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Abstract. Large triangle cores represent dense subgraphs for which
each edge has at least k − 2 triangles (same as cliques). This paper
presents a fast algorithm for computing the triangle core decomposition
on big graphs. The proposed triangle core algorithm adapts both the
computations and representation based on the properties of the graph.
In addition, we develop a fast edge-based parallel triangle counting al-
gorithm, which lies at the heart of the triangle core decomposition. The
proposed algorithm is orders of magnitude faster than the currently avail-
able approach. We also investigate and propose fast methods for two
variants of the triangle core problem: computing only the top-k triangle
cores fast and finding the maximum triangle core number of the graph.
The experiments demonstrate the scalability and effectiveness of our ap-
proach on 150+ networks with up to 1.8 billion-edges. Further, we apply
the proposed methods for graph mining tasks including finding dense
subgraphs, temporal strong components, and maximum cliques.

Keywords: Triangle-core decomposition, parallel triangle counting,
maximum clique, temporal strong components, triangle-core ordering.

1 Introduction

Consider a graph G = (V,E). A k-core of G is a maximal induced subgraph of G
where each vertex has degree at least k. The k-core number of a vertex v is the
largest k such that v is in a k-core. There is a linear time O(|E|+ |V |) algorithm
to compute the k-core decomposition [2]. Due to this efficient algorithm, and a
simple, but often powerful, interpretation, k-cores are frequently used to study
modern networks [6,1,10]. Important k-core related quantities include the size of
the 2-core compared with the graph, the distribution of k-core sizes, the largest
k-core, and many others. In particular, the maximum value of k such that there
is a (k − 1)-core in G is denoted as K(G) and provides an upper-bound on the
largest clique in G, hence ω(G) < K(G) + 1.

An equivalent definition of a k-core is a maximal induced subgraph of G where
each vertex is incident on at least k edges. This definition then generalizes to
any motif, and in particular, a k triangle core is a maximal induced subgraph of
G for which each edge (u, v) ∈ E participates in at least k− 2 triangles. There is
also a polynomial time algorithm for triangle cores, which is O(|T |) = O(|E|3/2)
in the worst case.
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Triangle cores were first proposed by Cohen [4,3], and a faster algorithm was
recently proposed, see [17,16]. In that work, however, they explicitly store an
array of triangles in order to check whether or not a triangle has been processed.
This storage limits scalability as even graphs of a few thousand vertices may
have billions of triangles (see Table 3). In our algorithms, we accomplish the
same type of check implicitly by carefully ordering and indexing. Further, we
develop a data-driven optimizer to adapt the data structures and computations
based on the input graph and its properties. We also propose parallel edge and
vertex-based triangle counting algorithms and use them for the triangle core de-
composition. These algorithms significantly speed up the triangle core algorithms.
In addition, we find that counting triangles on edges rather than vertices enables
better load balancing for graphs where the number of triangles are not uniformly
distributed, as is the case for dense and sparse graphs. Finally, unlike the pre-
vious approach, we utilize an efficient compressed edge-based representation to
perform fast computations over the edges. This reduces the runtime and memory
requirements considerably (see comparison in Section 5).

This paper is the first to use triangle cores for graph mining tasks such as
finding the largest cliques, temporal strong components, and discovering dense
subgraphs (see Section 6). We find that in many cases, the maximum triangle core
number gives the exact maximum clique in G, especially for large sparse graphs.
We also investigate two useful variants of the triangle core problem: the top-k
triangle core problem and the maximum triangle core problem. Both of which we
leverage for the above applications. For these problems, our parallel approach
uses a fast heuristic clique finder to obtain a lower-bound on the maximum
triangle core number, which is surprisingly tight for sparse graphs.

2 Preliminaries

2.1 Wedges, Triangles, and Cliques

Fig. 1. Triangle cores 2, 3,
and 4

A wedge is a 2-length path. The number of wedges
Wu centered at u is given byWu = du(du−1)/2 where
du = |N(u)| is the degree. A wedge {(u,w), (w, v)}
forms a triangle if there exists an edge (u, v). Let
tr(u) and tr(u, v) be the number of triangles cen-
tered at vertex u and edge (u, v), respectively. Fur-
ther, tr(G) =

∑
u∈V tr(u) and W (G) =

∑
u∈V |Wu| are the number of triangles

and wedges in G, respectively. Using these, we define the density of triangles in
G as κ(G) = tr(G)/W (G). Observe that if κ(H) is close to 1, then H is dense,
and a large fraction of vertices must form a clique.

