynamic relational

node representation tasks in Figure 1.5 which are defined below.

Problem 1 (Dynamic Node Labeling): Given a time-series of attributed graph

data, we define the dynamic node labeling problem as the task of learning a time

series of node labels Xp, ...,Xt where for each timestep a given node may be assigned

a single label (i.e., class label) or multiple labels (i.e., multiple topics or roles). The

time series of labels may represent a known class label previously observed or a latent

variable such as roles, topics, among many others.

Problem 2 (Dynamic Node Weighting): Given a time-series of attributed graph

data, we define the dynamic node weighting representation task as the learning of

a time series of weights for the nodes Xp, ...,Xt that utilize relational and temporal

dependencies in the dynamic relational data. The time series of weights may represent
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the importance or influence of a node in the dynamic attributed network or it may

simply represent a latent variable capturing the fundamental dependencies in the

dynamic relational data.

Problem 3 (Dynamic Node Prediction): Given a time-series of attributed graph

data, we define the dynamic node prediction representation task as the prediction of

the existence of a node in a future timestep t+ 1 where the learning leverages past

temporal-relational data and more specifically incorporates relational and temporal

dependencies in the dynamic relational data. The predicted node may represent a

novel type of node, not yet discovered such as a role or topic of communication, or

it may be a novel node from an already existing node type such as a Facebook user

or group. Most techniques also predict the existence of edges between the predicted

node and the set of nodes in the graph.

1.2.2 Relational Time Series Prediction

Using the learned representation, we demonstrate the effectiveness of these tech-

niques for relational time series classification and regression of dynamic node attributes.

We define relational time series classification and regression more precisely below.

Problem 4 (Relational Time Series Classification): Given a “known” time

series of attributed graph data G = {G1, ...,Gt} for learning, the task is to infer the

class labels Yt+h of the nodes at time t+ h in the graph where L refers to the set of

possible labels.

As an aside, if h = 1 then we call this one-step ahead prediction, whereas multi-step

ahead prediction refers to the case when h > 1, and thus the prediction is across

multiple timesteps. Our relational time series classification methods are also flexible

for both binary (i.e., |L| = 2) and multi-class problems (i.e., |L| > 2), whereas binary

classification has been the primary focus of the past relational learning methods
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for static graphs. Similarly, we also investigate the relational time series regression

problem.

Problem 5 (Relational Time Series Regression): Given a time series of

attributed graphs G = {G1, ...,Gt}, the task is to estimate the real-valued variable

Yt+h ∈ R
n at time t+ h for the nodes in the graph.

The prediction task investigated in this dissertation is also fundamentally different

than the traditional relational learning problems/assumptions. More specifically, we

define within-network (e.g., inference) as the task where training instances from a

single (static) graph are connected directly to instances whose classification labels are

to be predicted [5,70]. Conversely, the task of across-network inference attempts to

learn a model on a (static) network and applying the learned models to a separate

network [71, 72]. For instance, we may learn a model from a static and/or aggregated

graph from Facebook and use that learned model for prediction on another social

network such as Google+ or Twitter. While both prediction problems for relational

learning assume a static network, they also differ fundamentally in their underlying

assumptions and goals. On the other hand, we focus on using the past time series of

attributed graphs where the training nodes may be connected directly to nodes whose

classification labels are to be predicted and similarly the past time series observations

of the prediction attribute may also be directly used. The fundamental idea is that

both past relational and temporal dependencies and information may be used to

predict the future time series values of a given attribute. We also note that we may

learn a model using some past data and use it to predict the future value at t+ h of

an attribute time series, or we could use a technique that does “lazy learning” in the

sense that the past data is determined upon prediction time and used for predicting

t+ h. Our work includes both types of methods. As an aside, most of the relational

learning methods for static graph data is mainly for classification, while regression has

received considerably less attention. Despite this seemingly systematic bias towards
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classification, we focus on the two complimentary dynamic prediction tasks, namely,

relational time series classification and regression.

1.3 Related Work

This section briefly reviews and discusses the past work.

1.3.1 Tempoal Link Representation Tasks

While our dynamic relational representation discovery taxonomy shown in Fig-

ure 1.5 focuses on the labeling, weighting and prediction of nodes, there is also the

symmetric dynamic graph representation tasks for links which includes link labeling,

link weighting, and link prediction. Our work is not concerned with the link-based dy-

namic representation tasks as these have been investigated in various contexts [48–57].

For instance, link prediction and weighting has been used to improve search en-

gines [54], recommendation systems [73] for both products [51, 52] and friends (i.e.,

social recommendation) [74], among many others [75–77]. We also note that other work

has focused on predicting links in temporal networks using tensor factorizations [78]

and predicting structure in these networks using frequent subgraphs [79].

1.3.2 Temporal Centrality and Analysis

Recently, there has been a lot of work on analyzing dynamic or temporal graphs

which has focused solely on edges that change over time, and has ignored and/or

discarded any attributes (both dynamic or static) [35, 80–88]. Centrality measures

have also been extended for temporal networks [35,36]. While the vast majority of this

work has focused only on dynamic edges (i.e., dynamic/temporal/streaming graphs),

we instead focus on dynamic relational data and incorporate the full spectrum of

dynamics including edges, vertices, and attributes (and their static counterparts as

well).
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1.3.3 Time Series Analysis

Last section discussed temporal graph analysis which lacked attribute data, whereas

non-relational attribute-based time series data [62–64] is the focus of this section.

In particular, traditional time series methods ignore graph data all together [58–61],

and focus solely on modeling a time-dependent sequence of real-valued data such as

hourly temperatures or economic data such as stock price or gross domestic product

(GDP) [62–64]. In contrast, our proposed methods naturally allow for modeling time

series of attributes and graphs (i.e., relational time series data) where each node

and edge may have a multi-dimensional time series with arbitrary connectivity or

dependencies between them as shown in Figure 1.4.

At the intersection of time series analysis and machine learning, Ahmed et al. [61]

recently used machine learning methods such as Neural Networks [89] and SVMs [90]

for time series forecasting. In particular, the authors found that many of these machine

learning methods offered significant improvements over the traditional time series

models [61] such as auto-regressive (AR) models and the ilk [60]. The main contribution

of the work by Ahmed et al. [61] was there use of traditional machine learning

methods for time series forecasting, which has recently attracted numerous follow-up

studies [91–93]. From that perspective, our work makes a similar contribution as we

formulate the problem of relational time series learning for dynamic relational graph

data, and propose techniques for relational time series classification and regression,

which are shown to improve over traditional relational learning and time series methods.

1.3.4 Relational Learning

The majority of research in relational learning has focused on modeling static

snapshots or aggregated data [65,66] and has largely ignored the utility of learning

and incorporating temporal dynamics into relational representations. Previous work

in relational learning on attributed graphs either uses static network snapshots or

significantly limits the amount of temporal information incorporated into the models.
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Sharan et al. [94] assumes a strict representation that only uses kernel estimation for

link weights, while GA-TVRC [95] uses a genetic algorithm to learn the link weights.

Spatial-RPTs [96] incorporate temporal and spatial information in the relational

attributes. However, the above approaches focus only on one specific temporal

pattern and do not consider different temporal granularities (i.e., they use all available

snapshots and lack the notion of a lagged time-series). In contrast, we explore a larger

space of temporal-relational representations in a flexible framework that can capture

temporal dependencies over links, attributes, and nodes. To the best of our knowledge,

we are the first to leverage the full spectrum of dynamic relational data to improve

predictions.

We are also the first to propose and investigate temporal-relational ensemble

methods for time-varying relational classification. However, there has been recent

work on relational ensemble methods [97–99] and non-relational ensemble methods

for evolving streams [100]. While none of the past work proposes temporal-relational

ensemble methods for classification, there has been recent work on relational ensemble

methods [97–99]. In particular, Preisach et al. [97] use voting and stacking methods

to combine relational data with multiple relations whereas Eldardiry and Neville [99]

incorporates prediction averaging in the collective inference process to reduce both

learning and inference variance.

1.3.5 Deep Learning

Our work is also related to the machine learning topic of deep learning [101–107],

which has recently received a considerable amount of attention from industry due to its

success in a variety of real-world applications and systems [108–110]. However, nearly

all of this work has focused on images and other similar types of data, whereas we

focus on dynamic attributed networks. In view of our work, deep learning for dynamic

relational data is informally any method that constructs a representation with varying

levels of abstraction or granularity with dependencies between the various layers. For
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instance, our proposed drmm method for node prediction first learns a large set of

features, then we discover roles from those features using matrix factorization (i.e.,

capturing the essence of that set of features), and finally we model the role transitions

over time. These representations form a hierarchy of layers each capturing a different

level of granularity in the dynamic attributed networks.

1.4 Thesis Statement and Contributions

In this dissertation, we investigate the problem of relational time series learning and

propose techniques for the dynamic representation tasks of dynamic node labeling

and weighting. Using the learned representation, we demonstrate the effectiveness

of these techniques for relational time series classification and regression of dynamic

node attributes. The main thesis of this dissertation can be stated as follows:

Discovering an appropriate dynamic graph representation that captures the

relational and temporal dependencies of the nodes, edges, and attributes,

will improve the accuracy of predictive models

In this dissertation, we proposed a variety of methods for learning dynamic

relational representation from a time series of attributed graph data. Using the learned

dynamic relational representation as a basis, we focus on two problems of fundamental

importance: (a) how to learn a time-series of features for the graph-based forecasting

tasks including classification, regression, and multivariate regression problems, (b) how

to use the learned features from the dynamic relational representation methods to solve

other problems in machine learning such as anomaly detection or other qualitative tasks

such as clustering the main time series patterns in a dynamic attributed networks?

The main contributions of this dissertation are as follows:

� We introduce an intuitive taxonomy for dynamic relational representation

discovery that formulates the node representation tasks of (i) predicting node

labels, (ii) estimating node weights, and (iii) predicting their existence.
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Table 1.1.: Supervised and unsupervised techniques for relational time-series represen-
tation learning from dynamic attributed networks

Supervised Unsupervised
D
y
n
a
m
ic

N
o
d
e

Labeling

Relational Time Series Classi-
fication (drc [111] [18] [2])

� Dynamic Local Structural Be-
haviors (Dynamic Role Mixed-
Membership Model (drmm) [41]
[112])

� Dynamic Latent Topics (Latent
Textual Semantics [18])

Weighting Relational Time Series Regres-
sion [44]

Dynamic Node Ranking and Impor-
tance (Dynamic PageRank [113])

� We propose three techniques for learning dynamic relational representations

for improving SRL tasks in dynamic attributed graphs (based on the above

taxonomy) In addition, the proposed methods are also particularly useful

for (1) dynamic relational classification (drc), (2) dynamic ranking and

importance (dpr), and (3) modeling large dynamic networks (drmm).

� We propose a general framework for dynamic relational representation dis-

covery and use the various components for dynamic relational classification

(drc). More specifically, we develop a family of methods called dynamic

relational classifiers (drc) which are suitable for heterogeneous networks

where links and nodes may be of different types. The proposed dynamic

relational classification methods use a variety of kernel functions to model

the dynamic influence of the edges, vertices, and attributes. These weights

are then incorporated into the dynamic relational classifiers to moderate

the influence of the edges, vertices, and attributes. We use supervised fea-

ture construction to systematically select the most significantly correlated

features using the class labels. In addition, we learn the model parameters
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automatically learned using cross-validation. This method is suitable for

both heterogeneous and homogeneous dynamic networks and utilizes a time-

series of graphs and attributes of any type (continuous, discrete, etc). drc

performs time-series forecasting of a discrete class label. In all cases, the

proposed dynamic relational classifiers outperform competing models that

ignore temporal information.

� We develop Dynamic Pagerank to model the centrality of a vertex as external

interest in those vertices vary. We demonstrate the utility of dynamic

pagerank using Wikipedia where external interest is a time-series of hourly

page views. The method learns a time-series of importance scores which

is shown to be useful in time-series forecasting of continuous real-valued

attributes. Moreover, we also demonstrate its effectiveness for identifying

time-series patterns/trends, anomalies, and for identifying causal links.

� In addition, we propose Dynamic Role Mixed-Membership Model (drmm) to

learn a time-series of roles (cliques, star-centers, or star-edges) based on a

set of dynamic graph features. We then compute a time-series of transition

models that describe the role transitions. This model is useful for predicting

future behavior, identifying patterns/trends, and anomaly detection.

� We reinterpret the SRL prediction tasks for relational time series data

that leads to the problem formulation of relational time series classification

and relational time series regression. Using the proposed dynamic relational

representation methods as a basis, we systematically investigate the relational

time series forecasting tasks. In particular, we focus on the forecasting tasks in

dynamic attributed networks that include: (i) predicting the future label (i.e.,

classification), and (ii) predicting the weight or importance (i.e., regression).

Table 1.2 provides an overview of the proposed techniques indicating the temporal

and relational information leveraged in each of the methods. Nearly all the past work

in relational learning has ignored the dynamics and thus assumes the graph data is
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Table 1.2.: The techniques are categorized by the type of dynamic information used
in the various dynamic relational models.

Static Attributes Dynamic Attributes

Static Graph � Dynamic PageRank [44] [113]

Dynamic Graph drmm [41] [112], [114] drc [111] [18] [2]

static. To the best of our knowledge, we are the first to (i) propose dynamic relational

discovery techniques for nodes to improve accuracy, (ii) model both the relational and

temporal dependencies for prediction in dynamic relational data, and (iii) introduce

dynamic relational ensemble methods.

The methods proposed in this dissertation are useful for a variety of tasks beyond

relational time series classification and regression. To further demonstrate the effective-

ness of the dynamic relational representation discovery techniques, we use them for a

variety of other graph-based machine learning tasks including anomaly detection (and

its graph-based variations), clustering time-series patterns, identifying causal links,

dynamic ranking, pattern mining, and network exploratory analysis. All techniques

are extensively evaluated for real applications such as importance/ranking of web

pages, anomaly detection, and pattern mining. See Table 1.3 for a summary of the

applications used to evaluate the effectiveness of our methods. The proposed methods

are shown to be scalable, effective, and flexible for use in a variety of real-world

applications. We have also used our feature learning approach for evaluation of graph

generators that were designed specifically to model the evolution of the Internet AS

and router-level topologies, see [114] for more details. More importantly, we observed

a significant transition in the structure of the Internet AS.

In addition, the proposed methods may also be viewed as dynamic feature con-

struction techniques. Dynamic graph features may be learned by one method and used

to improve the accuracy or scalability of another proposed method. For instance, the

learned dynamic features may be used as input into another technique (i.e., the time

series of importance scores from dpr may be used in drc to learn additional temporal-
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relational features for prediction, etc). Moreover, we proposed both unsupervised and

supervised methods for learning in dynamic attribtued networks.

1.5 Outline

The remainder of this dissertation is organized as follows. Chapter 2 introduces

the framework for dynamic node labeling along with our proposed techniques for

relational time series classification. In Chapter 3, we propose an approach for the

representation task of dynamic node weighting and utilize it for relational time series

regression (i.e., predicting number of hourly page views on Wikipedia). Our approach

for dynamic node prediction is proposed in Chapter 4. Finally, Chapter 5 concludes

with a summary of contributions.

Parts of this dissertation have been published in conferences and journals. In partic-

ular, the survey and taxonomy of relational representation transformation is described

in a paper [2] published in the Journal of Artificial Intelligence Research (JAIR). The

Table 1.3.: Summary of applications for the proposed techniques. Note that �
indicates the applications evaluated in this dissertation.

Task Proposed Method A
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l
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S
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Node Labeling Dynamic Relational Classifiers (drc) [111] [18] [2] � �

Node Weighting Dynamic PageRank (dpr) [44] [113] � � � � � �

Node Prediction Dynamic Role Model (drmm) [41] [112] [114] � � � � �
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Table 1.4.: Overview of dissertation. We propose four methods to discover dynamic
graph features. These methods may also be used for modeling, ranking, classification,
and mining dynamic graphs.

Representation Task Prediction Proposed Methods

Dynamic Node Labeling (Ch. 2) Classification dynamic relational classifiers (drc) [111] [18] [2]

Dynamic Node Weighting (Ch. 3) Regression dynamic pagerank (dpr) [44] [113]

Dynamic Node Prediction (Ch. 4) Classification dynamic roles (drmm) [41] [112] [114]

work on modeling temporal dependencies for dynamic relational classification and

ensemble methods (Chapter 2) is described in a paper [111] published in the Advances

in Knowledge Discovery and Data Mining (PAKDD) whereas the work on automati-

cally learning the evolution of latent topics and incorporating their influence into a

time-evolving relational learning algorithm is described in a paper [18] published in the

2010 Proceedings of the First Workshop on Social Media Analytics (SOMA SIGKDD).

The work on Dynamic PageRank (dpr) from Chapter 3 is described in a paper [44]

published in the 2012 Proceedings of the Workshop on Algorithms and Models for

the Web Graph (WAW 2012). An extended version of this work (including additional

theoretical analysis, solvers, data, and experiments) is described in a paper [113]

published in the 2014 Journal of Internet Mathematics. For Chapter 4, the proposed

feature-based roles along with a general framework for computing them was published

in the IEEE Transactions on Knowledge and Data Engineering [115]. In addition,

the work based on using dynamic roles for characterizing the structural patterns and

trends in dynamic networks is described in a paper [112] in the Proceedings of the 2012

International Conference Companion on World Wide Web (LSNA WWW) whereas

the work on our Dynamic Role Mixed-Membership Model (drmm) is described in a

paper [41] in the 2013 Proceedings of the Sixth ACM International Conference on

Web Search and Data Mining (WSDM). Additionally, the application of this work

for understanding the evolution of the AS and for the subsequent task of evaluating
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state-of-the-art topology generators was accepted for demonstration [114] in the 2013

IFIP Networking Conference.

In an effort to support future research, we also published a proposal for an

interactive data repository [116] that goes beyond existing scientific data repositories

by providing visual analytic techniques for real-time interactive data exploration,

mining, and visualization [116]. Using that proposal as a basis, we developed the

first interactive data repository for graphs [117, 118] (http://networkrepository.

com) which currently has over 500 networks and includes the relational time-series

data used throughout this dissertation [117, 118]. Finally, a visual graph analytic

platform is described in a paper [119] published in the Proceedings of AAAI 2015. In

particular, the platform developed visual graph mining and exploration techniques for

understanding large dynamic attributed networks and included the first interactive

relational machine learning methods for both (i) supervised learning (e.g., interactive

relational classification methods) and (ii) unsupervised learning (e.g., interactive role

discovery).
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2. DYNAMIC NODE LABELING

Relational networks often evolve over time by the addition, deletion, and changing

of links, nodes, and attributes. However, accurately incorporating the full range

of temporal dependencies into relational learning algorithms remains a challenge.

We propose a novel framework for discovering temporal-relational representations

for classification. The framework considers transformations over all the evolving

relational components (attributes, edges, and nodes) in order to accurately incorporate

temporal dependencies into relational models. Additionally, we propose temporal

ensemble methods and demonstrate their effectiveness against traditional and relational

ensembles on two real-world datasets. In all cases, the proposed temporal-relational

models outperform competing models that ignore temporal information.

2.1 Motivation

Temporal-relational information is present in many domains such as the Internet,

citation and collaboration networks, communication and email networks, social net-

works, biological networks, among many others. These domains all have attributes,

links, and/or nodes changing over time which are important to model. We conjecture

that discovering an accurate temporal-relational representation will disambiguate the

true nature and strength of links, attributes, and nodes. However, the majority of

research in relational learning has focused on modeling static snapshots [65,66] and

has largely ignored the utility of learning and incorporating temporal dynamics into

relational representations.

Temporal relational data has three main components (attributes, nodes, links)

that vary in time. First, the attribute values (on nodes or links) may change over time

(e.g., research area of an author). Next, links might be created and deleted throughout
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time (e.g., host connections are opened and closed). Finally, nodes might appear and

disappear over time (e.g., through activity in an online social network).

Within the context of evolving relational data, there are two types of prediction

tasks. In a temporal prediction task, the attribute to predict is changing over time

(e.g., student GPA), whereas in a static prediction task, the predictive attribute is

constant (e.g., paper topic). For these prediction tasks, the space of temporal-relational

representations is defined by the set of relational elements that change over time

(attributes, links, and nodes). To incorporate temporal information in a representation

that is appropriate for relational models, we consider two transformations based on

temporal weighting and temporal granularity. Temporal weighting aims to represent the

temporal influence of the links, attributes and nodes by decaying the weights of each

with respect to time, whereas the choice of temporal granularity restricts attention

to links, attributes, and nodes within a particular window of time. The optimal

temporal-relational representation and the corresponding temporal classifier depends

on the particular temporal dynamics of the links, attributes, and nodes present in the

data, as well as the network domain (e.g., social vs. biological networks).

In this work, we address the problem of selecting the most optimal temporal-

relational representation to increase the accuracy of predictive models. We consider

the full space of temporal-relational representations and propose (1) a temporal-

relational classification framework, and (2) a set of temporal ensemble methods, to

leverage time-varying links, attributes, and nodes in relational networks. We illustrate

the different types of models on a variety of classification tasks and evaluate each under

various conditions. The results demonstrate the flexibility and effectiveness of the

temporal-relational framework for classification in time-evolving relational domains.

Furthermore, the framework provides a foundation for automatically searching over

temporal-relational representations to increase the accuracy of predictive models.
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2.2 Dynamic Relational Classification Framework

Below we outline a dynamic relational classification framework (drc) for prediction

tasks in dynamic relational networks. Relational data is represented as an attributed

graph D = (G,X) where the graph G = (V,E) represents a set of N nodes, such that

vi ∈ V corresponds to node i and each edge eij ∈ E corresponds to a link (e.g., email)

between nodes i and j. The attribute set:

X =

⎛
⎝ XV = [X1, X2, ..., Xmv ],

XE = [Xmv+1, Xmv+2, ..., Xmv+me ]

⎞
⎠

contains mv observed attributes on the nodes (XV) and me observed attributes on

the edges (XE). Dynamic relational data evolves over time by the addition, deletion,

and changing of nodes, edges, and attributes. Let Dt = (Gt,Xt) refer to the dataset

at time t, where Gt = (V,Et) and Xt = (XV
t ,X

E
t ). In our classification framework,

we consider relational data observed over a range of timesteps t = {1, ..., T} (e.g.,
citations over a period of years, emails over a period of days). Given this time-varying

relational data, the task is to learn a model to predict either a static attribute Y or

a dynamic attribute at a particular timestep Yt, while exploiting both the relational

and temporal dependencies in the data.

We define our temporal-relational classification framework with respect to a set

of possible transformations of links, attributes, or nodes (as a function of time).

The temporal weighting (e.g., exponential decay of past information) and temporal

granularity (e.g., window of timesteps) of the links, attributes and nodes form the

basis for any arbitrary transformation with respect to the temporal information (See

Table 2.1). The discovered temporal-relational representation can be applied for mining

temporal patterns, classification, and as a means for constructing temporal-ensembles.

An overview of the temporal-relational representation discovery is provided below:

Table 2.1 provides an intuitive view of the possible temporal-relational represen-

tations. For instance, the TVRC model is a special case of the proposed framework
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Table 2.1.: Temporal-relational representation.

1. For each Relational Component

− Links, Attributes, or Nodes

2. Select the Temporal Granularity

� Timestep ti

� Window {tj, tj+1, ..., ti}
� Union T = {t0, ..., tn}

3. Select the Temporal Influence

� Weighted

� Uniform

Repeat steps 1-3 for each component.

4. Select the Relational Classifier

� Relational Bayes Classifier (RBC)

� Relational Probability Trees (RPT)

Uniform Weighting

T
im

e
st
e
p

W
in
d
o
w
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n
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im
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e
p

W
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w

U
n
io
n

Edges

Attributes

Nodes

where the links, attributes, and nodes are unioned and the links are weighted. Below

we provide more detail on steps 2-4.

2.2.1 Temporal Granularity

Traditionally, relational classifiers have attempted to use all the data available in

a network [94]. However, since the relevance of data may change over time (e.g., links

become stale), learning the appropriate temporal granularity (i.e., range of timesteps)

can improve classification accuracy. We briefly define three general classes for varying

the temporal granularity of the links, attributes, and nodes.

1. Timestep. The timestep models only use a single timestep ti for learning.

2. Window. The window models use a sliding window of (multiple) timesteps

{tj, tj+1, ..., ti} for learning. When the size of window is varied, the space of

possible models in this category is by far the largest.
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3. Union. The union model uses all previous temporal information for learning at

time ti, i.e., T = {0, ..., ti}.

The timestep and union models are separated into distinct classes for clarity in

evaluation and for understandability in pattern mining.

2.2.2 Temporal Influence: Links, Attributes, Nodes

We model the influence of relational components over time using temporal weighting.

Specifically, when considering a temporal dataset Dt = (Gt,Xt), we will construct

a weighted network Gt = (V,Et,W
E
t ) and Xt = (XV

t ,X
E
t ,W

X
t ). Here Wt refers to a

function that assigns weights on the edges and attributes that are used in the classifiers

below.

Initially, we define WE
t (i, j) = 1 if eij ∈ Et and 0 otherwise. Similarly, we define

WX
t (xm

i ) = 1 if Xm
i = xm

i ∈ Xm
t and 0 otherwise. Then we consider two different

approaches to revise these initial weights:

Weighting. These temporal weights can be viewed as probabilities that a relational

component is still active at the current time step t, given that it was observed at time

(t− k). We investigated three temporal weighting functions:

Exponential Kernel. The exponential kernel weights the recent past highly and

decays the weight rapidly as time passes [120]. The kernel function KE for temporal

data is defined as:

KE(Di; t, θ) = (1− θ)t−iθWi

Linear Kernel. The linear kernel decays more gradually and retains the historical

information longer:

KL(Di; t, θ) = θWi(
t∗ − ti + 1

t∗ − to + 1
)
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Inverse Linear Kernel. This kernel lies between the exponential and linear kernels

when moderating historical information:

KIL(Di; t, θ) = θWi(
1

ti − to + 1
)

Uniform. These weights ignore the temporal influence of a relational component,

and weight them uniformly over time, i.e., WE
t (i, j) = 1 if eij ∈ Et′ : t

′ ∈ T and 0

otherwise. A relational component can be assigned uniform weights within the selected

temporal granularity or over the entire time window (e.g., traditional classifiers assign

uniform weights, but they don’t select the appropriate temporal granularity).

We note that different weighting functions can be chosen for different relational

components (edges, attributes, nodes) with varying temporal granularities. For

instance, the temporal influence of the links might be predicted using the exponential

kernel while the attributes are uniformly weighted but have a different temporal

granularity than the links.

2.2.3 Temporal-Relational Classifiers

Once the temporal granularity and temporal weighting are selected for each

relational component, then a temporal-relational classifier can learned. In this work,

we use modified versions of the RBC [8] and RPT [121] to model the transformed

temporal-relational representation. However, we note that any relational model that

can be modified to incorporate node, link, and attribute weights is suitable for this

phase. We extended RBCs and RPTs since they are interpretable, diverse, simple,

and efficient. We use k-fold x-validation to learn the “best” model. Both classifiers

are extended for learning and prediction over time.

Weighted Relational Bayes Classifier. RBCs extend naive Bayes classifiers [122]

to relational settings by treating heterogeneous relational subgraphs as a homogeneous

set of attribute multisets. The weighted RBC uses standard maximum likelihood
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attributes weights are included for the selected temporal granularity (shown in Fig-

ure 2.1). For prediction, if the model is applied to predict attribute Yt at time t, we

first calculate the weighted data Dt . Then the learned model from time (t − 1) is

applied to Dt. The weighted classifier is appropriately augmented to incorporate the

weights from Dt.

2.3 Temporal Ensemble Methods

Ensemble methods have traditionally been used to improve predictions by consid-

ering a weighted vote from a set of classifiers [123]. We propose temporal ensemble

methods that exploit the temporal dimension of relational data to construct more

accurate predictors. This is in contrast to traditional ensembles that do not explicitly

use the temporal information. The temporal-relational classification framework and

in particular the temporal-relational representations of the time-varying links, nodes,

and attributes form the basis of the temporal ensembles (i.e., as a wrapper over the

framework). The proposed temporal ensemble techniques are drawn from one of the

five methodologies described below.

2.3.1 Transforming the Temporal Nodes and Links

The first method learns an ensemble of classifiers, where each of the classifiers are

learned from, and then applied to, link and node sets that are sampled from each

discrete timestep according to some probability. This sampling strategy is performed

after selecting a temporal weighting and temporal granularity, and transforming the

data to the appropriate temporal-relational representation. We note that the sampling

probabilities for each timestep can be modified to bias the sampling toward the present

or the past.
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2.3.2 Sampling or Transforming the Temporal Feature Space

The second method transforms the temporal feature space by localizing randomiza-

tion (for attributes at each timestep), weighting, or by varying the temporal granularity

of the features, and then learning an ensemble of classifiers with different feature sets.

Additionally, we might use only one temporal weighting function but learn models

with different decay parameters or resample from the temporal features.

2.3.3 Adding Noise or Randomness

The third method is based on adding noise along the temporal dimension of the

data, to increase generalization and performance. Specifically, we randomly permute

the nodes feature values across the timesteps (i.e., a nodes recent behavior is observed

in the past and vice versa) or links between nodes are permuted across time, and then

learn an ensemble of models from several versions of the data.

2.3.4 Transforming the Time-Varying Class Labels

The fourth method introduces variance in the data by randomly permuting the

previously learned labels at t-1 (or more distant) with the true labels at t, again

learning an ensemble of models from several versions of the data.

2.3.5 Multiple Classification Algorithms and Weightings

The fifth method constructs and ensemble by randomly selecting from a set

of classification algorithms (i.e., RPT, RBC, wvRN, RDN), while using the same

temporal-relational representation, or by varying the representation with respect to

the temporal weighting or granularity. Notably, an ensemble that uses both RPT and

RBC models significantly increases accuracy, most likely due to the diversity of these

temporal classifiers (i.e., correctly predicting different instances). Additionally, the
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temporal-classifiers might be assigned weights based on assessment of accuracy from

cross-validation (or a Bayesian model selection approach).

2.4 Methodology and Data

This section describes the datasets and defines a few representative temporal-

relational classifiers from the framework. For evaluating the framework, we use both

static (Y is constant over time) and temporal prediction tasks (Yt changes over time).

We considered two real world datasets for our experiments. The Cora database

contains authorship and citation information about computer science research pa-

pers extracted automatically from the web. The Python Communication Network

(PyComm) reflects characteristics of distributed team interaction, cooperation, com-

munication, and social relationships. Table 2.2 lists the number of objects and/or

links present in each dataset. We describe each dataset in more detail below.

2.4.1 Cora

Cora is a database of computer science research papers with the respective citation

and author information. The relational schema is given in Figure 2.2. The attributes

associated with each object are those supplied to the relational classification model

Table 2.2.: Datasets used for empirical evaluation.

PyComm CORA
Developers: 185 Papers:16,153
Emails: 13181 References: 29,603
Bugs Msgs: 69435 Authors: 21,976
Teams: 18

Time Window: Time Window:
Feb2007-May2008 1981-1998
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while the summary weights on the Paper-Citation and Author-Author links, namely

‘pc weight’ and ‘aa weight’, are generated by the graph summarization phase. The

prediction task here was to predict the whether a paper is a machine learning paper

given the topic of its references and the most prevalent topics its authors are working

on through collaborations with other authors.

2.4.2 Python Communication Network

The Python communication network represents communications between dis-

tributed open-source software development teams. Effort is typically distributed

due to geographic dispersion of developers, thus communication among developers

is critical to the success of the project. Email is a common form of communication

among the developers, and often mailing lists are used to ensure timely delivery of

messages to all interested parties.

We collected and analyzed email and bug communication networks extracted from

the open-source Python development environment (www.python.org). In Python

development, the primary location for communication is the python-dev mailing list,

which is publicly available for subscription or download. Here, nodes represent devel-

opers, and edges represents an email or bug communication between two developers.

Note that this network has two unique types of edges representing different actions,

namely, an email or bug communication. For instance, emails being more personal,

Fig. 2.2.: The relational schema for the Cora network. The link weights ‘pc weight’
and ‘aa weight’ are computed during graph summarization. The classlabel ‘topic’ is a
binary classlabel showing whether the paper is a machine learning paper or not.
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may indicate a closer relationship, whereas bug communications tend to be more

formal, etc. The defect information (i.e., bugs) associated with the Python data

enables us to derive measures of individual effectiveness that are consistent with the

performance aspect of effectiveness measures. The prediction task is to predict whether

a person has closed a bug given the people they have communicated with and various

other attributes such as performance, teams, communication, centrality, and topics of

communication. The dependent variable, Yi, will measure the effectiveness of team

member i. We then aim to model the influence of a number of independent variables

on Yi, including:

1. A set of intrinsic properties of the individual Xi = {Xi1, , Xim}.

2. The set of observed properties XD of connected team members in both D1 and

D2.

3. The dependent variable YD on team members in D1, which is unobserved.

4. A set of variables Cij that represent properties of communications between

individuals (e.g., email frequency).

Thus our statistical models will have the following structure:

P (Yi|D1, D2) = P (Yi|Xi,Xj, Yj, Cij)

where j ∈ Di1 ∧ eij ∈ E. The Python Communication Network consists of a col-

lection of temporal snapshots. Let G = {G1, G2, ..., Gn} be a sequence of tempo-

ral snapshots from the relational communication network. Every temporal snap-

shot corresponds to the events that occurred during the time period t, where t =

1, 2, ..., n. The size of the temporal snapshots are three month periods where {G1 =

(Feb07,Mar07, Apr07), G2 = (May07, Jun07, Jul07), ..., G7 = (Aug08, Sep08)}. The
last temporal snapshot has only two months. The Python Communication dataset is

a “pure” temporal network in the sense that the nodes, edges, class label, and most

of the attributes are dynamically evolving. The class label ’has closed’ represents if
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a developer has closed a bug in a specific time observation. Everything is evolving

and therefore predictions about future events are more challenging. We believe this

network where all the information is evolving at once pertains more to a real-world

setting.

The features include team membership information, measures related to past and

current performance, communication counts, topics of communications, and graph

measures of centrality and clustering. Table 2.3 lists the details of the dataset. The

four centrality measures evolve over time as the structure of the network changes.

Betweenness centrality is a measurement of reachability in the network while eigen-

vector centrality is a measurement of connection strength between other developers.

Table 2.3.: Categories of attributes computed from the temporal python communication
network

Python Communication Network Attributes

Conv Tool Build
Demos & tools Dist Utils
Documentation Doc Tools

Team Installation InterpCore
Membership Regular Expr Tests

Unicode Windows
Ctypes Ext Modules
Idle LibraryLib
Tkinter XML

Performance Assigned To [Has Closed]

[T-1] Performance Assigned To Has Closed

Communication All Comm. Bug Comm.

Attributes Email Comm.

User Topics
AllTopic EmailTopic

BugTopic

Centrality Eigenvector Cluster. Coeff.

Attributes Betweenness Degree

Link EdgeCount EdgeTopic

Attributes EmailEdgeCount EmailEdgeTopic

BugEdgeCount BugEdgeTopic

Temporal [Aug - Oct ’07] [Nov ’07 - Jan ’08]
Snapshots [Feb - April ’08] [May - July ’08]

[Aug - Sept ’08]

Predicting Individual Effectiveness on [Has Closed]
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Eigenvector centrality can be thought of as developers who communicate frequently

with others whom communicate frequently (and so on) are more likely to have com-

munications in the future and therefore given a higher weight than someone who

communicates with people that barely communicate with anyone else. The clustering

coefficient measures how closely connected a developer is to their neighbors.

In TVRC the relational communication attributes are moderated by the temporal

edge and attribute strengths. The weighted communication attributes {All Comm.,

Assigned To, Bug Comm., Email Comm.} are moderated by the link attributes

All Edges, Bug Edges, Bug Edges, Email Edges respectively. The other weighted

attributes are moderated by either All Edges or All Topic Edges.

2.4.3 Models

The space of temporal-relational models are evaluated using a representative sample

of classifiers with varying temporal weightings and granularities. For every timestep t,

we learn a model on Dt (i.e., some set of timesteps) and apply the model to Dt+1. The

utility of the temporal-relational classifiers and representation are measured using the

area under the ROC curve (AUC). Below, we briefly describe a few classes of models

that were evaluated.

• TENC: The TENC models predict the temporal influence of both the links and

attributes.

• TVRC: This model weights only the links using all previous timesteps.

• Union Model: The union model uses all links and nodes up to and including t

for learning.

• Window Model: The window model uses the data Dt−1 for prediction on Dt

(unless otherwise specified).

We also compare simpler models such as the RPT (relational information only)

and the DT (non-relational) that ignore any temporal information. Additionally, we



36

explore many other models, including the class of window models, various weighting

functions (besides exponential kernel), and built models that vary the set of windows

in TENC and TVRC.

2.5 Unsupervised Dynamic Node Labeling

Given a time-series of graphs where for every edge we also have the textual data

(e.g., of an email communication between two individuals), how can we leverage the

textual data for dynamic node labeling to improve relational time-series prediction? To

address this problem, we propose an unsupervised model called latent link semantics.

Intuitively, this approach assigns each edge a label representing a general topic that

best summarizes the textual content of the message. This allows us to represent

each of the discoved edge labels as a feature, which are then used to discover more

representative and discriminative features via a relational feature learning system. In

other words, the learned edge labels representing topics are used to discover more

discriminative relational topic features (based on the edge topic labels), which are

then used to improve relational time-series classification.

Latent Link Semantics Many dynamic relational networks contain textual infor-

mation in the form of messages or other personal information. How can we utilize

this evolving information to improve relational time-series prediction?

Throughout the remainder of this section, the python developer network is used as

a running example. Recall that nodes in this communication network are developers,

and an edge represents either a bug or email communications between two developers.