2.2 Triangle Core Decomposition

Definition 1 (Triangle Core): Consider a graph G = (V,E). A k triangle-core
is an edge-induced subgraph of G such that each edge participates in k−2 triangles.

Hence, a triangle core must contain k− 2 triangles, which is the same require-
ment for a clique of size k, since each edge in the k triangle core has two vertices
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(u, v) with at least k − 2 edges. By the above definition, a triangle is a 3-core,
and a clique of size 4 is within the 4-core (See Figure 1).

Definition 2 (Maximal Triangle Core): A subgraph Hk = (V |E(F )) induced
by the edge-set F is a maximal triangle core of order k if ∀(u, v) ∈ F : trH(u, v)−
2 > k, and Hk is the maximum subgraph with this property.

Definition 3 (Triangle Core Number): The triangle core number denoted
T (u, v) of an edge (u, v) ∈ E is the largest triangle core containing that edge.

Definition 4 (Maximum Triangle Core): The maximum triangle core of G
denoted T (G) is the largest number of k− 2 triangles for a triangle core of order
k to exist.

2.3 Cliques, Triangle Cores, and K-cores

The relationship between cliques, triangle-cores and k-cores is defined more pre-
cisely in this section. SupposeH is a clique of size k, then each edge (u, v) ∈ E(H)
in that clique has two vertices (u, v) that have k−2 edges, which also form k−2
triangles.

Property 1: Each clique of size k is contained within a k triangle core of G.

This is a direct consequence of Definition 1 and implies ω(G) ≤ T (G). To un-
derstand the relationship between the k-core and the triangle core, we show the
relationship between vertex degree and a triangle core number below.

Property 2: Each vertex in the k triangle core has degree dv ≥ k − 1.

To see this property, suppose a vertex v has an edge to u in the k triangle core,
then v and u by definition, must also share k vertices that form triangles. Let
C be the set of at least k common vertices such that u, v �∈ C. Thus, |C| and u
must form at least k + 1 edges with v.

Property 3: The k triangle core is contained within the (k − 1)-core.
To see this property, recall that a Tk triangle core must contain k− 2 edges and
since a k-core is a subgraph where all vertices have at least k degree, then the
k − 1 core must be within the k triangle core.
Property 4: The maximum triangle core number is bounded above by K and
below by ω(G), giving rise to the bounds: ω(G) ≤ T (G) ≤ K(G) + 1 ≤ dmax

This follows directly from the above properties and is used in Section 6.

3 Algorithms
Table 1. Parallel triangle algorithms

time (sec)
Graph |V | |E| |T | Vertex Edge

hollywood 1.1M 56M 15B 36.2 23.5
orkut 3.0M 106M 1.6B 40.5 31.9
livejour 4.0M 28M 251M 3.91 2.09
sinaweibo 58M 261M 638M 3148 2194
twitter10 21M 265M 51.8B 5092 2462
friendster 65M 1.8B 12.5B 43591 �1947

This section describes our exact par-
allel triangle algorithms and their im-
plementation for large graphs.
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3.1 Parallel Triangle Counting

Since triangle counting is at the heart of the triangle core computation, we
propose a parallel edge-based triangle counting algorithm using shared-memory.
In particular, triangle counting is parallelized via the edges (instead of the ver-
tices, see [8]), where jobs are broken up into independent edge computations and
distributed dynamically to available workers (see Alg. 1). Our approach offers
several benefits. First, the graph can be split up into many smaller independent
edge computations that can be performed in parallel. We note that the prob-
lem with vertex triangle counters is load balancing, see Table 2 where a few
vertices may have millions of triangles1. Our approach distributes work more
evenly along the edges of the graph. For instance, the max number of triangles
in sinaweibo (Chinese microblogging site) on any edge is only 17K compared to
8.3 million for the vertices. As we see later, this approach alleviates many of the
problems that arise with vertex-centric parallelization (see Table 1).