We use techniques based on Latent Dirichlet Allocation [124] to extract topics

of the communications. The latent topics are used to label the communication links

between users. Let T = {τ1, τ2, ..., τκ} be a set of topics extracted from the bugs

and email communications. In the task of predicting effectiveness between teams and

individuals we might find that τi = {web programming} and τj = {sports} therefore
it is clear that teams and individuals communicating about sports should be penalized
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(a) Before (b) After

Fig. 2.3.: Discovering the underlying latent semantics of the links. (a) Communication
links with uniform semantics, and (b) latent link semantics: adding textual information
through automatically labeling links in the network with the appropriate topic.

while communications about web programming might be a significant indicator of

effectiveness. The topics provide context for the links instead of the uniform notion

of a simple communication as shown below. We denote this technique of providing

meaning for the links in a relational network as Latent Link Semantics (LLS ).

The bug and email communications are from developers who work on distributed

teams. Let C = {c1, c2, ..., cm} be a set of bug and email communications and

W = {w1, w2, ..., wn} be a set of words from the communications between developers.

We use the vector-space representation and define an n × m matrix denoted M

where the coefficients represent the frequency that wi ∈ W appears in cj ∈ C. The

matrix is of size 191607 words × 82616 communications. Every communication is

represented by a link between two people in the relational network. Using the text from

the communication we assign the link an attribute that corresponds to the topic of

communication. We introduce a latent class variable for the topics T = {τ1, τ2, ..., τκ}
where κ is the number of topics to be discovered. This can be thought of as a type of

dimension reduction where the communications are projected into κ dimensions (or

topics).

The number of topics to learn depends on many factors including the type of

corpus (web content, open source development, ..) and also on the size of the collection.

We chose κ = 20 as the majority of communications are most likely to focus on

some aspect of the 18 projects under development. We removed a standard list of
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stopwords from the communications and also other technical words that appeared with

high frequency (e.g., python). A topic can be viewed as a cluster of words that are

frequently used together. We used a simple version of Latent Dirichlet Allocation [124]

to model the κ topics. To estimate the parameters we used Expectation-Maximizatiom

(EM) and for inference we used Gibbs sampling. Note that the model is learned from

a number of past held-out data, and then used to estimate the communication topics

at each timestep. That is, we construct a word-by-communication matrix for each

graph in the time-series, estimate topics using the model, and then we construct a

feature for each edge by assigning the topic that best fits the textual data for that

email or bug communication (edge). As an aside, the initial model is recomputed if

the topics no longer fit the textual data from recent communications.

We modeled the topics in three different sets of communications: (1) the email

communication alone, (2) the bug communications alone, and (3) the joint set of email

and bug communications. After extracting the latent topics from the email and bug

communications we label the links of our relational communication network. The links

are labeled by performing inference on a communication and assigning it to the topic

with the largest likelihood. We also generate three object attributes {AllTopic,

EmailTopic, BugTopic} where we assign a developer to the most prevalent topic in

a particular set of communications. As an example if a developer most often discusses

’testing’ in her bug messages for a particular timestep then she would be assigned to

the BugTopic corresponding to testing.

In Table 2.4 we list the most likely words for five of the 20 topics when we combine

bug and email communication together. The table contains words with both positive

and negative connotation such as ’good’ or ’doesnt’ and also words referring to the

network domain such as bugs or exception. An interesting direction to pursue would be

to use sentiment analysis to automatically identify the communications with positive

and negative tone and use those predictions in the analysis, to moderate relationships

among developers. It is difficult to subjectively assess the high level meaning of a

given latent topic from the communications. This is likely due to the fact that we are
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2.6 Experiments

In this section, we demonstrate the effectiveness of the temporal-relational frame-

work and temporal ensemble methods on two real-world datasets. The main findings

are summarized below:

� Temporal-relational models significantly outperform relational and non-

relational models.

� The classes of temporal-relational models each have advantages and disadvantages

in terms of accuracy, efficiency, and interpretability. Models based strictly on

temporal granularity are more interpretable but less accurate than models that

learn the temporal influence. The more complex models that combine both are

generally more accurate, but less efficient.

� Temporal ensemble methods significantly outperform non-relational and relational

ensembles. In addition, the temporal ensembles are an efficient and accurate

alternative to searching over the space of temporal models.

2.6.1 Single Models

We evaluate the temporal-relational framework using single-models and show that

in all cases the performance of classification improves when the temporal dynamics

are appropriately modeled.

Temporal, Relational, and Non-Relational Information. The utility of the

temporal (TVRC), relational (RPT), and non-relational information (decision tree;

DT) is assessed using the most primitive models. Figure 2.5 compares TVRC with

the RPT and DT models that use more features but ignore the temporal dynamics

of the data. We find the TVRC to be the simplest temporal-relational classifier that

still outperforms the others. Interestingly, the discovered topic features are the only

additional features that improve performance of the DT model. This is significant as
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Fig. 2.5.: Comparing a primitive temporal model (TVRC) to competing relational
(RPT), and non-relational (DT) models.

these attributes are discovered by dynamically modeling the topics, but are included

in the DT model as simple non-relational features (i.e., no temporal weighting or

granularity).

Exploring Temporal-Relational Models. We focus on exploring a representative

set of temporal-relational models from the proposed framework. To more appropriately

evaluate the models, we remove highly correlated attributes (i.e., that are not necessar-

ily temporal patterns, or motifs), such as “assignedto” in the PyComm prediction task.

In Figure 2.6, we find that TENC outperforms the other models over all timesteps.

This class of models are significantly more complex than TVRC since the temporal

influence of both links and attributes are learned.

We then explored learning the appropriate temporal granularity. Figure 2.6 shows

the results from two models in the TVRC class where we tease apart the superiority of

TENC (i.e., weighting or granularity). However, both TVRC models outperform one

another on different timesteps, indicating the necessity for a more precise temporal-

representation that optimizes the temporal granularity by selecting the appropriate
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Fig. 2.6.: Exploring the space of temporal relational models. Significantly different
temporal-relational representations from the proposed framework are evaluated.

decay parameters for links and attributes (i.e., TENC). Similar results were found

using Cora and other base classifiers such as RBC. Models based strictly on varying

the temporal granularity were also explored. More details can be found in [132].

Selective Temporal Learning. We also explored “selective temporal learning”

that uses multiple temporal weighting functions (and temporal granularities) for the

links and attributes. The motivation for such an approach is that the influence of each

temporal component should be modeled independently, since any two attributes (or

links) are likely to decay at different rates. However, the complexity and the utility of

the learned temporal-relational representation depends on the ability of the selective

learner to select the best temporal features (derived from weighting or varying the

temporal granularity of attributes and links) without overfitting or causing other

problems. We found that the selective temporal learning performs best for simpler
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Fig. 2.7.: Exploring temporal granularity models (RPT and RBC for ML and AI
tasks).

prediction tasks, however, it still frequently outperforms classifiers that ignore the

temporal information. Experiments based strictly on varying the temporal granularity

were also explored and can be found in [132].

Models of Temporal Granularity. In these experiments, we restrict our focus to

models based strictly on varying the temporal granularity. In this space, there are a

range of interesting models that provide insights into the temporal patterns, structure,

and nature of the dataset. We first introduce three classes of models based on varying

the temporal granularity and then evaluate their utility.

• Past-to-Present. These models consider linked nodes from the distant past

and successively increases the window to include more recent information.

• Present-to-Past. We consider only the most recent links, nodes, and attributes

and successively increase the window to include more of the past.

• Temporal Point. Only links, nodes, and attributes at time k are considered.

Intuitively, Figure 2.7(a) shows AUC increasing as a function of the more recent

attributes and links (i.e., Past-To-Present model). Conversely, if we consider
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only the most recent temporal information and successively include more of the past

then the AUC initially increases to a local max and then drops before increasing as

additional past information is modeled. This drop in accuracy indicates a type of

temporal-transition in the link structure and attributes. Overfitting may justify the

slight improvement in AUC as noisey past information is added. The noise reduces bias

in training and consequently increases the models ability to generalize for predicting

instances in the future. More interestingly, the class of Temporal-Point models

allow us to more accurately determine if past actions at some previous timestep are

predictive of the future and how these behaviors transition over time. These patterns

are shown in Fig. 2.7.

Temporal Stability of Relational Classifiers. In the next experiment, we use the models

to compare more accurately the stability of the temporal RBC and RPT classifiers.

We find the RBC to be relatively stable over time whereas RPT has significantly more

variance. In particular, for the ML prediction task, the structure of the RPT trees

were considerably different over the timesteps whereas they gradually evolve in the AI

prediction task shown in Fig. 2.7(b).

Finally, for the papers in each time period (from Cora), the probability of citing a

paper given the time-lag � is shown in Fig. 2.7(c). Interestingly, the link probabilities

at � = 3 for each prediction-time approximately begin to converge. Indicating a global

pattern w.r.t. past links that is independent of the core-nodes initial time period.

Hence, the more recent behavior of the core-nodes is significantly different than their

past behavior.

2.6.2 Temporal Ensemble Models

Instead of directly learning the optimal temporal-relational representation to

increase the accuracy of classification, we use temporal ensembles by varying the

relational representation with respect to the temporal information. These ensemble
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Fig. 2.8.: Comparing temporal, relational, and traditional ensembles

models reduce error due to variance and allow us to assess which features are most

relevant to the domain with respect to the relational or temporal information.

Temporal, Relational, and Traditional Ensembles. We first resampled the

instances (nodes, links, features) repeatedly and then learn TVRC, RPT, and DT

models. Across almost all the timesteps, we find the temporal-ensemble that uses

various temporal-relational representations outperforms the relational-ensemble and

the traditional ensemble (see Figure 2.8). The temporal-ensemble outperforms the

others even when the minimum amount of temporal information is used (e.g., time-

varying links). More sophisticated temporal-ensembles can be constructed to further

increase accuracy. We have investigated ensembles that use significantly different

temporal-relational representations (i.e., from a wide range of model classes) and

ensembles that use various temporal weighting parameters. In all cases, these ensembles

are more robust and increase the accuracy over more traditional ensemble techniques

(and single classifiers). Further, the average improvement of the temporal-ensembles is

significant at p < 0.05 with a 16% reduction in error, justifying the proposed temporal

ensemble methodologies.
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Fig. 2.9.: Comparing attribute classes w.r.t. temporal, relational, and traditional
ensembles.

In the next experiment, we construct ensembles using the feature classes. We

use the primitive models (with the transformed feature space) in order to investigate

(more accurately) the most significant feature class (communication, team, centrality,

topics) and also to identify the minimum amount of temporal information required to

outperform relational ensembles.

In Figure 2.9, we find several striking temporal patterns. First, the team features

are localized in time and are not changing frequently. For instance, it is unlikely

that a developer changes their assigned teams and therefore modeling the temporal

dynamics only increases accuracy by a relatively small percent. However, the temporal-

ensemble is still more accurate than traditional ensemble methods that ignore temporal

patterns. This indicates the robustness of the temporal-relational representations.

More importantly, the other classes of attributes are evolving considerably and this

fact is captured by the significant improvement of the temporal ensemble models.

Similar performance is also obtained by varying the temporal granularity (see previous

examples).
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Fig. 2.10.: Randomization. The significant attributes used in the temporal ensemble
are compared to the relational and traditional ensembles. The change in AUC is
measured.

Randomization. We use randomization to identify the significant attributes in the

temporal-ensemble models. Randomization provides a means to rank and eliminate

redundant attributes (i.e., two attributes may share the same significant temporal

pattern). We randomize each attribute in each timestep and measure the change in

AUC. The results are shown in Figure 2.10.

Randomization is performed on an attribute by randomly reordering the values,

thereby preserving the distribution of values but destroying any association of the

attribute with the class label. For every attribute, in every time step, we randomize

the given attribute, apply the ensemble method, and measure the drop in AUC due

to that attribute. The resulting changes in AUC are used to assess and rank the

attributes in terms of their impact on the temporal ensemble (and how it compares to

more standard relational or traditional ensembles).

We find that the basic traditional ensemble relies on “assignedto” (in the current

time step) while the temporal ensemble (and even less for the relational ensemble) relies

on the previous “assignedto” attributes. This indicates that relational information

in the past is more useful than intrinsic information in the present—which points

to an interesting hypothesis that a colleagues behavior (and interactions) precedes
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Table 2.4.: Latent topics learned from the evolving textual information and the most
significant words of each topic

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

dev logged gt code test
wrote patch file object lib
guido issue lt class view
import bugs line case svn
code bug os method trunk
pep problem import type rev
mail fix print list modules

release fixed call set build
tests days read objects amp
work created socket change error
people time path imple usr
make docu data functions include
pm module error argument home
ve docs open dict file

support added windows add run
module check problem def main
things doc traceback methods local
good doesnt mailto exception src
van report recent ms directory

their own behavior. Organizations might use this to predict future behavior with less

information and proactively respond more quickly. Additionally, the topic attributes

are shown to be the most useful for the temporal ensembles (Fig. 2.11), indicating the

utility of using topics to understand the context and strength of relationships.

2.7 Related Work

Recent work has started to model network dynamics in order to better predict link

and structure formation over time [78,79], but this work focuses on unattributed graphs.

Previous work in relational learning on attributed graphs either uses static network

snapshots or significantly limits the amount of temporal information incorporated

into the models. Sharan et al. [94] assumes a strict representation that only uses

kernel estimation for link weights, while GA-TVRC [95] uses a genetic algorithm to

learn the link weights. SRPTs [96] incorporate temporal and spatial information in

the relational attributes. However, the above approaches focus only on one specific

temporal pattern and do not consider different temporal granularities. In contrast, we
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Fig. 2.11.: Evaluation of relational time-series classifiers using only the latent topics
of the communications to predict effectiveness. LDA is used to automatically discover
the latent topics as well as annotating the communication links and individuals with
their appropriate topic in the temporal networks.

explore a larger space of temporal-relational representations in a flexible framework

that can capture temporal dependencies over links, attributes, and nodes.

McGovern et al. [96] recently proposed Spatio-Temporal Relational Probability

Trees (SRPTs) as an extension to Relational Probability Trees (RPTs) [121] to

incorporate temporal variations in relational attributes and links. SRPTs are designed

for relational domains where concepts vary based on small spatial and temporal

scales within the data (e.g., weather prediction). They model the temporal relational

information by expanding the set of features explored in the learning algorithm. For

example, the feature set includes Temporal Exists, which assesses whether an object

or a link lasted at least t time steps, and Relative Count, which splits data on the

relative change in the number of matching items (count) within a time window. Thus,

SRPTs are able to model some aspects of time-varying link structure (i.e., local

degree changes) as well as time-varying attributes in relational data. Although adding

temporal components to the feature space of relational decision trees provides the
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flexibility to model temporal variations in both attributes and relationships, it results

in an exponential number of possible features which may be infeasible to explore for

large datasets. McGovern et al. makes this tractable by defining a restricted set of

temporal relational features manually, based on domain knowledge specific to weather

prediction tasks.

To the best of our knowledge, we are the first to propose and investigate temporal-

relational ensemble methods for time-varying relational classification. However, there

has been recent work on relational ensemble methods [97–99] and non-relational

ensemble methods for evolving streams [100]. Preisach et al. [97] use voting and

stacking methods to combine relational data with multiple relations. In contrast,

Eldardiry and Neville [99] incorporates prediction averaging in the collective inference

process to reduce both learning and inference variance.

2.8 Summary

We proposed and validated a framework for temporal-relational classifiers, ensem-

bles, and more generally, representations for temporal-relational data. We evaluated an

illustrative set of temporal-relational models from the proposed framework. Empirical

results show that the models significantly outperform competing classification models

that use either no temporal information or a very limited amount. The proposed

temporal ensemble methods (i.e., temporally sampling, randomizing, and transforming

features) were shown to significantly outperform traditional and relational ensembles.

Furthermore, the temporal-ensemble methods were shown to increase the accuracy

over traditional models while providing an efficient alternative to exploring the space

of temporal-models. The results demonstrated the effectiveness, scalability, and flex-

ibility of the temporal-relational representations for classification and ensembles in

time-evolving domains. In future work, we will theoretically analyze the framework

and the proposed ensemble methods.
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3. DYNAMIC NODE WEIGHTING

We propose a dynamical system that captures changes to the network centrality of

nodes as external interest in those nodes vary. We derive this system by adding

time-dependent teleportation to the PageRank score. The result is not a single set

of importance scores, but rather a time-dependent set. These can be converted into

ranked lists in a variety of ways, for instance, by taking the largest change in the

importance score. For an interesting class of the dynamic teleportation functions, we

derive closed form solutions for the dynamic PageRank vector. The magnitude of

the deviation from a static PageRank vector is given by a PageRank problem with

complex-valued teleportation parameters. Moreover, these dynamical systems are easy

to evaluate. We demonstrate the utility of dynamic teleportation on both the article

graph of Wikipedia, where the external interest information is given by the number of

hourly visitors to each page, and the Twitter social network, where external interest is

the number of tweets per month. For these problems, we show that using information

from the dynamical system helps improve a prediction task and identify trends in the

data.

3.1 Motivation

The PageRank vector of a directed graph is the stationary distribution of a

Markovian random surfer. At a node, the random surfer either

1. transitions to a new node uniformly chosen from the set of out-edges, or

2. does something else (e.g. leaves the graph and then randomly returns) [133,134].

The probability that the surfer performs the first action is known as the damping

parameter in PageRank, denoted α. The second action is called teleporting and is

modeled by the surfer picking a node at random according to a distribution called the
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teleportation distribution vector or personalization vector. This PageRank Markov

chain always has a unique stationary distribution for any 0 ≤ α < 1. In this work, we

focus on the teleportation distribution vector v and study how changing teleportation

behavior manifests itself in a dynamical system formulation of PageRank.

To proceed further, we need to formalize the PageRank model. Let A be the

adjacency matrix for a graph where Ai,j denotes an edge from node i to node j. To

avoid a proliferation of transposes, we define P as the transposed transition matrix

for a random-walk on a graph:

Pj,i = probability of transitioning from node i to node j.

Hence, the matrix P is column-stochastic rather than the more common row-stochastic

matrices found in probability theory. Throughout this manuscript, we utilize uniform

random-walks on a graph, in which case P = ATD−1 where D is a diagonal matrix

with the out-degree of each node on the diagonal. However, none of the theory is

restricted to this type of random walk and any column-stochastic matrix will do. If

any nodes have no out-links, we assume that they are adjusted in one of the standard

ways [135]. Let v be a teleportation distribution vector such that vi ≥ 0 and
∑

i vi = 1.

This vector models where the surfer will transition when “doing something else.” The

PageRank Markov chain then has the transition matrix:

αP+ (1− α)veT .

While finding the stationary distribution of a Markov chain usually involves computing

an eigenvector or solving a singular linear system, the PageRank chain has a particularly

simple form for the stationary distribution vector x:

(I− αP)x = (1− α)v.
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Sensitivity of PageRank with respect to v is fairly well understood. [134] devote a

section to determining the Jacobian of the PageRank vector with respect to v. The

choice of v is often best guided by an application specific measure. By setting v = ei,

that is, the ith canonical basis vector:

ei =

⎡
⎢⎢⎢⎣

0...
0
1
0...
0

⎤
⎥⎥⎥⎦ ith row,

PageRank computes a highly localized diffusion that is known to produce empirically

meaningful clusters and theoretically supported clusters [136, 137]. By choosing v

based on a set of known-to-be-interesting nodes, PageRank will compute an expanded

set of interesting nodes [138,139]. Yet, in all of these cases, v is chosen once for the

graph application or particular problem.