Algorithm 1. Parallel Edge Triangle Count-
ing
1 Set p to be the number of workers (threads)
2 Init arrays Xk, 0 ≤ k ≤ p to be |V | each of all zeros.
3 Set tr to be an array of size |E|
4 Set max to be array of length p
5 for each (u, v) ∈ E in parallel do
6 for each w ∈ N(v) do Xk(w) = (u, v)

7 for each w ∈ N(u) do
8 if v = w then continue
9 if Xk(w) = (u, v) then add 1 to tr(u, v)

10 if tr(u, v) > max(k) then max(k) = tr(u, v)

11 for each thread k = 2 to p do
12 if max(1) > max(k) then max(1) = max(k)

13 return tr and max(1)

The parallel edge triangle
counting algorithm is given in
Alg. 1. The triangle counting
computations are performed by
dynamically allocating blocks
of edges to workers. The work-
ers then compute the number
of triangles centered at each
edge and store the counts into
the edge-indexed array. Locks
are avoided by assigning unique
ids to the edges, which map to
unique positions in the triangle counting array (See Section 3.2 for more details).
Each worker also maintains a hash table Xk for O(1) lookups. In particular, line
6 marks the neighbors of v with the unique edge id of (u, v), which is used later
in line 9 to determine if a triangle exists. We avoid resetting Xk each time by
using the unique edge id. After a worker finishes a job (i.e., block of edges) it re-
quests more work and the process continues as above. Note that each worker also
maintains (locally) the total number of triangles processed and the maximum
number of triangles at any given edge. Upon completion of the parallel-for loop,
the global max is realized in serial (lines 11-12). This takes only O(p) where p
is the number of worker nodes. The expected overall time is O(|E|3/2/p) since
locks are avoided completely (See Figure 5).

3.2 Triangle Core Decomposition

Edge CSC Format. Edge-based compressed sparse column (ECSC) format
adds two arrays to the traditional CSC format to allow for both vertex and

1 We observe that vertices have highly skewed triangle counts resembling a triangle
power-law [7].
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edge-based computations. The ECSC graph representation is designed carefully
to optimize performance and space while also providing O(1) time access to
edges, neighboring edges, and their vertices. In particular, ECSC helps maximize
data locality (in disk, ram, cache, core) while minimizing interaction. Both are
critical for parallel edge-centric graph algorithms (see [13] for examples). Indeed,
the practical importance of ECSC was previously shown in Table 1.

To understand ECSC, we provide an intuitive illustration in Figure 2. The eid
array is an non-unique edge-indexed array (from the neighbor array) where dupli-
cate edges in the neighbor array are assigned a unique edge id stored in eid that
acts as a pointer into the emap array. This provides two important features. First,
observe that eid is a surjective function that maps duplicate edges from CSC to
their unique position in emap. In addition, eid also points to the emap array where
the vertices of a specific edge are consecutively stored and can be accessed in O(1)
time. This function provides the flexibility of using CSC while also giving random
access to unique edges and their vertices in O(1). Note that Edge-CSC is efficient
to construct taking O(|E|) time (when reading from disk or from CSC).

Fig. 2. Illustration of the arrays and pointers
used in ECSC for computing the triangle core
decomposition. Note m = |E|.

Triangle Core Arrays. The
triangle core decomposition uses
ESCS and four additional smaller
arrays. This reduced storage cost
is due to emap which provides
O(1) time access to a unique
edge and its vertices (stored con-
secutively). The edge-indexed T
array stores for each edge (u, v)
the number of triangles that it
participated. An index k of the
emap array also directly indexes
T using k/2 since T stores only
the unique edges. The bin array
is indexed by an integer repre-
senting triangles, and stores the
starting position for each unique number of edge triangles. Hence y = bin[x]

points directly to the starting position in the es array for which the edge given
by es[y] must have exactly x triangles. The es array contains the edge ids
sorted by the number of triangles whereas the pos array stores the location of a
given edge in the sorted es array.

The proposed triangle core algorithm is given in Alg. 2. Edges are undirected
and the neighbors of each vertex are sorted by degree (to improve caching). The
algorithm begins by computing the number of triangles for each edge in parallel.
We denote this here by T since it will contain the triangle core numbers upon
completion of Alg 2. The lines 2–3 initialize various vars and arrays. Note that the
proc array is of size m and is used for marking the processed edges. Afterwards,
the edges are sorted by their triangle counts in T using bucket sort (lines 4–
15). In particular, line 5 counts how many edges will be in each bin where a
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bin is a set of edges with the same triangle count. Thus, bins are numbered
from 0 to Tmax. Given the bin sizes, lines 6–9 setup the starting positions for
each bin using the previously computed counts. For each edge, we index into
bin with its triangle count and assign it to the position in es returned by bin,
then increase that bins position by one (lines 10–13). Finally, lines 14–15 fix the
starting positions of the bins.

Now that edges are sorted by their triangle counts, line 17 starts removing each
edge in increasing order of triangles (using es). Line 18 retrieves the next edge
for processing along with its vertices u and v in O(1) time using emap. Next, line
19 selects v and instead of simply marking the neighbors with a 1 (i.e., X [w] = 1),
we store the position+1 in which it appeared in the neighbor array. Let us note
that the value in X maps directly to a unique edge using eid and emap. For
each w ∈ N(u), we index X and check in O(1) time if w is a neighbor of v (lines
20–21). If so, then the vertices u, v, and w form a triangle, otherwise we continue
searching for a match. Using the eid array, we retrieve the unique edge ids for the
edges (u,w) and (v,w) in O(1) time from ECSC (lines 22–23) and check if these
edges have been processed (line 24). If either of the edges were processed before,
then the triangle has been implicitly removed in a previous iteration, and we

Algorithm 2. Detailed Triangle Core Algo-
rithm
1 Set T = ParallelEdgeTriangles(G)
2 Set pos and proc arrays to be length |E| of all 0.
3 Set the bin array to be of size Tmax initialized to 0.
4 for e = 0 to |E| do bin[T (e)]++

5 Set start = 0
6 for x = 0 to Tmax do
7 n = bin[x]
8 bin[x] = start
9 start = start + n

10 for e = 0 to |E| do
11 pos[e] = bin[T[e]]
12 tris[pos[e]] = e
13 bin[T[e]]++

14 for t = Tmax to 0 do bin[t] = bin[t-1]

15 bin[0] = 0
16 Set X to be an array of length |V | containing zeros.
17 for i = 0 to |E| do
18 k = es[i] v = emap[2k] u = emap[2k+1]
19 for w ∈ N(v) do X[w] = wpos + 1

20 for w ∈ N(u) do
21 if X[w] is not marked then continue

22 uw = eid[j]
23 uv = eid[X[w] - 1]
24 if proc[uw] or proc[uv] are marked then
25 continue
26 for adj ∈ {uw, uv} do
27 if T[adj] > T[k] then
28 tw = T[adj] and pw = pos[adj]
29 ps = bin[tw] and xy = es[ps]
30 if xy �= wv then
31 pos[adj] = ps and es[pw] = xy
32 pos[xy] = pw and es[ps] = adj

33 bin[tw]++ and T[adj]−−
34 proc[k] = 1
35 for w ∈ N(v) do X[w] = 0

continue with the next neigh-
boring edge. However, if both
edges have not been removed,
then we have found a valid tri-
angle to remove. For each of
the neighboring edges with a
larger triangle core number, we
decrease its number of trian-
gles by 1 and move it one bin
to the left. All these operations
are O(1) time using ECSC. Ob-
serve that each of the neighbor-
ing edges (u,w) and (v, w) are
swapped with the first edge in
its bin, respectively. We then
swap their positions in the pos

array and increase the previ-
ous bin and decrease the cur-
rent bin of the edge by 1.
Lines 20–33 are repeated for
all neighboring edges of (u,v)
that form unprocessed trian-
gles with a triangle count that
is currently larger than its own.
Finally, the edge is marked as
processed and X is reset (line
34–35).
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4 Problem Variants

Two variants are investigated and space-efficient multi-threaded algorithms suit-
able for CPU and GPU parallelization are proposed. Both variants arise from
real-world motivations, e.g., finding maximum cliques and dense subgraphs in
big data (See Section 6).