In the original motivation of PageRank [133], the distribution v should model how

users behave on the web when they don’t click a link. When this intuition is applied

to a site like Wikipedia, this suggests that the teleportation function should vary as

particular topics become interesting. For instance, in our experiments (section 3.4),

we examine the number of page views for each Wikipedia article during a period

where a major earthquake occurred. Suddenly, page views to earthquake spike –

presumably as people are searching for that phrase. We wish to include this behavior

into our PageRank model to understand what is now important in light of a radically

different behavior. One option would be to recompute a new PageRank vector given

the observed teleporting behavior at the current time. Our proposal for a dynamical

system is another alternative. That is, we define a new model where teleportation is

the time-dependent function:

v(t).



54

Fig. 3.1.: On the left is PageRank with static teleportation. At each step, the telepor-
tation is to each node with uniform probability 1/5. At right, we have the PageRank
model with dynamic teleportation. In this case, the teleportation distribution (illus-
trated in red) changes with time. Thus, the upper nodes are teleported to more during
the middle time regime. In both cases, the graph is fixed. We study the effect of such
dynamic teleportation on the PageRank scores.

At each time t, v(t) is a probability distribution of where the random walk teleports.

Figure 3.1 illustrates this model. We return to a comparison between this approach

and solving PageRank systems in section 3.6.

The dynamical system we propose is a generalization of PageRank in the sense

that if v(t) is a constant function in time, then we converge to the standard PageRank

vector (theorem 1). Additionally, we can analyze the dynamical PageRank function

for some simple oscillatory teleportation functions v(t). Bounding the deviation of

these oscillatory PageRank values from the static PageRank vector involves solving a

PageRank problem with complex teleportation [140,141]. This result is, perhaps, the

first non-analytical use of PageRank with a complex teleportation parameter.

In our new dynamical system, we do not compute a single ranking vector as others

have done with time-dependent rankings [142], rather we compute a time-dependent

ranking function x(t), the dynamic PageRank vector at time t, from which we can

extract different static rankings (section 3.2.4). There are two complications with using

empirically measured data. First, we must choose a time-scale for our ODE based on

the period of our page-view data (section 3.2.5). Put a bit informally, we must pick
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the time-unit for our ODE – it is not dimensionless. We analytically show that some

choices of the time-scale amount to solving the PageRank system for each change in

the teleportation vector. Second, we also investigate smoothing the measured page

view data (section 3.2.6). To compute this dependent ranking function x(t) we discuss

ordinary differential equation (ODE) integrators in section 3.3.

We discuss the impact of these choices on two problems: page views from Wikipedia

and a network from Twitter. We also investigate how the rankings extracted from our

methods differ from those extracted by other static ranking measurements. We can use

these rankings for a few interesting applications. Adding the dynamic PageRank scores

to a prediction task decreases the average error (section 3.4.4) for Twitter. Clustering

the dynamic PageRank scores yields many of the standard time-series features in social

networks (section 3.5.1). Finally, using Granger causality testing on the dynamic

PageRank scores helps us find a set of interesting links in the graph (section 3.5.2).

We make our code and data available in the spirit of reproducible research:

http://www.ryanrossi.com/dynamic_pagerank

3.2 PageRank with Time-dependent Teleportation

We begin our discussion by summarizing the notation introduced thus far in

Table 3.1.

In order to incorporate changes in the teleportation into a new model for PageRank,

we begin by reformulating the standard PageRank algorithm in terms of changes

to the PageRank values for each page. This step allows us to state PageRank as a

dynamical system, in which case we can easily incorporate changes into the vector.

The standard PageRank algorithm is the power method for the PageRank Markov

chain [134]. After simplifying this iteration by assuming that eTx = 1, it becomes:

x(k+1) = αPx(k) + (1− α)v.
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Table 3.1.: Summary of notation. Matrices are bold, upright roman letters; vectors
are bold, lowercase roman letters; and scalars are unbolded roman or greek letters.
Indexed elements are vectors if they are bolded, or scalars if unbolded.

ı the imaginary number
n number of nodes in a graph
e the vector of all ones
P column stochastic matrix
α damping parameter in PageRank
v teleportation distribution vector
x solution to the PageRank computation: (I− αP)x = (1− α)v

x(t) solution to the dynamic PageRank computation for time t
v(t) a teleportation distribution vector at time t

c the cumulative rank function
r the variance rank function
d the difference rank function

vk the teleportation distribution for the kth observed page-views vector
θ decay parameter for time-series smoothing
s the time-scale of the dynamical system

tmax the last time of the dynamical system

In fact, this iteration is equivalent to the Richardson iteration for the PageRank linear

system (I− αP)x = (1− α)v. This fact is relevant because the Richardson iteration

is usually defined:

x(k+1) = x(x) + ω
[
(1− α)v − (I− αP)x(k)

]
.

For ω = 1, we have:

Δx(k) = x(k+1) − x(k) = αPx(k) + (1− α)v − x(k) = (1− α)v − (I− αP)x(k).

Thus, changes in the PageRank values at a node evolve based on the increment

(1− α)v − (I− αP)x(k). We reinterpret this update as a continuous time dynamical

system:

x′(t) = (1− α)v − (I− αP)x(t). (3.1)
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To define the PageRank problem with time-dependent teleportation, we make v(t) a

function of time.

Definition 1: The dynamic PageRank model with time-dependent teleportation is the

solution of

x′(t) = (1− α)v(t)− (I− αP)x(t) (3.2)

where x(0) is a probability distribution vector and v(t) is a probability distribution

vector for all t.

In the dynamic PageRank model, the PageRank values x(t) may not “settle” or

converge to some fixed vector x. We see this as a feature of the new model as we plan

to utilize information from the evolution and changes in the PageRank values. For

instance, in section 3.2.4, we discuss various functions of x(t) that define a rank. Next,

we state the solution of the problem.

Lemma 1: The solution of the dynamical system:

x′(t) = (1− α)v(t)− (I− αP)x(t)

is

x(t) = exp[−(I− αP)t]x(0) + (1− α)

∫ t

0

exp[−(I− αP)(t− τ)]v(τ) dτ.

This result is found in standard texts on dynamical systems, for example [143].

Given this solution, let us quickly verify a few properties of this system:

Lemma 2: The solution of a dynamical PageRank system x(t) is a probability distri-

bution (x(t) ≥ 0 and eTx(t) = 1) for all t.

Proof. The model requires that x(0) is a probability distribution. Thus, x(0) ≥ 0 and

eTx(0) = 1. Assuming that the sum of x(t) is 1, then the sum of the derivative x′(t)

is 0 as a quick calculation shows. The closed form solution above is also nonnegative

because the matrix exp[−(I− αP)] = exp(αP) exp(−1) ≥ 0 and both x(0) and v(t)
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are non-negative for all t. (This property is known as exponential non-negativity and

it is another property of M -matrices such as I− αP [143].)

3.2.1 A Generalization of PageRank

This closed form solution can be used to solve a version of the dynamic problem

that reduces to the PageRank problem with static teleportation. If v(t) = v is constant

with respect to time, then

∫ t

0

exp[−(I− αP)(t− τ)]v(τ) dτ = (I− αP)−1v − exp[−(I− αP)t](I− αP)−1v.

Hence, for constant v(t):

x(t) = exp[−(I− αP)t](x(0)− x) + x,

where x is the solution to static PageRank: (I− αP)x = (1− α)v. Because all the

eigenvalues of −(I− αP) are less than 0, the matrix exponential terms disappear in a

sufficiently long time horizon. Thus, when v(t) = v, nothing has changed. We recover

the original PageRank vector x as the steady-state solution:

lim
t→∞

x(t) = x the PageRank vector.

This derivation shows that dynamic teleportation PageRank is a generalization of the

PageRank vector. We summarize this discussion as:

Theorem 1: PageRank with time-dependent teleportation is a generalization of PageR-

ank. If v(t) = v, then the solution of the ordinary differential equation:

x′(t) = (1− α)v − (I− αP)x(t)
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converges to the PageRank vector

(I− αP)x = (1− α)v

as t→∞.

3.2.2 Choosing the Initial Condition

There are three natural choices for the initial condition x(0). The first choice is

the uniform vector x(0) = 1
n
e. The second choice is the initial teleportation vector

x(0) = v(0). And the third choice is the solution of the PageRank problem for the

initial teleportation vector (I− αP)x(0) = (1− α)v(0). We recommend either of the

latter two choices in order to generalize the properties of PageRank. Note that if x(0)

is chosen to solve the PageRank system for v(0), then x(t) = x for all t is the solution

of the PageRank dynamical system with constant teleportation (theorem 1).

3.2.3 PageRank with Fluctuating Interest

One of the advantages of the PageRank dynamical system is that we can study

problems analytically. We now do so with the following teleportation function, or

forcing function as it would be called in the dynamical systems literature:

v(t) =
1

k

k∑
j=1

vj

(
cos(t+ (j − 1)2π

k
) + 1

)
,

where vj is a teleportation vector. Here, the idea is that vj represents the propensity

of people to visit certain nodes at different times. To be concrete, we might have v1

correspond to news websites that are visited more frequently during the morning, v2

correspond to websites visited at work, and v3 correspond to websites visited during

the evening. This function has all the required properties that we need to be a valid
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teleportation function. With the risk of being overly formal, we’ll state these as a

lemma.

Lemma 3: Let k ≥ 2. Let v1, . . . ,vk be probability distribution vectors. The time-

dependent teleportation function

v(t) =
1

k

k∑
j=1

vj

(
cos(t+ (j − 1)2π

k
) + 1

)
,

satisfies the both properties:

1. v(t) ≥ 0 for all t, and

2.
∑n

i=1 v(t)i = 1 for all t

Proof. The first property follows directly because the minimum value of the cosine

function is −1, and thus, v(t) is always non-negative. The second property is also

straightforward. Note that

n∑
i=1

v(t)i = 1 +
k∑

j=1

cos(t+ (j − 1)2π
k
) = 1 +

k∑
j=1

Reexp
(
ıt+ ı(j − 1)2π

k

)
.

Let rj(t) = exp(ıt+ ı(j − 1)2π
k
). For t = 0, these terms express the k roots of unity.

For any other t, we simply rotate these roots. Thus we have
∑

j rj(t) = 0 for any t

because the sum of the roots of unity is 0 if k ≥ 2. The second property now follows

because the sum of the real component is still zero.

For this function, we can solve for the steady-state solution analytically.

Lemma 4: Let k ≥ 2, 0 ≤ α < 1, P be column-stochastic, v1, . . . ,vk be probability

distribution vectors, and

v(t) =
1

k

k∑
j=1

vj

(
cos(t+ (j − 1)2π

k
) + 1

)
=

1

k
V cos(t+ f) +

1

k
Ve,
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where V =
[
v1, . . . ,vk

]
and fj = (j − 1)2π

k
j = 1, . . . , k. Then the steady state

solution of

x′(t) = (1− α)v(t)− (I− αP)x(t)

is

x(t) = x+ Res exp(ıt)

where x is the solution of the static PageRank problem

(I− αP)x = (1− α)
1

k
Ve

and s is the solution of the static PageRank problem with complex teleportation

(I− α
1+ı

P)s = (1− α) 1
k(1+ı)

V exp(ıf).

Proof. This proof is mostly a derivation of the expression for the solution by guessing

the form. First note that if

x(t) = x+ y(t)

then

y′(t) = (1− α) 1
k
V cos(t+ f)− (I− αP)y(t).

That is, we’ve removed the constant term from the teleportation function by looking

at solutions centered around the static PageRank solution. To find the steady-state

solution, we look at the complex-phasor problem:

z′(t) = (1− α) 1
k
V exp(ıt+ ıf)− (I− αP)z(t)

where y(t) = Rez(t). Suppose that z(t) = s exp(ıt). Then:

z′(t) = ıs exp(ıt) = (1− α) 1
n
exp(ıt) exp(ıf)− (I− αP)s exp(ıt).
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The statement of s in the theorem is exactly the solution after canceling the phasor

exp(ıt). We now have to show that this solution is well-defined. PageRank with

a complex teleportation parameter γ exists for any column-stochastic P if |γ| < 1

(see [140,141]). For the problem defining s, γ = α/(1+ ı) and |γ| = α/
√
2. Thus, such

a vector s always exists.

We conclude with an example of this theorem. Consider a four node graph with

adjacency matrix and transition matrix:

A =

[
0 0 1 0
0 0 1 0
0 1 0 1
1 1 0 0

]
and P =

[
0 0 0 0.5
0 0 0.5 0.5
1 1 0 0
0 0 0.5 0

]
.

Let vj = ej for j = 1, . . . , 4. That is, interest oscillates between all four nodes in the

graph in a regular fashion. We show the evolution of the dynamical system for 20

time-units in Figure 3.2. This evolution quickly converges to the oscillators predicted

by the lemma. In the interest of simplifying the plot, we do not show the exact

curves as they are visually indistinguishable from those plotted for t ≥ 4. By solving

the complex valued PageRank to compute s, we can compute the magnitude of the

fluctuation:

|s| =
[
0.0216 0.0261 0.0122 0.0235

]T
.

This vector accurately captures the magnitude of these fluctuations.

3.2.4 Ranking from Time-series

The above equations provide a time-series of dynamic PageRank vectors for the

nodes, denoted formally as x(t), 0 ≤ t ≤ tmax. Applications, however, often want a

single score, or small set of scores, to characterize sets of interesting nodes. There are

a few ways in which these time series give rise to scores. Many of these methods were

explained by [42] in the context of ranking sequences of vectors. Having a variety of

different scores derived from the same data frequently helps when using these scores

as features in a prediction or learning task [141,144].
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Fig. 3.2.: The dashed lines represent the average PageRank vector computed for the
teleportation vectors. The curves show the evolution of the PageRank dynamic system
for this example of teleportation. We see that the dynamic PageRanks fluctuate about
their average PageRank vectors. Lemma 4 predicts the magnitude of the fluctuation.

Transient Rank. We call the instantaneous values of x(t) a node’s transient rank.

This score gives the importance of a node at a particular time.

Summary, Variance, and Cumulative Rank. Any summary function s of the

time series, such as the integral, average, minimum, maximum, or variance, is a single

score that encompasses the entire interval [0, tmax]. We utilize the cumulative rank, c

and variance rank, r in the forthcoming experiments:

c =

∫ tmax

0

x(t) dt and r =

∫ tmax

0

(x(t)− 1
tmax

c)2 dt.

Difference Rank. A node’s difference rank is the difference between its maximum

and minimum rank over all time, or a limited time window:

d = max
t

[x(t)]−min
t
[x(t)] dW = max

t∈W
x(t)−min

t∈W
x(t).

Nodes with high difference rank should reflect important events that occurred within

the range [0, tmax] or the time window W . We suggest using a window W that omits

the initial convergence region of the evolution. In the context of Figure 3.2, we’d set
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W to be [4, 20] to approximate the vector |s| numerically. In Section 3.5 and figure 3.9,

we see examples of how current news stories arise as articles with high difference rank.

3.2.5 Modeling Activity

In the next two sections of our introduction to the dynamic teleportation PageRank

model, we discuss how to incorporate empirically measured activity into the model.

Let p1, . . . ,pk be k observed vectors of activity for a website. In the cases we examine

below, these activity vectors measure page views per hour on Wikipedia and the

number of tweets per month on Twitter. We normalize each of them into teleportation

distributions, and conceptually think of the collection of vectors as a matrix

v1, . . . ,vk → V =
[
v1, . . . ,vk

]
.

Let e(i) be a functional form representing the vector ei. The time-dependent telepor-

tation vector we create from this data is:

v(t) = Ve(floor{t}+ 1) = vfloor{t}+1.

For this choice, the time-units of our dynamical system are given by the time-unit of

the original measurements. Other choices are possible too. Consider:

vs(t) = Ve(floor{t/s}+ 1) = vfloor{t/s}+1.

If s > 1, then time in the dynamical system slows down. If s < 1, then time accelerates.

Thus, we call s the time-scale of the system. Note that

x(sj), j = 0, 1, . . .

represents the same effective time-point for any time-scale. Thus, when we wish to

compare different time-scales s, we examine the solution at such scaled points.
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In the experimental evaluation, the parameter s plays an important role. We

illustrate its effect in Figure 3.3(a) for a small subnetwork extracted from Wikipedia.

As we discuss further in section 3.3, for large values of s, then v(t) looks constant

for long periods of time, and hence x(t) begins to converge to the PageRank vector

for the current, and effectively static, teleportation vector. Thus, we also plot the

converged PageRank vectors as a step function. We see that as s increases, the lines

converge to these step functions, but for s = 1 and s = 2, they behave differently.

3.2.6 Smoothing Empirical Activity

So far, we defined a time-dependent that v(t) changes at fixed intervals based on

empirically measured data. A better idea is to smooth out these “jumps” using an

exponentially weighted moving average. As a continuous time function, this yields:

v̄′(t; θ) = θv(t)− θv̄(t; θ).

To understand why this smooths the sequence, consider an implicit Euler approxima-

tion:

v̄(t) =
1

1 + hθ
v̄(t− h; θ) +

hθ

1 + hθ
v(t).

This update can be written more simply as:

v̄(t; θ) = γv(t)︸ ︷︷ ︸
new data

+(1− γ)v̄(t− h; θ)︸ ︷︷ ︸
old data

,

where γ = hθ
1+hθ

. When v(t) changes at fixed intervals, then v̄(t; θ) will slowly change.

If θ is small then v̄(t; θ) changes slowly. We recover the “jump” changes in v(t) in the

limit θ →∞.

The effect of θ is shown in Figure 3.3(b). Note that we quickly recover behavior

that is effectively the same as using jumps in v(t) (θ = 1, 10). So we only expect

changes with smoothing for θ < 1.
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Fig. 3.3.: The evolution of PageRank values for one node due to the dynamical
teleportation. The horizontal axis is time [0, 20], and the vertical axis runs between
[0.01,0.014]. In figure (a), α = 0.85, and we vary the time-scale parameter (section 3.2.5)
with no smoothing. The solid dark line corresponds to the step function of solving
PageRank exactly at each change in the teleportation vector. All samples are taken
from the same effective time-points as discussed in the section. In figure (b), we vary
the smoothing (section 3.2.6) of the teleportation vectors with s = 2, and α = 0.85.
In figure (c), we vary α with s = 2 and no smoothing. We used the ode45 function in
Matlab, a Runge-Kutta method, to evolve the system.

3.2.7 Choosing the Teleportation Factor

Picking α even for static PageRank problems is challenging, see [145] for some

discussion. In this manuscript, we do not perform any systematic study of the effects

of α beyond Figure 3.3-3.5. This simple experiment shows one surprising feature.