4.1 Top K Triangle Cores Algorithm 3 Top-K Triangle Cores
1 K = CoreNumbers(G)
2 max = HeuMaxClique(G,K)
3 for each u ∈ V in parallel do
4 if K(u) ≥ max then add u to W

5 Set H = G(W ) – the induced graph from W .
6 tr =ParallelEdgeTriangles(H)
7 for each u, v ∈ EH in parallel do
8 if tr(u, v) < max then
9 prune (u, v) from H

10 for each neighboring edge ((w, v)or(w,u))
do

11 set tr(w, u) to be one less
12 prune (w, u) if tr(w,u) < max

13 T =TriangleCores(H)

Using property 3 as a basis, we
propose a parallel method that
leverages a relationship between
the k-core and triangle core for
computing only the top-k trian-
gle cores. Key to our approach is
the heuristic clique finder which
allows us to obtain a fast lower-
bound.

Problem 1 (Top K Triangle
Cores): Given a graph G and an integer k > 2, find the set of edges that have
triangle core numbers greater than k.

The output is a subgraph H such that u, v ∈ E(H) if T (u, v) ≥ k and an
edge-indexed array indicating the triangle core numbers of each edge. Note that
we use this variant later for the maximum clique problem and finding dense
subgraphs (see Section 6.3).

The first step in Alg 3 computes the k-core numbers denoted K of G. This
gives us an upper bound on the triangle core and thus if k is larger we set it to
be the maximum k-core. Next, for each vertex v ∈ V we add it to the vertex set
W if it satisfies K(u) + 1 ≥ k. Let H be an explicit vertex-induced subgraph
from G using the vertex set W . Triangle counts for the edges are computed in
parallel and if an edge (u, v) ∈ E(H) has less triangles than the integer k given
as input, tr(v, u) ≤ k, then we can safely prune it, and update the graph, and
the triangle count of any edge (w, v) or (w, u) that formed a triangle through
(v, u). This smaller graph is then given to the triangle core routine. Instead of
selecting k arbitrarily, we use a heuristic clique finder [12] to obtain a tight lower
bound denoted ω̃(G). Observe that ω̃(G) ≤ ω(G) ≤ T (G) ≤ K(G) + 1 where
computing ω̃(G) is O(|E| · dmax) time. See Table 2 for heuristic runtimes.
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4.2 Max Triangle Core Algorithm 4 Dense Triangle Subgraph
1 K = CoreNumbers(G)
2 k = HeuristicClique(G)
3 for each u ∈ V in parallel do
4 if K(u) ≥ k then add u to W

5 Set H = G(W ) to be the induced graph from W .
6 T = TriangleCores(H)
7 Set F = ∅
8 for each u ∈ V(H) in parallel do
9 for each w ∈ N(u) do

10 if T (u,w) ≥ k then
11 add edge (u,w) to F
12 add 1 to du

13 if du ≤ k then Remove all edges of u from F

14 return the edge-induced graph from F

In many applications, the cost of
computing the full triangle core
decomposition is too expensive
and/or not needed. For instance,
the maximum triangle core may
significantly speedup the termi-
nation of maximum clique al-
gorithms when used for prun-
ing. Thus, we solve the following
problem instead:

Problem 2 (Maximum Triangle Core Number): Given a graph G, find the
maximum triangle core number T (G) directly.

Our approach starts by computing the k-cores, then scans the vertices in order
of their removal times from the k-core algorithm. A vertex v is added to W if
K(v) > K−δ where for triangles we set δ = 3. We then compute H = (W,E[W ])
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Fig. 3. Runtime vs. number
of triangles

and give this smaller graph to the triangle core rou-
tine. Observe that T̃ is a fast but accurate approx-
imation of the maximum triangle core.