Common wisdom for choosing α in the static case suggests that as α approaches 1,
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Fig. 3.4.: Evolution of PageRank values for one node (cont.)

the vector becomes more sensitive. For the dynamic teleportation setting, however,

the opposite is true. Small values of α produce solutions that more closely reflect the

teleportation vector – the quantity that is changing – whereas large values of α reflect

the graph structure, which is invariant with time. Hence, with dynamic teleportation,
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Fig. 3.5.: Evolution of PageRank values for one node (cont.)

using a small value of α is the sensitive setting. Note that this observation is a

straightforward conclusion from the equations of the dynamic vector:

x′(t) = (1− α)v(t) + αPx(t)− x(t)

so α small implies a larger change due to v(t). Nevertheless, we found it surprising in

light of the existing literature.
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3.3 Methods for Dynamic PageRank

In order to compute the time-sequence of PageRank values x(t), we can evolve

the dynamical system (3.2) using any standard method – usually called an integrator.

We discuss both the forward Euler method and a Runge-Kutta method next. Both

methods, and indeed, the vast majority of dynamical system integrators only require

a means to evaluate the derivative of the system at a time t given x(t). For PageRank

with dynamic teleportation, this corresponds to computing:

x′(t) = (1− α)v(t)− (I− αP)x(t).

The dominant cost in evaluating x′(t) is the matrix vector product Px. For the explicit

methods we explore, all of the other work is linear in the number of nodes, and hence,

these methods easily scale to large networks. Both of these methods may also be used

in a distributed setting if a distributed matrix-vector product is available.

3.3.1 Forward Euler

We first discuss the forward Euler method. This method lacks high accuracy, but

is fast and straightforward. Forward Euler approximates the derivative with a first

order Taylor approximation:

x′(t) ≈ x(t+ h)− x(t)

h
,

and then uses that approximation to estimate the value at a short time-step in the

future:

x(t+ h) = x(t) + h [(1− α)v(t)− (I− αP)x(t)] .

This update is the original Richardson iteration with h = ω. We present the forward

Euler method as a formal algorithm in Figure 3.6 in order to highlight a comparison

with the power and Richardson method. That is, the forward Euler method is simply
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running a power method, but changing the vector v at every iteration. However,

we derived this method based on evolving (3.2). Thus, by studying the relationship

between (3.2) and the algorithm in Figure 3.6, we can understand the underlying

problem solved by changing the teleportation vector while running the power method.

Long time-scales. Using the forward Euler method, we can analyze the situation

with a large time-scale parameter s. Consider an arbitrary x(0), α = 0.85, s = 100,

h = 1, and no smoothing. In this case, then the forward Euler method will run the

Richardson iteration for 100 times before observing the change in v(t) at t = 100.

The difference between x(k) and the exact PageRank solution for this temporarily

static v(t) is ‖x(k)− x‖1 ≤ 2αk. For k > 50, this difference is small. Thus, a large s

and no smoothing corresponds to solving the PageRank problem for each change in v.

Stability. The forward Euler method with timestep h is stable if the eigenvalues of

the matrix −h(I− αP) are within distance 1 of the point −1. The eigenvalues of P

are all between −1 and 1 because it is a stochastic matrix, and so this is stable for

any h < 2
1+α

.

3.3.2 Runge-Kutta

Runge-Kutta [146,147] numerical schemes are some of the most well-known and

most used. They achieve far greater accuracy than the simple forward Euler method,

at the expense of a greater number of evaluations of the function x′(t) at each step.

We use the implementations of Runge-Kutta methods available in the Matlab ODE

suite [148]. The step-size is adapted automatically based on a local error estimate,

and the solution can be evaluated at any desired point in time. The stability region

for Runge-Kutta includes the region for forward Euler, so these methods are stable.

These methods are also fast. To integrate the system for Wikipedia with over 4 million

vertices and 60 million edges, it took between 300-600 seconds, depending on the

parameters.
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Algorithm 1 Forward Euler method for evolving the dynamical system

1: procedure Forward-Euler

2: Input:
3: a graph G = (V,E) and a procedure to compute Px for this graph
4: a maximum time tmax

5: a function to return v(t) for any 0 ≤ t ≤ tmax

6: a damping parameter α
7: a time-step h
8: Output: X where the kth column of X is x(0 + kh) for all 1 ≤ k ≤ tmax/h

(or a subset)

9: t← 0; k = 1
10: x(0)← v(0) (or any other desired initial condition)
11: while t ≤ tmax − h do
12: x(t+ h)← x(t) + h [(1− α)v(t)− (I− αP)x(t)]
13: X(:, k)← x(t+ h)
14: t← t+ h; k ← k + 1

Fig. 3.6.: The forward Euler method for evolving the dynamical system: x′(t) =
(1− α)v(t)− (I− αP)x(t). The resulting procedure looks remarkably similar to the
standard Richardson iteration to compute a PageRank vector. One key difference is
that there is no notion of convergence.

3.3.3 Maintaining Interpretability

Based on the theory of the dynamic teleportation system, we expect that x(t) ≥ 0

and eTx(t) = 1 for all time. Although this property should be true of the com-

puted solution, we often find that the sum diverges from one. Consequently, for our

experiments, we include a correcting term:

x′(t) = (1− α)v(t)− (γI− αP)x(t)

where γ = (1 − α)eTv(t) + αeTx(t). Note that γ = 1 if the x(t) has sum exactly

1. If eTx(t) is slightly different from one, then the correction with γ ensures that

eTx′(t) = 0 numerically. Similar issues arise in computing static PageRank [149],
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although the additional computation in the Runge-Kutta methods exacerbates the

problem.

3.4 Experiments

We now use dynamic teleportation to investigate page view patterns on Wikipedia

and user activity on Twitter. In the following experiments, unless otherwise noted,

we set s = 1, α = 0.85, do not use smoothing (“θ =∞”), and use the ode45 method

from Matlab to evolve the system. We study this model on two datasets.

3.4.1 Datasets

We provide some basic statistics of the Wikipedia and Twitter datasets in Table 3.2.

For Wikipedia, the time unit for s = 1 is an hour, and for Twitter, it is one month.

Wikipedia Article Graph and Hourly page views. Wikipedia provides access

to copies of its database [150]. We downloaded a copy of its database on March 6th,

2009 and extracted an article-by-article link graph, where an article is a page in the

main Wikipedia namespace, a category page, or a portal page. All other pages and

links were removed.

Wikipedia also provides hourly page views for each page [151]. These are the

number of times a page was viewed for a given hour. These are not unique visits. We

downloaded the raw page counts and matched the corresponding page counts to the

pages in the Wikipedia graph. We used the page counts starting from March 6, 2009

and moving forward in time. Although it would seem like measuring page views would

correspond to measuring x(t) instead of v(t), one of our earlier studies showed that

users hardly ever follow links on Wikipedia [145]. Thus, we can interpret these page

views as a reasonable measure of external interest in Wikipedia pages.
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Table 3.2.: Dataset properties. The page views for each page on Wikipedia or total
tweets for each user on twitter is denoted as p and we show the maximum and average
for any page at any time.

Dataset Nodes Edges tmax Period Average pi Max pi

wikipedia 4,143,840 72,718,664 48 hours 1.4243 353,799
twitter 465,022 835,424 6 months 0.5569 1056

Twitter Social Network and Monthly Tweet Rates. The Twitter social net-

works consists of a set of users that follow each other’s tweets, or small 140 character

messages. Thus, Twitter has both a network structure, the follower graph, and activity

on top of this graph, the tweet stream. We built the follower graph by starting with a

few seed users and crawling follow links for several iterations. (The particular crawl

we use is from 2008.) We then take the set of users from the follower graph and

extract their tweets for a period of six months between 2008− 2009. Each tweet is

time-stamped, and we construct a sequence of vectors to represents the number of

tweets from each user in each month. (We briefly explored finer levels of granularity

for Twitter activity, but these choices led to sparser vectors.) These vectors are the

basis for the teleportation time-series in our time-dependent PageRank.

3.4.2 Rankings from Transient Scores

First, we evaluate the rankings from dynamic PageRank using the intersection

similarity measure [152]. Given two vectors x and y, the intersection similarity metric

at k is the average symmetric difference over the top-j sets for each j ≤ k. If Xk and

Yk are the top-k sets for x and y, then

isimk(x,y) =
1

k

k∑
j=1

|XjΔYj|
2j

where Δ is the symmetric set-difference operation. Identical vectors have an intersection

similarity of 0.
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(a) In-degree
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(b) Static PageRank (Uniform)
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(c) Average page views
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(d) Static PageRank (avg. page views)

Fig. 3.7.: Intersection similarity of rankings derived from dynamic PageRank. We
compute the intersection similarity of the difference, variance, and cumulative rankings
given by dynamic PageRank and compare these with the rankings given by the in-
degree, average page views, static PageRank with uniform teleportation, and static
PageRank with average page views as the teleportation vector. For dynamic PageRank,
we set the initial value x(0) to be the solution of the static PageRank system which
uses v(0) as the teleportation vector.

For the Wikipedia graph, Figure 3.7 shows the similarity profile comparing a few

ranking measures from dynamic PageRank to reasonable baselines. In particular,

we compare d, r, c (from §3.2.4) to indegree, average page views, static PageRank

with uniform teleportation, and static PageRank using average page views as the

teleportation vector. The results suggest that dynamic PageRank is different from
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the other measures, even for small values of k. In particular, combining the external

influence with the graph appears to produce something new. The only exception is in

Fig. 3.7(d) where the cumulative rank is shown to give a similar ordering to static

PageRank using average page views as the teleportation.

3.4.3 Difference Ranks

Figure 3.8 and figure 3.9 show the time-series of the top 100 pages by the difference

measure for Wikipedia with s = 1 and s = 4 without smoothing. Many of these

pages reveal the ability of dynamic PageRank to mesh the network structure with

changes in external interest. For instance, in figure 3.9, we find pages related to an

Australian earthquake (43, 84, 82), the “recently” released movie “Watchmen” (98,

23-24), a famous musician who died (2, 75), recent “American Idol” gossip (34, 63), a

remembrance of Eve Carson from a contestant on “American Idol” (88, 96, 34), news

about the murder of a Harry Potter actor (60), and the Skittles social media mishap

(94). These results demonstrate the effectiveness of the dynamic PageRank to identify

interesting pages that pertain to external interest. The influence of the graph results

in the promotion of pages such as Richter magnitude (84). That page was not in the

top 200 from page views.
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3.4.4 Predicting Future Page Views and Tweets

We begin by studying how well the dynamical system can predict the future.

Formally, given a lagged time-series pt−w, ...,pt−1,pt [61], the goal is to predict the

future value pt+1 (actual page views or number of tweets). This type of temporal

prediction task has many applications, such as actively adapting caches in large

database systems, or dynamically recommending pages.

We performed one-step ahead predictions (t+ 1) using linear regression. That is,

we learn a model of the form:

[
f̄(t− 1) f̄(t− 2) . . . f̄(t− w)

]
b ≈ p(t)

where w is the window-size, and f̄(·) is either page views or both page views and

transient scores. After fitting b, the model predicts p(t+ 1) as

[
f̄(t) f̄(t− 1) · · · f̄(t− w + 1)

]
b

We use the symmetric Mean Absolute Percentage Error (sMAPE) [61] measure to

evaluate the prediction:

sMAPE =
1

|T |

|T |∑
t=1

|pt − p̂t|
(pt + p̂t)/2

.

This relative error measure averages all the relative prediction errors over all the

time-steps. We then average it over nodes.

For evaluation of Wikipedia and Twitter, we vary w in order to use all the past

information for each one-step ahead prediction. As an example, we start by setting

t = 2, and use w = 1 so that we use all past information to predict t+ 1. After we

forecast t+ 1, we repeat the above by setting t = 3 and use w = 2 in order to predict

t+ 1. We repeat this until we have predicted all timesteps (up to t = tmax − 1 and

w = tmax − 2). This corresponds to learning a model for each t = 2, ..., tmax − 1 and
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performing one-step ahead forecasting where for each t we set w = t− 1. Hence, we

vary w in order to use all available past information.

We note that we also tried setting w to a fixed constant and also used AIC to

learn the value of w for each one-step ahead prediction. However, there appeared

to be no significant difference, and thus we chose to simply use all past information.

This choice also allowed us to better understand the effectiveness of using dynamic

pagerank for prediction. For other applications, one may wish to set w accordingly.

We study two predictive modes. The base model uses only the time-series of page

views or tweets to predict the future page views or tweets. The dynamic teleportation

model uses both the transient scores with smoothing and page views to predict the

future page views (or tweets).

We evaluate these models for prediction on stationary and non-stationary time-

series. Informally, a time-series is weakly stationary if it has properties (mean and

covariance) similar to that of the time-shifted time-series. We consider the top and

bottom 10,000 nodes from the difference ranking as nodes that are approximately

non-stationary (volatile) and stationary (stable), respectively. Table 3.3 compares the

predictions of the models across time for non-stationary and stationary prediction

tasks. Our findings indicate that the Dynamic PageRank time-series provides valuable

information for forecasting future tweet rates; however, it adds little (if any) accuracy

in forecasting future page views on Wikipedia.

For Twitter, the dynamic teleportation model improves predictions the most with

the non-stationary nodes. The diffusion of activity captured by the model allows our

model to detect, early on, when the external interest of vertices will change, before

that change becomes apparent in the external interest of the vertices. This is easiest

to detect when there is a large sudden change in external interest of a neighboring

vertex.
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Table 3.3.: The ratio between the base model and the model with dynamic teleportation
scores with s = 1, 2, 6, and ∞, for three smoothing parameters. (Here, s = ∞
corresponds to solving the PageRank problem exactly for each change in teleportation.)
If this ratio is less than 1, then the model with the dynamic teleportation scores
improves the prediction performance. We also distinguish between prediction problems
with highly volatile nodes (non-stationary) and nodes with relatively stable behavior
(stationary). The results show a much stronger benefit for Twitter than for Wikipedia

Dataset Type θ Error Ratio

s (timescale)
1 2 6 ∞

twitter stationary 0.01 0.450 0.898 0.836 0.967
0.50 0.258 0.611 0.858 0.775
1.00 0.527 0.531 0.849 0.791

non-stationary 0.01 0.500 0.874 0.662 1.240
0.50 0.461 0.499 0.658 0.835
1.00 0.458 0.489 0.652 0.848

wikipedia stationary 0.01 0.978 0.991 0.989 0.978
0.50 1.140 1.130 1.004 0.990
1.00 1.084 0.976 1.010 0.990

non-stationary 0.01 0.968 1.011 0.968 1.004
0.50 1.218 0.994 1.030 1.031
1.00 1.241 0.996 0.957 0.998

3.5 Applications

This section explores the opportunity of using Dynamic PageRank for a variety of

applications outside of the context of ranking.

3.5.1 Clustering Dynamic Patterns

Identifying vertices with similar time-series is important for modeling and under-

standing large collections of multivariate time-series. We now group vertices according

to their transient scores. By using the difference rank measure d for s = 4, we cluster

the top 5,000 vertices using k-means with k = 5, repeat the clustering 2,000 times,

and take the minimum distance clustering identified.

The cluster centroids are temporal patterns, and the main patterns in the dynamic

PageRanks are visualized in figure 3.10(a). Pattern 2 represents European-centric

behavior, whereas the others correspond to spikes or unusual events occurring within
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(a) Temporal Patterns

1 MYX 2 MTVAsia 3 SanBedaCol 4 Philippine 5 Peoplefrom 6 VJs 7 Colonialme 8 Pinoyrock 9 Idolseries 10 FremantleM

11 ParokyaniE 12 GaryValenc 13 Filipinoch 14 Filipinohi 15 Filipinoma 16 MalacaÃ±an 17 Myx 18 MichaelV. 19 Filipinote 20 AndrewE.

21 Germanlang 22 Paris 23 SovietUnio 24 Frenchlang 25 Europe 26 Israel 27 Redirectsf 28 France 29 Russia 30 Dutchlangu

31 Germany 32 Spain 33 Radio 34 OttomanEmp 35 OlympicGam 36 Rome 37 Denmark 38 Brazil 39 Portugal 40 NATO

41 TheOffice( 42 TimAllen 43 JoannaPaci 44 TheCitadel 45 Theoffice 46 DrivingMis 47 BloodDrive 48 AmericanId 49 KatharineM 50 ListofTheO

51 DavidFoste 52 TheOffice 53 AmericanId 54 KrisAllen 55 10,000BC(f 56 TheLastHou 57 TheOffice( 58 TheLastHou 59 TheLastHou 60 SanjayGupt

61 Threshold( 62 CharityNav 63 Taxreturn 64 527group 65 Boxee 66 Privatefou 67 Publicchar 68 Areacode90 69 BoJackson 70 BernardMad

71 DanielleLl 72 Blacklung 73 InternalRe 74 Fermiparad 75 Non−profit 76 Metroid(se 77 Taxexempti 78 Searchands 79 Treetraver 80 JennaMoras

81 M.I.A.(art 82 MeganFox 83 EdgarBronf 84 Applicatio 85 Vmware 86 EricRobert 87 Mia 88 VMware 89 EmmaThomps90 PaulaYates

91 DanicaMcKe 92 JonathanBe 93 JamesCorde 94 MattDallas 95 TheExit 96 BuddDwyer 97 Bronfmanfa 98 M.I.A. 99 NotGoingOu 100 SachaGerva

(b) Vertices with Similar Dynamics

Fig. 3.10.: Clustering nodes using dynamic PageRank scores. Vertices with similar
dynamical properties are grouped together. The visualization reveals the important
dynamic patterns (spikes, trends) present from March 6th, 2009 in our large collection
of time-series from Wikipedia. For each hour, we sample twice from the continuous
function x(t) and utilize these intermediate values in the clustering.

the dynamic PageRank system. Figure 3.10(b) plots the 20 closest vertices matching

the patterns above. A few pages from the five groups are consistent with our previously

discussed results from figure 3.9. One such unusual event is related to the death
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of a famous musician/actor from the Philippines (see pages 1-20). The pages from

the third cluster (41-60) are related to “American Idol” and other TV shows/actors.

Also some of the pages from the fourth cluster relate to Bernard Madoff (63, 66, 67,

70, 73), six days before he plead guilty in the largest financial fraud in U.S. history.

This grouping reveals many of the standard patterns in time-series such as spikes and

increasing/decreasing trends [153].

3.5.2 Discovering Causal Links

In this section, we use Granger causality tests [154] on the collection of transient

scores to attempt to understand which links are most important. The Granger causality

model, briefly described below, ought to identify a causal relationship between the

time-series of any two vertices connected by a directed edge. This is because there is

a causal relationship between their time-series in our dynamical system. However, due

to the impact of the time-dependent teleportation, only some of these links will be

identified as causal. We wish to investigate this smaller subset of links.

Intuitively, if a time-series X causally affects another Y , then the past values of X

should be helpful in predicting the future values of Y , above what can be predicted

based on the past values of Y alone. This is formalized as follows: the error in

predicting ŷt+s from yt, yt−1, . . . should be larger than the error in predicting ŷt+s

from the joint data yt, yt1 , . . . , xt, xt−1, . . . if X causes Y . As our model, we chose to

use the standard vector-autoregressive (VAR) model from econometrics [58]. This is

implemented in a Matlab code by [155]. The standard p-lag VAR model takes the

form: ⎡
⎣ yt

xt

⎤
⎦ = c+

p∑
i=1

Mi

⎡
⎣ yt−i

xt−i

⎤
⎦+ et

where c is a vector of constants, Mi are the n×n coefficient (or autoregressive) mixing

matrices and et is the unobservable white-noise. For the results shown below, p = 2.

We then use the standard F-test to determine significance.



83

Table 3.4.: Causal link discovery. Example of Causality in Wikipedia. We only
consider pages with a pval < 0.01 as statistically significant. The page with values
“caused” by Earthquake represent ideas related to earthquakes. All pages below are
significant with pval < 0.01.

Earthquake Granger causes p-value

Seismic hazard 0.003535
Extensional tectonics 0.003033

Landslide dam 0.002406
Earthquake preparedness 0.001157
Richter magnitude scale 0.000584

Fault (geology) 0.000437
Aseismic creep 0.000419
Seismometer 0.000284

Epicenter 0.000020
Seismology 0.000001

Definition 1 (Causal Link Discovery): Given a vertex u, the neighbors of u

denoted N(u) and the matrix Xu representing the time-series of the neighbors, compute

a weight for each edge from u to its neighbors N(u).

In Table 3.4, we show the causal relationships identified among the out-links of the

article Earthquake. Recall that there was a major earthquake in Australia during our

time-window. We wish to understand which of the out-links appeared to be sensitive

to this large change in interest in Earthquake. We use a significance cutoff of 0.01 and

test for Granger causality among the time-series with s = 4.

Instead of assigning only causal weights to the edges of the neighbors of a vertex,

we predict edges based on causality using vertices that are not known to directly

influence the target vertex (used in the query).

Definition 2 (Temproal Causal Link Prediction): Given a vertex u and a set of

vertices W such that W
⋂

N(u) = ∅ where XW represents their time-series, compute

a causal weight XE
uw for each vertex w ∈ W .

The above definition is less restrictive than the previous as causality weights are

assigned to vertices even if they are not connected in G. This definition assumes
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sparse. Note that once the p-val significance cutoff has been chosen, edges may be

pruned on the fly by simply testing against it, and discarding the edge if the causality

weight is insignificant. This approach avoids the extra storage cost needed to store

insignificant causality weights.

• Two-hop paths. Let N�=2(u) denote the vertices exactly two hops away and

� = 2 denotes the path length. We the set W = N2(u)
⋂

N(u), or the neighbors

two hops away from u that are not neighbors of u (cycles of size 2).

• Community detection. Use community detection methods, but avoid direct

neighbors of u.

• Use additional external information.

In both the above problem definitions (Link Causal Discovery and Temporal Causal

Link Prediction), the result is a causality graph where edges represent significant

causal relationships.

Definition 3 (Granger Causality Graph): Given a graph G = (V,E) and a

sequence of time-series for each vertex in V represented as a matrix XV where n = |V |
is the number of vertices and tmax is the last timestep. Let GC = (W,F ) denote the

granger causality graph where W is the set of vertices found to have significant causality

with other vertices in G and F is the set of causal edges found to be significant.

Note |W | < |V |, since some vertices in G may not have a single causal edge

with another vertex. This graph can then be used in a variety of graph mining

techniques to reveal latent information useful for making critical business decisions or

a variety of other applications. A smaller significance cutoff (p− val) implies more

significant causality. In general, this means a more accurate representation of the true

granger causality graph. The time and space complexity can be reduced by setting

the significance cutoff to be very small. The good news is that we do not sacrifice

accuracy for time and space (like many problems). The effect of using the significance

cutoff to prune edges simply reduces the possible noise, while also reducing the storage

costs.
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The above definition is in terms of a single vertex query, but can be repeated for

each vertex. Clearly, this definition lends itself to a straight-forward parallelization

over the neighborhood of each vertex. This strategy is used for each of the above

causal link tasks.

3.6 Related Work

The relationship between dynamical systems and classical iterative methods has

been utilized by [156] to study eigenvalue solvers. It was also noted in an early paper

by [157] that there is a relationship between the PageRank and HITS algorithms and

dynamical systems.

In the past, others studied PageRank approximations on graph streams [43]. More

recently, [158] studied how accurately an evolving PageRank method could estimate

the true PageRank of an evolving graph that is accessed only via a crawler. The

method used here solved each PageRank problem exactly for the current estimate

of the underlying graph. A detailed study of how PageRank values evolve during a

web-crawl was done by [159]. In the future, we plan to study dynamic graphs via

similar ideas.

As explained in section 3.3 and figure 3.6, our proposed method is related to chang-

ing the teleportation vector in the power method as it’s being computed. Bianchini

et al. [160] noted that the power method would still converge if either the graph or

the vector v changed a few times during the method, albeit to a new solution given

by the new vector or graph. Our method capitalizes on a closely related idea and we

utilize the intermediate quantities explicitly. Another related idea is the Online Page

Importance Computation (OPIC) [161], which integrates a PageRank-like computation

with a crawling process. The method does nothing special if a node has changed when

it is crawled again.
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While we described PageRank in terms of a random-surfer model, another charac-

terization of PageRank is that it is a sum of damped transitions:

x = (1− α)
∞∑
k=0

(αP)kv.

These transitions are a type of probabilistic walk and Grindrod et al. [142] introduced

the related notion of dynamic walks for dynamic graphs. We can interpret these

dynamic walks as a backward Euler approximation to the dynamical system:

x′(t) = αA(t)x(t) x(0) = e

with time-step h = 1 and A is a time-dependent adjacency matrix. This relationship

suggests that there may be a range of interesting models between our dynamic

teleportation model and existing evolving graph models.

Outside of the context of web-ranking, O’Madadhain and Smyth propose Even-

tRank [42], a method of ranking nodes in dynamic graphs, that uses the PageRank

propagation equations for a sequence of graphs. We utilize the same idea but place it

within the context of a continuous dynamical system. In the context of popularity

dynamics [162], our method captures how changes in external interest influence the

popularity of nodes and the nodes linked to these nodes in an implicit fashion. Our

work is also related to modeling human dynamics, namely, how humans change their

behavior when exposed to rapidly changing or unfamiliar conditions [163]. In one

instance, our method shows the important topics and ideas relevant to humans before

and after one of the largest Australian Earthquakes (figure 3.9).

In closing, we wish to note that our proposed method does not involve updating the

PageRank vector, a related problem which has received considerable attention [164,165].

Nor is it related to tensor methods for dynamic graph data [78,166].
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3.7 Summary

PageRank is one of the most widely used network centrality measures. Our

dynamical system reformulation of PageRank permits us to incorporate time-dependent

teleportation in a relatively seamless manner. Based on the results presented here,

we believe this is an interesting variation on the PageRank model. For instance, we

can analyze certain choices of oscillating teleportation functions (Lemma 4). Our

empirical results show that the maximum change in the transient rank values identifies

interesting sets of pages. Furthermore, this method is simple to implement in an online

setting using either a forward Euler or Runge-Kutta integrator for the dynamical

system. We hope that it might find a use in online monitoring systems.

One important direction for future work is to treat the inverse problem. That is,

suppose that the observed page views reflect the behavior of these random surfers.

Formally, suppose that we equate page views with samples of x(t). Then, the goal

would be to find v(t) that produces this x(t). This may not be a problem for websites

such as Wikipedia, due to our argument that the majority of page views reflect search

engine traffic. But for many other cases, we suspect that x(t) may be much easier to

observe. In addition, our method also has the following useful properties:

• Flexible. Dynamic PageRank is flexible for many application-specific require-

ments. The time and space complexity can also be reduced by adjusting the

time-scale used to sample, and the number of iterations, and tolerance, among

many other options.

• Effectiveness. Our approach was shown to be effective for a variety of ap-

plications such as dynamic ranking of nodes, relational time series regression

(i.e., predicting the future page views), discovering causal links, and clustering

dynamic time series patterns.

• Scalable for Big Data. Dynamic PageRank has a time complexity of linear in

terms of edges in the graph and thus great for billion-edge graphs. The storage
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cost depends on the time-scale and number of vertices, but in general, it is also

quite reasonable and flexible for specific requirements. A sparsification technique

may be used to set very small values to zero, which we can then ignore in the

computation.

• Incremental. Dynamic PageRank is incrementally computed and good for near

Real-time systems.
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4. DYNAMIC NODE PREDICTION

Given a large time-evolving graph, how can we model and characterize the temporal

behaviors of individual nodes (and network states)? How can we model the behavioral

transition patterns of nodes? We propose a temporal behavior model that captures

the “roles” of nodes in the graph and how they evolve over time. The proposed

dynamic behavioral mixed-membership model (drmm) is scalable, fully automatic (no

user-defined parameters), non-parametric/data-driven (no specific functional form or

parameterization), interpretable (identifies explainable patterns), and flexible (appli-

cable to dynamic and streaming networks). Moreover, the interpretable behavioral

roles are generalizable and computationally efficient. We applied our model for (a)

identifying patterns and trends of nodes and network states based on the temporal

behavior, (b) predicting future structural changes, and (c) detecting unusual tem-

poral behavior transitions. The experiments demonstrate the scalability, flexibility,

and effectiveness of our model for identifying interesting patterns, detecting unusual

structural transitions, and predicting the future structural changes of the network and

individual nodes.

Let us note that there are various connections between the techniques used for this

representation task and our previous work. For instance, one may utilize the framework

from Chapter 2 for modeling and leveraging temporal and relational dependencies. In

addition, one may also use the previous feature learning system from Chapter 2 for

learning a feature-based representation. Additional connections are discussed later.

4.1 Motivation

In recent years, we have witnessed a tremendous growth in both the variety and

scope of network datasets. In particular, network datasets often record the interactions
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and/or transactions among a set of entities—for example, personal communication

(e.g., email, phone), online social network interactions (e.g., Twitter, Facebook), web

traffic between servers and hosts, and router traffic among autonomous systems. A

notable characteristic of these activity networks, is that the structure of the networks

change over time (e.g., as people communicate with different friends). These temporal

dynamics are key to understanding system behavior, thus it is critical to model and

predict the network changes over time. An improved understanding of temporal

patterns will facilitate for example, the development of software systems to optimally

manage data flow, to detect fraud and intrusions, and to allocate resources for growth

over time.

Although some recent research has focused on the analysis of dynamic networks [167–

172], there has been less work on developing models of temporal behavior in large

scale network datasets. There has been some work on modeling temporal events in

large scale networks [153,173] and other work that uses temporal link and attribute

patterns to improve predictive models [111]. In addition, there is work on identifying

clusters in dynamic data [169, 174] but these methods focus on discovering underlying

communities over time—sets of nodes that are densely connected together. In contrast,

we are interested in uncovering the behavioral patterns of nodes in the graph and

modeling how those patterns change over time.

The recent work on dynamic mixed-membership stochastic block models (dMMSB:

[175,176]), is to our knowledge, one of the only methods suitable for modeling node-

centric properties over time. The dMMSB model identifies groups of nodes with

similar patterns of linkage and characterizes how group memberships change over

time. However, dMMSB assumes a specific parametric form where the groups are

defined through linkage to specific nodes (i.e., in particular types of groups) rather

than more general forms of node behavior over dynamic node sets. More importantly

the dMMSB estimation algorithm is not scalable, which makes the method unsuitable

for analysis of large graphs.
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In this work, we aim to develop a descriptive model to answer the following

questions for dynamic network datasets:

• Identify dynamic patterns in node behavior. What types of high level

temporal patterns and trends do the data exhibit? Are behaviors cyclical or

predictable? Do nodes have different behavioral patterns?

• Predict future structural changes. Can we predict when a node’s role

will change (e.g., a node with high in-degree transitions to a node with high

betweenness)? Is the overall structure of the graph becoming more or less

predictable over time?

• Detect unusual transitions in behavior. Are there nodes and/or points in

time with significantly different behavioral patterns?

To facilitate the investigation of these questions, we propose to model node “roles”

and how they change over time. Informally, roles can be viewed as sets of nodes that

are more structurally similar to nodes inside the set than outside whereas communities

are sets of nodes with more connections inside the set than outside. Specifically, to

focus on node behavior (rather than the complimentary concept of community finding)

we use non-parametric feature-based roles.

Using these non-parametric roles, which can generalize to new unseen nodes, we

propose a novel dynamic behavioral mixed-membership model (drmm) suitable for

large, unbounded, time-evolving networks. The drmm discovers features (i.e., using

the graph and intrinsic attributes), extracts these features for all timesteps, and

automatically learns behavioral “roles” for nodes at each timestep. The number of

behavioral roles are selected automatically using MDL or AIC. Afterwards, we learn

behavior transition matrices for each node (i.e., given a node role ri, what is the

probability of transitioning to rj at the next point in time).

Our proposed drmm technique allows us to investigate the properties of temporal

networks and understand both global and local behaviors, detect anomalies, as well as

predict future structural changes. The main strengths of the approach include:
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� Automatic. The algorithm doesn’t require user-defined parameters.

� Scalable. The learning algorithm is linear in the number of edges in the time-

interval under consideration. It is also easily parallelizable as features, roles,

transition models can be learned independently at each time.

� Non-parametric and data-driven. The model structure (i.e., number of

parameters) and more generally the parameterization depends on the properties

of the time-evolving network.

� Interpretable and intuitive. The drmm is based on an intuitive behavioral

representation (structural properties) of the network and individual nodes. It

identifies explainable patterns, trends, and aids in understanding the underlying

dynamic process.

� Flexible. The definition of behavior in our model can be tuned for specific

applications. The algorithm is applicable for all types of time-evolving networks.

We demonstrate the application our model on several real world datasets, showing that

it both accurately predicts future structural changes as well as identifying interesting

temporal patterns and anomalies. We discuss the scalability of the approach and

notably we apply the drmm to networks with up to 300,000 nodes and 4 million

edges—datasets that are orders of magnitude larger than could be modeled with

dMMSBs.

4.2 Background

Roles have been mainly of interest to sociologists [177, 178], but more recently,

roles have shown to be a valuable general graph concept that are naturally complimen-

tary [179–181,181–184] to the widely studied problem of community identification (for

community detection, see [167–172,174,185–187]). See Figure 4.1 for an illustration.

Communities are sets of vertices with more connections inside the set than outside.
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First, the previous work has mainly investigated static roles whereas we primarily focus

on dynamic networks. Second, the previous approaches were restricted to extremely

small offline social networks [181–184]. Third, we investigate the notion of roles using a

feature-based representation, which allows us to utilize some key ideas from Chapter 2

and Chapter 3. Finally, roles has been traditionally defined using only the graph

structure, whereas our feature-based representation naturally allows us to incorporate

additional features.

4.3 Framework for Dynamic Feature-based Roles

Our goal is to model the behavioral roles of nodes and their evolution over time.

Given a sequence of network snapshots (graphs and attributes), we propose the

Dynamic Role Mixed Membership Model (drmm) consisting of (1) automatically

learning a set of representative features, (2) extracting features from each graph, (3)

discovering behavioral roles (4) iteratively extracting these roles from the sequence

of network snapshots over time and (5) learning a predictive model of how these

behaviors change over time. As an aside, let us note that drmm is a scalable general

framework for analyzing temporal behavior as the model components can be replaced

by others and each component can be appropriately tuned for any application (e.g.,

for the feature set, any feature construction system from [2] can conceivably be used).

The framework has two fundamental parts. In this section, we focus on discovering

the feature-based representation and learning dynamic roles whereas Section 4.4

proposes global and local transition models that leverage temporal dependencies to

accurately represent how the behavioral roles of the network and individual (local)

nodes change over time.

4.3.1 Feature Discovery

The idea is to discover a set of underlying roles, which together describe the

behaviors observed in the network, and then assign a probability distribution over
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these roles to each node in the network, which explain that node’s observed behavior.

Roles are extracted via a two-step process. The first step is to represent each active node

in a given snapshot graph Gt using a set of representative features. For this task, we

leverage [193]. The method constructs degree and egonet measures (in/out, weighted,

...), then aggregates these measures using sum (or mean) creating recursive features.

After each aggregation step, correlated features are pruned using logarithmic binning.

The aggregation proceeds recursively, until there are no new features. Formally, we

discover a set of features at time t denoted Ft such that Ft is an nt × f matrix where

nt is the number of active nodes and f is the number of features learned from the

snapshot graph Gt. The features are extracted for each network snapshot resulting in

a sequence of node-feature matrices, denoted {Ft : t = 1, ..., tmax}.

Table 4.1.: Dataset characteristics. The number of learned features and roles provide
intuition about the underlying generative process and also indicates the amount of
complexity present in the network.

Dataset Feat. Roles |V | |E| |T | length

Twitter 1325 12 310K 4M 41 1 day

Twitter-Cop 150 5 8.5K 27.8K 112 3 hours

Facebook 161 9 46.9K 183K 18 1 day

Email-Univ 652 10 116K 1.2M 50 60 min

Network-Tra 268 11 183K 1.6M 49 15 min

Internet AS 30 2 37.6K 505K 28 3 months

Enron 173 6 151 50.5K 82 2 weeks

IMDB 45 3 21.2K 296K 28 1 year

Reality 99 5 97 31.6K 46 1 month

4.3.2 Dynamic Role Learning

The next step is to automatically discover groups of nodes (representing common

patterns of behavior) based on their time series of features. In this work, we use

Non-negative Matrix Factorization (NMF) to learn roles over a time series of features

from the dynamic attributed graphs, though other low-rank approximation methods
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such as SVD may also be used in the same fashion. More specifically, the following

components of drmm’s role learning may be fine-tuned or customized for a specific

application, including the (i) similarity/objective function (i.e., Frobenius norm, KL-

divergence), (ii) solver/algorithm (i.e., Multiplicative update, CCD, ANLS), and (iii)

regularization terms if warranted (i.e., sparsity constraints), among others. Future

work will evaluate the tradeoffs between these components.

Role Learning and Assignment Given a sequence of node-feature matrices, we

generate a rank-r approximation ZtH ≈ Ft where each row of Zt ∈ R
n×r represents

a node’s membership in each role and each column of H ∈ R
r×f represents how

membership of a specific role contributes to estimated feature values. For constructing

the “closest” rank-r approximation we use NMF (multiplicative update method)

because of interpretability and efficiency, though any other method for constructing

such an approximation may be used instead (SVD, spectral decomposition). More

formally, given a non-negative matrix Ft ∈ R
nt×f and a positive integer r < min(nt, f),

find non-negative matrices Zt ∈ R
nt×r and H ∈ R

r×f that minimizes the functional,

f(Zt,H) =
1

2
||Ft − ZtH||2F

We use an iterative method to estimate the node-role memberships for each network

snapshot Z = {Zt : t = 1, ..., tmax} given H and F = {Ft : t = 1, ..., tmax} using NMF.

Afterwards, we have a sequence of matrices Z1,Z2, ...,Zt, ...,Ztmax where each active

node at time t is represented with their current role memberships.