5 Experiments

In this section, we systematically investigate the
performance and accuracy of our methods on over
150 graphs. The experiments are designed to answer
the following questions:

� Triangle core decomposition. How fast is our algorithm for computing
the triangle core decomposition? and how does it scale up for both dense and
large sparse graphs of up to a billion edges.

� Parallel edge triangle counting. Does our parallelization scheme work?
Is the edge triangle counting algorithm faster than vertex triangle counters?
and do they have better load balancing?

� Performance of variants. How fast can we solve each variant? and how
does the performance compare to the full triangle core decomposition?

� Clique upper bound. How tight are the triangle core upper bounds com-
pared to the k-core? For which types of graphs are they better?

For the experiments, we used a 2 processor, Intel E5-2760 system with 16 cores
and 256 GB of memory. Our algorithms never came close to using all the memory.

5.1 Performance of Proposed Algorithm

For the first question, we evaluate the performance of the proposed triangle
core algorithm on over 150 graphs of all types. The results in Tables 2 and 3
demonstrate the effectiveness of the proposed methods for both large sparse
graphs and dense graphs, respectively.
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Table 2. Performance of heuristic, parallel triangle count algorithm, and triangle cores

Graph |V | |E| |T | dmax κ̄ trmax travg K T ω̃ ω̃ s. tr s. T s.

dblp-2010 226k 716k 4.8M 238 0.64 5.9k 21 75 75 75 0.02 0.10 0.29
citeseer 227k 814k 8.1M 1.4k 0.68 5.4k 35 87 87 87 0.05 0.09 0.43
MathSci 333k 821k 1.7M 496 0.41 1.6k 5.2 25 25 25 0.11 0.14 0.53
hollywood 1.1M 56M 15B 11k 0.77 4.0M 13k 2209 2209 2209 1.57 23.5 727.2

youtube 496k 1.9M 7.3M 25k 0.11 151k 14 50 19 14 0.42 0.71 15.92
flickr 514k 3.2M 176M 4.4k 0.17 525k 343 310 153 49 0.21 1.26 18.67
orkut 3.0M 106M 1.6B 27k 0.17 1.3M 525 231 75 45 13.8 31.9 770.5
livejour 4.0M 28M 251M 2.7k 0.26 80k 62 214 214 214 3.2 2.09 54.3
twitter10 21M 265M 51.8B 698k 0.04 44M 2.4k 1696 1153 174 145.7 2462 39535
friendster 65M 1.8B 12.5B 5.2k 0.16 190 158k 305 129� 129 561 1947 45247

Texas84 36k 1.6M 34M 6.3k 0.19 141k 922 82 62 48 0.070 0.34 4.80
Penn94 42k 1.4M 22M 4.4k 0.21 68k 520 63 48 44 0.05 0.22 3.27

p2p-gnut 63k 148k 6.1k 95 0.01 17 0.1 7 4� 4 0.01 0.01 0.02
RL-caida 191k 608k 1.4M 1.1k 0.16 6.0k 7 33 19 15 0.04 0.06 0.33
as-skitter 1.7M 11M 86M 35k 0.26 565k 50 112 68 64 0.37 4.33 70.6

it-2004 509k 7.2M 1.0B 469 0.82 93k 19k 432 432 432 0.09 1.36 6.88
wikipedia 1.9M 4.5M 6.7M 2.6k 0.16 12k 3 67 31� 31 0.66 0.54 3.54

Table 3. Performance on dense DIMAC graphs.

graph |E| |T | trmax K T tr s. T sec

C500-9 112k 45M 98k 433 373 0.08 0.58
C2000-5 1.0M 500M 288k 941 435 1.65 21.02
C1000-9 450k 365M 385k 875 764 0.58 5.23
C4000-5 4.0M 4.0B 1.1M 1910 899 12.09 177.75
C2000-9 1.8M 2.9B 1.5M 1759 1549 3.02 59.32

p-hat15k3 569k 274M 372k 505 314 0.66 9.41
p-hat15k 847k 741M 676k 930 597 1.31 23.83