To measure the difference between the node feature matrix F and the approximation

ZH, we define a general similarity measure D(F||ZH) to be used as an objective

function for the optimization model. While there are many options for the objective

functions (e.g., �p − norm Minkowski family, β-divergence, Bregman divergence), we

primarily focus on Frobenius norm and Generalized KL-divergence:
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DFro(F||ZH) =
1

2
||F− ZH||Fro =

1

2

∑
ij

(
Fij − [ZH]ij

)2

(4.1)

DKL(F||ZH) =
∑
ij

(
Fij log

Fij

[ZH]ij
− Fij + [ZH]ij

)
(4.2)

Both 4.1 and 4.2 are lower bounded by zero which occurs if and only if F =

ZH. Using DFro(F||ZH) and DKL(F||ZH) as a basis, we consider two alternate

formulations of NMF as optimization problems: Minimize DFro(F||ZH) with respect

to Z and H, subject to the non-negativity constraints Z,H ≥ 0. Similarly for

DKL(F||ZH).

Regularization terms may also be added for additional flexibility. For simplicity,

these can be unified under the following extended objective function:

DU(F||ZH) = D(F||ZH) + αJ1(Z) + βJ2(H)

where αJ1(Z) and βJ2(H) are penalty terms whereas α and β are the regularization

parameters balancing the tradeoffs between the goodness of fit and the constraints.

For instance, to achieve better sparsity we can use the L1-norm penalty as follows:

min
Z,H≥0

1

2
||F− ZH||Fro +

(
α
∑
ir

Zir + β
∑
rj

Hrj

)

Instead of the L1-norm penalty on Z and H, one may also replace
∑

ir Zir and
∑

rj Hrj

with the Frobenius norm of Z and H, respectively.

Likewise, drmm may also leverage a variety of solvers/algorithms for the above

objective functions such as Multiplicative update, Cyclic Coordinate Descent (CCD),

Alternating Non-negative Least Squares (ANLS), among many others. Given the

objective function ||F− ZH||Fro, the multiplicative update rules are:

Hkj ← Hkj
(ZTF)kj

((ZTZ)H)kj
, for 1 ≤ k ≤ r and 1 ≤ j ≤ f
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Table 4.2.: Feature validation. Validating drmm’s ability to distinguish patterns.
Note C is row-normalized.

Features S-Center S-Edge Bridge Clique

S-Center 0.08 0.25 0.34 0.33
S-Edge 0.27 0.11 0.25 0.37
Bridge 0.29 0.20 0.17 0.34
Clique 0.24 0.24 0.29 0.23

Table 4.3.: Role validation. Validating drmm’s ability to distinguish patterns. Note
C is row-normalized.

Roles S-Center S-Edge Bridge Clique

S-Center 0.07 0.25 0.33 0.35
S-Edge 0.28 0.10 0.22 0.40
Bridge 0.29 0.18 0.16 0.37
Clique 0.24 0.25 0.29 0.22

Zik ← Zik
(FZT )ik

(Z(HTH))ik
, for 1 ≤ k ≤ r and 1 ≤ i ≤ n

We have tested a variety of these configurations for drmm and use NMF with

multiplicative update and no regularization, unless otherwise mentioned.

Model Selection: The number of structural roles r is automatically selected using

Minimum Description Length (MDL) criterion. However, AIC or any model selection

may be used instead. Intuitively, learning more roles, increases model complexity,

but decreases the amount of errors. Conversely, learning less roles, decreases model

complexity, but increases the amount of errors. In this way, MDL selects the number

of behavioral roles r such that the model complexity (number of bits) and model

errors are balanced. Naturally, the best model minimizes, number of bits+ errors.



100

1 (s−center) 2 (s−center) 3 (s−center) 4 (s−center) 5 (s−center) 6 (s−center) 7 (s−center) 8 (s−center) 9 (s−center) 10 (s−center)

11 (s−edge) 12 (s−edge) 13 (s−edge) 14 (s−edge) 15 (s−edge) 16 (s−edge) 17 (s−edge) 18 (s−edge) 19 (s−edge) 20 (s−edge)

21 (bridge) 22 (bridge) 23 (bridge) 24 (bridge) 25 (bridge) 26 (bridge) 27 (bridge) 28 (bridge) 29 (bridge) 30 (bridge)

31 (clique) 32 (clique) 33 (clique) 34 (clique) 35 (clique) 36 (clique) 37 (clique) 38 (clique) 39 (clique) 40 (clique)

Fig. 4.2.: The pattern of each node is listed below the mixed-membership plot whereas
the colors represent roles learned from our model. For simplicity, the node’s pattern-
type is kept stable over time. Strikingly, the drmm clearly reveals the underlying
patterns of the nodes as each pattern has a distinct signature in terms of the role
distribution. For instance, the blue role of a bridge node indicates the local similarity
with that of a star-edge node (low degree,...) while the red role captures the bridges
more global and intrinsic property of acting as a backbone for the other nodes. The
other patterns are even more straightforward to interpret. We also inject a type of
global anomaly at t = 6 (bridges connecting to each other) which is clearly revealed
as such in the plots.

4.4 Role Transition Models

How can we model the time series of behavioral roles and their changes over time?

How can we do this for both the network as a whole and at the level of individual

nodes? Section 4.4.1 introduces the model representation for discovering how roles

change, then Section 4.4.2 discusses the use of this representation for modeling role

transitions at the global network level (global role transition models) as well as at the

individual node level (local role transition models). In Sections 4.4.3-4.4.4, we propose

model variations that incorporate the temporal information in different ways. Finally,

closing remarks are made in Section 4.4.5.

4.4.1 Model Representation

Given a sequence of dynamic behaviors Z = {Zt : t = 1, ..., tmax}, we can learn

a model of how behavior in our network changes over time. More formally, given

two behavioral snapshots, Zt−1 and Zt, we learn a transition matrix P ∈ R
r×r that
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approximates the change in behavior from time t− 1 to t. The transition matrix P

represents how likely a node is to transition from role ri to role rj for that particular

time interval:

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

p1,1 p1,2 · · · p1,r

p2,1 p2,2 · · · p2,r
... · · · . . . · · ·

pr,1 pr,2 · · · pr,r

⎤
⎥⎥⎥⎥⎥⎥⎦

where P is estimated using NMF such that Zt−1P ≈ Zt. In the simple form of the

model presented above, we learn P using only a single transition (i.e., t − 1 to t).

However, we also propose variations that leverage more available data by considering

multiple transitions (stacked model) or that smooth over a sequence of transitions

using kernel functions (summary model). We discuss these in detail next.

4.4.2 From Global to Local Node Transition Models

Using one of the above representations for the transition model, we then propose

three types of transition models. Each of the three types below have various tradeoffs.

Learning a node transition model is most accurate (when enough data is available),

however, it is also costly to learn each model independently. The global graph transition

model is efficient to compute, but less meaningful. The clustered transition model

balances these two tradeoffs (speed vs. accuracy) by clustering the vertices using the

evolving mixed-memberships into a small number of groups.

Local Node Transition Models A transition model is learned for each local node

independently and thus we use only the nodes past mixed memberships for learning.

For instance, the stacked class of models uses the training examples from the k previous

timesteps such that,

[
zi(k − 1) · · · zi(t− 1)

]
Pi(t) ≈

[
zi(k) · · · zi(t)

]
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where Pi(t) ∈ R
r×r is a role transition matrix for node i and the rows sum to one.

Using this learned model at time t, we can predict the future roles at time t+ 1 using

zi(t)Pi(t). Let ẑi(t+ 1) be the predicted roles from zi(t)Pi(t), then the goal is that

ẑi(t+ 1) ≈ zi(t+ 1) measured by some objective/error function (i.e., Frobenius loss).

These models capture node-level transitions and thus depend only on their past

structural behavior whereas the global models rely on the overall transition behavior.

However, these models can have a large variance due to limited training data (past

observations). The other issue is that in some datasets, many nodes are ianctive for

extended periods and thus in many cases there may only be a few observations for

learning. One way of dealing with this may be to use the observed examples to find

nodes that have similar behavior and use their past examples for learning. The other

way would be to use the neighbors of that node as a good indicator of their future

behavior. The assumption here is that my structural behvaior is influenced by my

immediate neighbors.

Global Graph Transition Model A single global transition model using the

evolving mixed-memberships from all the vertices is learned and used for various tasks.

These models capture the overall role transition/dynamic structural changes, and

provide a good summary of the overall dynamic role changes/behavior. Useful for

detecting anomalies at the network level. However, these models are unable to detect

localized node specific anomalous behavior and role transitions and are less useful

for prediction. In addition, these models utilize the past data/observations and thus

there are plenty observations for learning.

Vertices with similar mixed-memberships over time are grouped together using a

clustering technique. A transition model is learned independently for each group of

vertices.
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4.4.3 Stacked Transition Model

The stacked model uses the training examples from the k previous timesteps. More

formally, the stacked model is defined as,

⎡
⎢⎢⎢⎢⎢⎢⎣

Zt−1

Zt−2

...

Zk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

P ≈

⎡
⎢⎢⎢⎢⎢⎢⎣

Zt

Zt−1

...

Zk

⎤
⎥⎥⎥⎥⎥⎥⎦

where k = t−w and w is the window size; typically w = 10. Let us denote the stacked

behavioral snapshots as Zk:t where k : t represents all the training examples from

timestep k to timestep t.

4.4.4 Summary Transition Model

This class of models uses k previous timesteps to weight the training examples at

time t using some kernel function. The exponential decay and linear kernels are used

in this work. The temporal weights can be viewed as probabilities that a node behavior

is still active at the current time step t, given that it was observed at time (t − k).

We define the summary behavioral snapshot ZS(t) as a weighted sum of the temporal

role-memberships up to time t as follows, ZS(t) = α1Zk + ... + αw−1Zt−1 + αwZt =∑t
i=k K(Zi; t, θ) where α determines the contribution of each snapshot in the summary

model.

In addition to exponential and linear kernels, we experimented with the inverse

linear and also tried various θ values. Overall, we found the linear kernel (and

exponential) to be the most accurate with θ = 0.7. Nevertheless, the optimal θ will

depend on the type of dynamic network and the volatility.
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4.4.5 Remarks and Discussion

For each type of transition model (e.g., stacked or summary), we may learn a global

transition model that describes how the behavior of the network as a whole changes

over time or we may learn a local transition model for each individual node. The local

transition model describes more precisely how the behavioral roles of that individual

node change over time. We can estimate the local transition model for a node i as

Z
(i)
t−1P

(i) ≈ Z
(i)
t using NMF. The global transition model for the network is estimated

in exactly the same way as described above in §4.4.
We have found the summary model to be the best performer for prediction tasks

because of its ability to smooth over multiple timesteps. However, for precisely this

reason, the summary model is more difficult to interpret. Therefore, we use the

summary model for prediction tasks and the stacked representation for data analysis

tasks, due to its interpretability. Let us note that to achieve better accuracy in

predictions, one may also estimate local transition models for each node and use

these for predicting a node’s future role memberships. All of these options make

our model flexible for use in a variety of applications. We also experimented with

other variants of the drmm transition model, including a stacked-summary hybrid

and multi-state models, which make an explicit distinction between transitions from

activate states and transitions from inactive states. However, we opted in favor of the

simpler stacked and summary models because none of these other models provided an

obvious advantage.

While our model currently assumes the role definitions are somewhat stationary,

we have found that these roles generalize and can even be applied across different

networks. Nevertheless, to remove this assumption, we could simply track the loss

over time and recompute the roles when it surpasses some threshold.
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4.5 Experiments

This section first validates drmm using synthetic data, and then explores the

effectiveness of drmm for predicting future structural patterns.

4.5.1 Datasets and Structural Analysis

We apply the drmm model using a variety of dynamic networks from different

domains [194]. See Table 4.1 for details. Interestingly, we find a relationship between

the complexity of drmm and the complexity present in the graph. This is clearly

clearly shown in Table 4.1 by analyzing simple measures generated from the drmm

behavioral representation such as the number of learned features and the number

of roles. For instance, the Internet AS topology has some hierarchical structure or

recurring patterns of connectivity among ISPs and therefore our model discovers only

30 features. This is in contrast to networks with more complex patterns of connectivity

such as twitter and other transaction networks like the email network. In these cases,

the links are instantaneous and might only last for some duration of time, thus making

more complex structures more likely.

4.5.2 Model Validation using Ground-truth

In this section, we demonstrate the ability of drmm to distinguish between common

graph patterns (and consequently recover the synthetic roles). For this task, we design

a simple graph generator that constructs graphs probabilistically with four main

patterns: ‘center of a star’, ‘edge of a star’, bridge nodes (connecting stars/cliques),

and clique nodes. After constructing the graph, we validate that the drmm model

captured these patterns by measuring if the extracted features and roles represent

the known probabilistic patterns. We do this by computing the pairwise euclidean

distance matrix D using the initial feature matrix F (and role-membership matrix
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Z). Let ri denote the actual pattern of node i, and P = {(i, j)|ri = p, rj = q} then
Cp,q =

∑
(i,j)∈P Di,j.

Clearly, the roles and features from nodes of the same pattern are shown to be

more similar than the others (smaller values along the diagonal). See Table 4.2–4.3.

Additionally, the patterns that are structurally similar to one another are represented

as such by our model (star-center and clique). In Fig. 4.2, we visualize the mixed-

memberships of 10 randomly chosen nodes from each pattern-type. Each pattern has

a distinct and consistent signature in terms of the role distribution.

4.5.3 Interpretation and Analysis

We start with an illustrative example of applying to a large IP trace network,

shown in Figure 4.3. We first plot the time-evolving mixed-memberships from four

nodes shown in Figure 4.7 and then visualize their corresponding transition models

in Figure 4.3(a). In the time-evolving mixed-memberships, inactivity is represented

by white bars whereas in the transition models inactivity corresponds to the last

row/column. The transition models are learned using the stacked representation

which aids in the understandability and interpretation of the roles and their modeled

transitions.

The time-evolving mixed-memberships for each of the four example nodes in

Figure 4.7 show distinct patterns from one another which are easy to identify. The

four patterns represented by these nodes can be classified as having the following

patterns of structural behavior,

• Structural Stability. This node’s structural behavior (and communication

pattern) doesn’t is relatively stable over the time.

• Homogeneous. The node for the most part takes on a single behavioral role.
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• Abrupt transition. Their structural behavior changes abruptly. In the IP-

network, it could be that the IP was released and someone was assigned it or

perhaps that the machine was compromised and began acting maliciously.

• Periodic activity. The node has periodic activity, but maintains similar

structural behavior. In the case of the IP-communication network, this machine

could be infected and every 30 minutes sends out a communication to the master

indicating it’s connected and “listening”.

For the four example nodes, we show their transition models in Figure 4.3(a). The

transition models represent the probability of transitioning or taking on the structural

behavior of role j given that your current role (or main role) is role i. For instance,

node 2 homogeneously takes on the red role over time as discussed previously. From

Figure 4.3(c), we see that the red role is “role 9”, and looking back at the node’s

learned transition model, we find that column 9 contains most of the mass, which

represents that their is a high probability of transitioning from any other role to

the red role. As shown in the mixed-memberships over time, this is exactly what is

expected. As another example, we find that node 4 usually transitions from a mix of

active roles to the inactive role (i.e., the inactive role is represented by column/row

eleven). Therefore, we would expect our learned transition model to capture this by

placing most of the mass on the last column, representing the probability of going

inactive after having a mix of active roles in the previous timestep, which is exactly

what we see in the fourth transition model.

Instead of providing subjective or anecdotal evidence for what the roles represent,

we interpret the roles of the drmm with respect to well-known node measurements

(e.g., degree, clustering coefficient, betweenness,...). We extend the analytical tools

from [195] for use in interpreting the role dynamics. The first technique interprets

the roles using the dynamic node-role memberships Zt and a node measure matrix

Mt ∈ R
n×m to compute a non-negative matrix Et such that ZtEt ≈Mt . The node

measurements used are betweenness, biconnected components, PageRank, clustering
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(a) Transition Models
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(c) Role Interpretation

Fig. 4.3.: The drmm transition model effectively captures the diverse temporal
behavior of hosts in a computer network. (a) Transition matrices for 4 hosts. The y-
axis represents the role the node transitions from, the x-axis is the role we transition to.
Inactivity is represented by the last row/column. (b) Corresponding role-memberships
over time. The x-axis represents time while the y-axis represents the role distribution
at each point in time. Each distinct color represents a learned role. (c) Characteristics
of individual roles.

coefficient, and degree. The matrix Et represents the contributions of the node

measures to the roles at time t. We report average contributions over time.

Figure 4.3(c) shows this quantitative interpretation of roles for the IP network.

Intuitively, the first role represents nodes with high PageRank, while role five represents

nodes with high betweenness, whereas role nine represents nodes with large clustering
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(b) Email Role Interpretation

Fig. 4.4.: The drmm model allows us to uncover patterns of behavior in an email
network. (a) evolving memberships for a group of nodes and (b) the characteristics
associated with the roles.

coefficient. The other roles represent more specialized structural motifs that were not

captured by the set of traditional measures used for interpretation.

The drmm can be used to understand the temporal behavior across a variety of

time-evolving networks. Figure 4.4 shows another example for an email communication

network. Just as before, we can identify significant trends and patterns and interpret

these using the role interpretations from Figure 4.4(b). One notable behavioral pattern

in the email communications is that most users have a set of roles for the daytime

and a different set for night. Intuitively, one set of roles is work related and the
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other is more personal/family related (e.g., nodes 1, 2, among others). We also find

nodes that have inconsistent or unstable behavior over the time, such as 17, 18, 19,

among others. Additionally, some nodes have relatively stable structural behavior

over the two days, such as node 4. This is also unusual, since one might expect a

user’s behavior to change from the work hours to the evening/night. However, users

that are consistently dominated by multiple active roles are of importance (may serve

in managerial or leadership roles), since they connect to groups of nodes with different

types of structural patterns (see nodes 5-7).

4.5.4 Predicting Future Behavior

In this section, we further validate the utility of the drmm model by demonstrating

its ability to predict the future behavior of nodes. This could be useful for optimizing

caches on the Web, or for improving dynamic social recommendation systems, among

many others.

Models. The goal is to accurately predict Zt+1 given Zs(t), the summary behavioral

snapshot described in Section 4.4.4. Our primary means of predicting Zt+1 is using

our drmm summary transition model P as follows: Ẑt+1 = Zt P. We compare this

summary model to two sensible baselines: PrevRole and AvgRole. PrevRole simply

assigns each node the role distribution from the previous time t. That is, Ẑt+1 = Zt.

AvgRole assigns each node the average role distribution over all nodes at time t.

The AvgRole model can be expressed as Ẑt+1 = Zt PA where PA is estimated from

Zt = [1] P. Essentially, PrevRole assumes node behavior does not change from each

point in time to the next and AvgRole assumes that all nodes exhibit the average

behavior of the network.