MAN-81 5.5M 18B 5.5M 3281 3241 8.59 315.84

keller6 4.6M 10B 3.6M 2691 2084 7.92 252.37

Notably, the proposed algo-
rithm counts 18B triangles in
8 seconds, while taking 315
seconds for triangle cores. For
these graphs, the triangle core
algorithm adapts the graph rep-
resentation and computation to
better exploit the structure. This
includes using an adj structure
for O(1) time lookups, selecting
specialized subroutines based on densities, among many other optimizations. In-
deed, the triangle core algorithm is shown to be fast and scalable as it eas-
ily handles graphs with billions of edges while using a small memory footprint.
Fig. 3 compares dense and sparse graphs directly. This indicates that many of
the sparse graphs perform better than expected whereas dense graphs deviate
much less from the diagonal.

Performance profile plots. We also compare with the implementation of Zhang
et al. [17] using performance profiles [5]. Figure 4 evaluates the performance on
24 graphs with up to 1.8 billion edges. In all cases, the proposed algorithm
outperforms the recent state-of-the-art algorithm [17]. We note that for a
few large graphs, the baseline algorithm runs out of memory and eventually
terminates.
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5.2 Parallel Edge Triangle Counting
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Fig. 4. In all cases, our algorithm
is significantly faster than the re-
cently proposed algorithm of Zhang
et al. [17]. The vertical line formed
from our algorithm indicates it out-
performed the state-of-the-art on
each of the 24 graphs tested. Fur-
ther, the other algorithm fails on 3
of the largest graph as illustrated by
the right-most point on the curve.

The proposed parallel edge triangle counting
algorithm is fast and scalable as shown in
Table 2. Moreover, we also find that it out-
performs a recent MapReduce triangle count-
ing algorithm [15]. In that work, it takes 319
seconds using a MapReduce cluster of 1636
nodes to compute triangles for LiveJournal
whereas it takes us only 2.09 seconds (See
Table 1).

Speedup. Fig 5 shows that our approach
scales well, especially for sparse graphs. Ob-
serve that for dense graphs, triangles are
more uniformly distributed and thus the im-
proved load balancing from our approach
does not help as much. We also find that on
average, less time is spent per triangle for
dense graphs.

Edge vs. vertex triangle counting. We parallelize a vertex triangle counter to eval-
uate the performance of our parallel edge-based algorithm. The superiority of
the parallel edge triangle counting algorithm is clearly shown in Table 1. In one
example, the friendster social network of 1.8 billion edges takes only 1,947 sec-
onds whereas the vertex triangle counter takes 43,591 seconds. The edge triangle
counter is 22x faster.

5.3 Performance of Variants
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Fig. 5. Speedup of our parallel edge
triangle counting algorithm

Results are shown in Table 4. We compare
the greedy maximum triangle core to the ex-
act triangle core decomposition on the ba-
sis of speed and accuracy. Table 4 clearly
demonstrates the effectiveness of the greedy
maximum triangle core procedure. In some
instances, a speedup of over 650x is observed
while also returning the exact maximum tri-
angle core number. For the top-k cores, we find that these are generally 1-20x
faster than the full triangle core decomposition while guaranteed to be exact, as
previously shown in Property 3. The large table of results are omitted due to
brevity, but are later used for finding temporal strong components.
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5.4 Bounds Table 4. Performance and accuracy of greedy max-
imum triangle core

density triangle core time (sec)

graph ρ greedy T greedy exact greedy

as-skitter 7.7e-06 0.50 68 68 65.39 0.10

fb-anon-A 4.9e-06 0.06 30 29 83.56 0.31

stanford 0.008 0.04 58 58 2.0 0.87

livejour. 3.4e-06 0.99 212 212 60.95 0.03

flickr 2.4e-05 0.44 151 151 22.55 3.16

hollywood 9.8e-05 0.99 2207 2207 918.7 92.5

dblp12 2.0e-05 0.99 112 112 0.85 0.007

This section evaluates the tri-
angle core clique bound on
sparse and dense graphs. In
Table 2, we find that the
triangle core upper bound is
sometimes significantly tighter
than the k-core upper bound,
especially for sparse graphs
that exhibit a weak power-law
including social, facebook, and technological networks. Further, Table 3 shows
that for dense graphs, the triangle core bound is almost always much tighter than
the k-core bound. In addition, we use the triangle core upper bound to validate
a fast heuristic clique finder. We find three such cases and mark them with a
star in Table 2. Note this excludes the cases where the k-core upper bound also
verifies the large clique as optimal. Besides the maximum triangle core number,
we also found the full distribution of triangle core numbers interesting.