Evaluation We consider two strategies for evaluating our predictive models: (a)

compare the predicted Ẑt+1 to the true Zt+1 using a loss function (we use the Frobenious

norm) and (b) Use Ẑt+1 to predict the modal role of each node at time t + 1 and
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(a) IP-Trace
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(b) Twitter Relationships
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(c) Email Univ
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(d) Facebook
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(e) Twitter Copenhagen
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(f) Enron
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(g) IMDB
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(h) Internet AS

Fig. 4.5.: The drmm transition model accurately predicts future behavior of individual
nodes (i.e., mixed role membership) compared to sensible baseline models.

evaluate these predictions using a multi-class AUC (Area Under the ROC curve)

measure. We describe each of these strategies more formally below.

Frobenious Loss : The goal here is to estimate Zt+1 as accurately as possible. The

approximation error between the estimated node memberships Ẑt+1 = ZtPt+1 and the

true node memberships Zt+1 is defined as ||Zt+1 − Ẑt+1||F
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Structural Prediction with Multi-class AUC : This is a multi-class classification task

where the true class label for node i is the modal role from the ith row of Zt+1 (i.e.,

the role with maximum membership for this node). The predicted class label for node

i is the modal role from the ith row of Ẑt+1.

We evaluate the predictions using a generalization of AUC extended for multi-class

problems. In particular, we compute the AUC of all combinations of labels and take

the mean (also known as Total AUC) [196]. The difficulty of the prediction task varies

based on the number of roles discovered, complexity of the network evolution, and the

type of time-evolving network (e.g., transactional vs. stable).

Results Figure 4.5 demonstrate that the drmm summary transition model is an

effective predictor across the range of experiments. With few exceptions, drmm

outperforms both baselines for all data sets and timesteps. This is even true for the

more complex time-evolving networks such as Twitter, email, and the IP-traces, which

are more transactional with rapidly evolving network structure. For brevity, some

findings were omitted, for others see [194].

In addition to validating the drmm model, both figures offer some interesting

insights into the characteristics of time-evolving networks. For example, an increase

in loss over time may indicate a ”concept drift” where behavior in the network

has evolved to the point where the current roles can no longer adequately explain

node behavior. This effect is seen most prominently in Figures 4.5(b), 4.5(d), 4.5(g)

and 4.5(h). Interestingly, the drift we see in Figure 4.5(h) agrees with the current

understanding that the underlying evolutionary process of the Internet AS is not

constant, as was previously believed [197,198]. Most notably, there is recent evidence of

the Internet topology transitioning from hierarchical to a flat topological structure [199].

Furthermore, the figures provide insights into behavioral anomalies, such as the spike

we see in Figure 4.5(g). The spike in loss indicates the significant deviation of the

node roles at a specific time.
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Finally, in the large Twitter Relationships network, we see seasonality among the

role transitions. In particular, we find that the users generally behave significantly

different over the weekends, seen by the increase in loss on these days. Intuitively,

we would expect users to be tweeting about different topics and using the system

in different manner than they do during the work days. The Twitter Copenhagen

network captures the more locally-temporal seasonality; that is users behave differently

during the daytime and the nighttime hours.

4.5.5 Scalability and Complexity

Most importantly, our dynamic role model is linear in the number of edges. Let n be

the number of nodes, f be the number of features, r be the number of roles and t be the

number of timesteps. The feature discovery is O(t(mf+nf 2)) [193]. For the NMF step,

we use the multiplicative update method which has worst case O(tnfr). The transition

models is O(tnr2) using the multiplicative update method. Thus, the running time of

drmm is linear in the number of edges, specifically, O(t(mf + nfr + nr2)). The time-

scale t is usually small compared to the edges (even when the time-scale corresponds

to minutes or seconds in the IP-trace data). A more accurate bound can be stated in

terms of the maximum number of edges at any given timestep.

Our model is capable of handling realistic networks such as social and technological

networks consisting of millions of nodes and edges. This is in contrast to a similar

dynamic mixed-membership models that have been recently proposed such as the

dMMSB [175,176]. These models are quadratic in the number of nodes and therefore

unable to scale to the realistic networks with the number of edges in the millions.

Furthermore, these models have been typically used for visualizing trivial sized networks

of 18 nodes up to 1,000 nodes. This is in contrast to our work where we apply drmm

not only for visualizations, but for a variety of analysis tasks using large dynamic

networks. Moreover, the dMMSB can handle 1,000 nodes in a day [176] (See page 30),

while our model handles ≈8,000 nodes in 506.61 seconds (or 8 minutes and 26 seconds)
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Table 4.4.: Performance analysis of the dynamic behavioral mixed-membership model.
The dMMSB takes a day to handle 1,000 nodes [176], while our model takes only 8.44
minutes for 8,000 nodes.

Dataset Nodes Edges Performance

Enron 151 50,572 117.51 sec

Twitter (Copen) 8,581 27,889 506.61 sec

Facebook 46,952 183,831 1,468.65 sec

Internet AS 37,632 505,772 1,922.85 sec

Network-Trace 183,389 1,631,824 16,138.71 sec

shown in Table 4.4. We provide performance results for other larger datasets of up to

183,389 nodes and 1,631,824 edges. In all cases, even for these large networks with

over a million edges, our model takes less than a day to compute and the performance

results show the linearity of our model in the number of edges. For the scalability

experiments, we recorded the performance results using a commodity machine Intel

Core i7 @2.7Ghz with 8Gb of memory.
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Fig. 4.6.: Evolution of node behaviors. The structural dynamics framework allows us
to uncover important patterns of behavior in a large IP communications network.
The roles are interpreted with respect to traditional structural properties and the role
dynamics of 300 nodes are visualized where each color represents a specific behavioral
role. The x-axis is time and the y-axis is the mixed-memberships.
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4.6 Applications

Besides prediction, the dynamic role mixed-membership model is useful for a variety

of other applications. In this subsection, we explore using the dynamic role mixed-

membership model and the time-series of dynamic roles for clustering/visualization of

major trends in the roles, anomaly detection, pattern mining, and for graph similarity.

4.6.1 Clustering Temporal Behaviors

To show the patterns of the learned transition matrices, we cluster nodes based

on their temporal behaviors. We find that this clustering reveals the underlying

structural patterns of the evolving mixed-memberships. Formally, let P(i) and P(j) be

the transition matrices of two nodes i and j. Then we create an r× r vector from each

of the node transition models and define a similarity function between these vectors.

First we estimate a single transition model P for each node using the stacked

model. We then compute an n×n similarity matrix using Frobenious loss between the

transition matrices from the nodes. Next, we apply the classical k-means clustering

algorithm to cluster the nodes by their transition matrices. Afterwards, we compute

the closest rank-k approximation (k = 2 or 3) of the similarity matrix. The nodes are

plotted using the low-rank approximation and labeled using the previous clustering

algorithm. To reveal the structural transition pattern, we then compute the average

dynamic mixed-membership for each cluster using only the nodes from that cluster.

This clustering method reveals common structural trends and patterns between

nodes. For instance, this technique may group nodes together that share similar

transitional patterns such as nodes with stable roles vs. nodes with more dynamic

roles or nodes with high activity vs. nodes with low activity. An example is provided

in Figure 4.8. For clarity in the visualization, we randomly selected a small subset of

nodes from the 183,389 candidates and identified common transition patterns among

them. The first visualization in Figure 4.8(a) identifies four distinct well-separated

clusters of nodes with similar transition models. Figure 4.8(b) shows the average
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Fig. 4.8.: The drmm model provides an intuitive means of clustering nodes that
exhibit similar patterns of behavior over time. (a) identifies four distinct clusters
of nodes with similar transition patterns. (b) provides a sense of the behavior of
each cluster in terms of the average role-membership over time. Again, we see that
drmm captures differences in both overall static behavior (i.e., the specific roles that
dominate) and in patterns of how behaviors (i.e., roles) change over time.

dynamic behavioral mixed-membership for each cluster. This visualization shows that

each cluster represents a unique structural transition pattern between the nodes. The

structural patterns can be interpreted using the previous role interpretation from

Figure 4.3(c). This technique can be used for general exploratory analysis such as

characterizing the patterns and trends of nodes or eventually used as a means to

detect anomalies or nodes that do not fit any transition pattern.

4.6.2 Anomalous Dynamic Patterns

We further demonstrate the use of drmms for detecting anomalies in time-evolving

networks. In particular, we formulate this problem with respect to identifying nodes

that have unusual structural transition patterns. For instance, a node might transition

from being a hub (i.e., a node with many people linking to it) to a node with low

degree.
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(g) Role Interpretation

Fig. 4.9.: The drmm transition model provides an effective means of automatically
discovering and visualizing nodes with anomalous temporal behavior. (a)-(b) are the
transition models for two of the most anomalous nodes in the Enron email network
compared to (c) the normal network transition model. (d)-(f) show the corresponding
role memberships over time. (g) shows the characteristics of roles.

Node Transition Anomalies While there are many ways to define an anomaly

detection technique with respect to the drmm model, we propose an intuitive algorithm

shown in Alg. 2 that uses a node’s transition model for predicting the network

memberships at t + 1. The anomaly score is the difference between the predicted
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network mixed-memberships and the ground-truth mixed-memberships. Therefore,

the score represents the divergence of that nodes transitions from the entire network.

One simple example is shown in Figure 4.9(a) where we find Louise Kitchen as having

unusual behavioral transitions.

Time-varying Node Anomalies For detecting the specific time interval in which

a node has unusual behavior we use the previous method with a few subtle distinctions.

The global and node models are estimated at each timestep (in a sort of streaming

fashion) using the stacked representation with a shorter window (for leveraging past

training examples). The final result is a ranked list of potential node anomalies for each

timestep, shown in Figure 4.11. The justification for such an approach is that nodes

may become anomalous or have unusual behavior only for a specified time interval.

In the case of IP-communications, it is unlikely for the behavior of an IP-address to

remain unusual as IP-addresses are released/expires and users are assigned entirely

new IP-addresses. These types of dynamic anomalies are shown in Figure 4.11.

Algorithm 2 Anomalous Structural Transitions

1 procedure AnomTransition(Z = {Zt : t = 1, ..., tmax} (evolving mixed-
memberships))

2 for i← 1 to n do
3 P(i) ∈ R

r×r ← NMF (Z
(i)
1:t−1,Z

(i)
2:t)

4 Ẑt+1 = P(i) · Zt

5 x(i) =
∥∥∥Ẑt+1 − Zt+1

∥∥∥
F

Anomalous Structural Transitions We first interpret the roles and their temporal

variation quantitatively as shown in Figure 4.9(g) and then provide some simple

examples of nodes that have unusual behavior transitions. Intuitively, the first role

represents nodes with high clustering coefficient, the second role represents mainly

nodes with high pagerank, while the third and fourth roles represent some type of

combination of these properties indicating a more complex structural motif that is not

sufficiently represented by the selected node metrics. However, the fifth role represents

nodes with high degree and the sixth role represents nodes that are articulation
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Fig. 4.10.: The drmm anomaly detector effectively captures differences in both static
and dynamic behavior in an email network. (a) shows that normal and anomalous
nodes (top-100) differ in their role distribution (i.e., overall static behavior). (b)-(c)
show that normal and anomalous nodes also differ in how their behavior changes over
time, with anomalies exhibiting more stable behavior over time than normal.

points or that have high betweenness. Additionally, by analyzing the neighbors roles

dynamically, we find that nodes with high clustering coefficient primarily are neighbors

to nodes with high betweenness or high degree (this plot has been removed for brevity).

In Figure 4.9(e), we find Louise Kitchen, one of the Enron executives who was

involved in the Fraud, as having unusual behavioral transitions. Further examination

of the network transition model and the average evolution of the behavioral mixed-

memberships provide further insights into his abnormal activities. In particular, there

are two main role transitions (r3 → r7 and r4 → r1) in Louise Kitchen’s transition

model that are in contradiction with the network transition model shown in Fig-

ure 4.9(c). Furthermore, analyzing the individual changes to the mixed-memberships

over time compared with the average behavioral mixed-memberships provides ad-

ditional insight. For instance, the first two mixed-memberships vectors of Louise
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Fig. 4.11.: The drmm model allows us to find nodes that are anomalous for only
short periods of time and normal otherwise. Such temporally local anomalies are
often impossible to find using static graph analysis because brief abnormal periods are
drowned out by mostly normal behavior. (a) shows examples of short lived anomalies
in a computer network. (b) shows the corresponding behavior over time for each node
in detail.

Kitchen are mainly red and then begin to deviate significantly with seemingly no

underlying correlation or pattern between the role transitions. Moreover, there is

not any significant correlation between Louise’s mixed-memberships and the average

memberships at each point in time.

In addition, we also identify interesting patterns of the nodes with unusual behav-

ioral transitions in Figure 4.10. In particular, the drmm anomaly detector effectively

captures differences in both static and dynamic behavior in an email network. Inter-
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estingly, in 4.10(b), normal users exhibit a clear cyclical pattern which indicates that

normal nodes have a set of roles during the day and another set at night (which agrees

with intuition). In contrast, the anomalies 4.10(c) have stable roles over the time that

barely fluctuate.

Figure 4.11 also indicates that the drmm model allows us to find nodes that are

anomalous for only short periods of time and normal otherwise. Such temporally

local anomalies are often impossible to find using static graph analysis because brief

abnormal periods are drowned out by mostly normal behavior. 4.11(a) shows examples

of short lived anomalies in a computer network. 4.11(b) shows the corresponding

behavior over time for each node in detail.

Synthetic Data. In a separate set of experiments, we further validate our “unusual

structural transition” anomaly detector by injecting anomalies into synthetic data

(see § 4.5.2). Initially, the dynamics of nodes are predefined to have normal transitions

between patterns (e.g., star-center to clique). Then we inject some nodes with

anomalous transition behavior by randomly transitioning to an abnormal pattern

which we define as star-edge to clique. For 200 repeated simulations, we achieve high

accuracy (88.5%) in detecting the anomalous behavior.

4.7 Related Work

There has been an abundance of work in analyzing dynamic networks. However,

the majority of this work focuses on dynamic patterns [82,167,174,200,201], temporal

link prediction [78], anomaly detection [202], dynamic communities [203–205], dynamic

ranking [44,206], and many others [153, 170].

In contrast, we propose a scalable temporal behavioral model that captures the

node behaviors over time and consequently learns a predictive model for how these

behaviors evolve over time. Perhaps the most related work is that of [175] where they

develop the dMMSB model to identify roles in the graph and how these memberships

change over time. However, this type of mixed-membership model assumes a specific
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parametric form, which is not scalable (1,000 nodes takes a day to model), and

where the groups are defined through linkage to specific nodes (in particular types

of groups) rather than more general node behavior or structural properties [176].

This is in contrast to our proposed model, which is based on our intuitive behavioral

representation and can be interpreted quantitatively. In addition, our model is not

tied to any single notion of behavior and thus is flexible in the roles discovered and

generalizable. Moreover, not only do we evaluate our model on detecting unusual

behavior, identifying explainable patterns and trends, and for clustering nodes with

respect to their transition patterns, but we apply our model on large real-world

networks to demonstrate its scalability. To the best of our knowledge, our proposed

model is the first scalable dynamic mixed-membership model capable of identifying

explainable patterns and trends on large networks.

4.8 Summary

We proposed a dynamic behavioral mixed-membership model for large networks

and used it for identifying interesting and explainable patterns and trends. Moreover,

we demonstrated its scalability on a variety of real-world temporal networks and

provided striking performance results. The experiments have shown the scalability,

flexibility, and effectiveness of our model for identifying interesting patterns, detecting

unusual structural transitions, and predicting the future structural changes of the

network and individual nodes.

Future work will investigate using motifs [207] for role discovery as well as edge

role discovery techniques.
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5. SUMMARY AND CONCLUSION

This dissertation studied the problem of improving relational learning techniques by

leveraging both temporal and relational dependencies. To that end, we introduced a

unifying taxonomy that serves as a foundation for studying the main node represen-

tation tasks that arise in dynamic attributed network data. This includes the node

representation tasks of dynamic node labeling, weighting, and predicting the existence

of a node. For each of the three fundamental representation tasks for nodes, we pro-

posed learning techniques designed for modeling relational and temporal dependencies

in dynamic attributed networks. Using the dynamic relational representation from

the above techniques, we systematically investigate a variety of time-series forecasting

tasks on graphs using the proposed methods. To this extent, we demonstrated the

utility of the learned representation for learning various relational time series predic-

tion models for the tasks of (i) predicting discrete class labels (classification), and

(ii) predicting a future real-valued continuous weight (regression). For each dynamic

node representation task, we found that modeling and incorporating the temporal

and relational dependencies improved the accuracy (or decreased the error) of the

predictive models compared to baseline models that ignore the full-range of temporal

dependencies in the dynamic attributed networks. To the best of our knowledge, we

are the first to investigate the problem of learning dynamic graph data representation

for improving accuracy of predictive models. All techniques are extensively evaluated

for real applications such as importance/ranking of web pages, anomaly detection,

and pattern mining.

5.1 Future Work and Challenges

A discussion of future challenges and directions are discussed below.
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5.1.1 Automatic Kernel Function Learning

In this dissertation, we addressed the problem of learning the parameters auto-

matically given a specific given a kernel function. Future work should investigate the

related problem of learning the kernel function automatically. While this dissertation

investigated a range of kernel functions and found the exponential to work best in

most situations, we expect that for certain relational time-series data, such an ap-

proach is likely to result in a significantly better predictive model. Moreover, it also

makes it easier for applying the relational time-series learning (for many real-world

tasks), without requiring much effort on the part of the user, in terms of knowledge

and assumptions about the data. However, techniques proposed in the future must

address the challenges associated with the computational cost of such an approach

and carefully investigate the benefits (both theoretically and empirically).

Robustness to Noise Another important problem is to investigate the ability

of relational time-series learning methods to handle varying levels of noise in both

the relational and temporal information? Further, does modeling the temporal

dependencies reduce the impact of noise, specifically, when the relational data is noisy

(e.g., missing or erroneous links)?

5.1.2 Space and Time Characterization

Future work should also investigate the tradeoff between space and time. Char-

acterizing thee tradeoffs are challenging, for instance, relational time-series learning

methods may learn a model using less data by considering only the most recent ob-

servations, whereas relational learning approaches, that ignore temporal information,

use all available data. Moreover, modeling temporal dependencies may also lead to

simpler/more accurate models, and more efficient learning and inference algorithms.

However, relational time-series models typically require an appropriate temporal
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granularity and kernel function, and learning both of these automatically may be

costly.
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A. DATA

In an effort to support future research in this new area, we have released the data

used throughout this dissertation. See [116,117] for more details.
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B. RESEARCH CODES AND LIBRARIES

A number of packages and libraries have resulted from this research, and used by

industrial and government agencies on a number of high-impact applications.

B.1 Dynamic PageRank Library

A library for the dynamic PageRank generalization proposed in Section 3.

http://www.ryanrossi.com/dynamic_pagerank

B.2 Parallel Maximum Clique (PMC) Package

A parallel high performance library for solving the maximum clique problem for

dense graphs as well as large sparse networks. The parameterized clique library also

solves the temporal strong component problem for large dynamic networks. It can be

accessed online at: http://www.maxcliques.com
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