6 Applications

This section demonstrates the effectiveness of the proposed triangle core algo-
rithms for a variety of graph mining applications.

6.1 Maximum Clique Algorithms

In this subsection, we utilize triangle core numbers to prune and order ver-
tices in a state-of-the-art maximum clique algorithm. In particular, we aggres-
sively compute the triangle core numbers of each vertex induced neighborhood.
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Fig. 6. Performance profile plot.
trmc outperforms bbmc on all tested
graphs and beats pmcx on a few.

This gives rise to the following: ω ≤
T (N(v)) ≤ K(N(v)) ≤ d(N(v)). The ap-
proach proceeds similar to pmcx from [12]
which uses k-core bounds with greedy col-
oring applied at each step. After pruning
the vertex neighborhoods, we compute the
density of the subgraph denoted ρ(N(v))
and use neighborhood triangle cores only
if ρ(N(v)) > 0.85, otherwise, we proceed
same as pmcx above. Intuitively, if density
is large enough, then edges are pruned using
the neighborhood cores. We compare trmc
against two recent state-of-the-art finders:
bbmc [14] and pmcx [12]. Let us note that
bbmc uses a bitset encoding for set intersec-
tions and was shown to outperform all others tested [11]. In Fig. 6 we find that
trmc outperforms bbmc on every graph, but outperforms pmcx on only a few
instances.
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6.2 Temporal SCC Table 5. Max temporal-SCC via triangle cores

bounds time (seconds)
graph ω̃ K T ω̃ s K s T s T̃ s

fb-messages 707 707 707 0.15 0.01 6.72 1.54

reality 1236 1236 1236 0.28 0.03 323 11.21

twitter-cop 581 583 581 0.21 0.01 5.85 1.11

We use the algorithms from sec-
tion 3 to explore the effective-
ness of the top-k triangle cores
for computing the largest tem-
poral strongly connected compo-
nent (tscc), which is a known NP-hard problem [9]). The top-k triangle core
algorithm in Alg 4 uses the k-cores and a large clique from a heuristic maximum
clique finder [12] to prune the triangle cores without ever computing them. Ta-
ble 5 shows the performance of our full triangle core algorithm compared with
the top-k triangle core algorithm. Strikingly, in all cases, the triangle core up-
per bound gives the exact size of the largest tscc. Moreover, the top-k triangle
core algorithm is significantly faster than the full algorithm. For instance, the
reality graph in Table 5 takes 323 seconds to compute the full decomposition,
whereas the fast top-k algorithm takes only 11 seconds.

6.3 Dense Subgraph Mining
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Fig. 7. Networks are grouped by type (bio, so-
cial, etc) and densities from each are averaged.

A particularly useful property of
the greedy maximum triangle core
is that it returns a relatively dense
subgraph. In Table 4 we find the
density of the as-skitter subgraph
returned by the greedy maximum
triangle core method is 0.50 with
345 vertices with an average degree
of 173. Concerning performance, our greedy maximum triangle core procedure
is clearly much faster while also accurate. In addition, Figure 7 summarizes the
results from Alg 4. The top-k triangle cores are shown to be better at finding
dense subgraphs.

7 Conclusion

We have described a fast scalable algorithm for computing the triangle core
decomposition and systematically investigated its scalability and effectiveness
on a variety of large sparse networks. The proposed algorithm is shown to be
orders of magnitude faster than the current state-of-the-art while also using less
space. In addition, the algorithm was designed for graphs of arbitrary size and
density, allowing it to be used for a variety of applications. We also proposed a
parallel edge triangle enumeration algorithm and showed that it is significantly
faster than vertex-based methods. Future work will investigate the proposed
family of triangle core ordering techniques for use in greedy coloring methods
and clique finding algorithms.
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