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Abstract. We present a fast, parallel maximum clique algorithm for large sparse graphs that
is designed to exploit characteristics of social and information networks. The method exhibits a
roughly linear runtime scaling over real-world networks ranging from a thousand to a hundred million
nodes. In a test on a social network with 1.8 billion edges, the algorithm finds the largest clique in
about 20 minutes. At its heart the algorithm employs a branch-and-bound strategy with novel and
aggressive pruning techniques. The pruning techniques include the combined use of core numbers of
vertices along with a good initial heuristic solution to remove the vast majority of the search space. In
addition, the exploration of the search tree is parallelized. During the search, processes immediately
communicate changes to upper and lower bounds on the size of maximum clique. This exchange of
information occasionally results in a super-linear speedup because tasks with large search spaces can
be pruned by other processes. We demonstrate the impact of the algorithm on applications using
two different network analysis problems: computation of temporal strong components in dynamic
networks and determination of compression-friendly ordering of nodes of massive networks.

Key words. parallel maximum clique algorithms, branch-and-bound, network analysis, temporal
strong components, graph compression

1. Introduction. The maximum clique problem seeks to find a clique (complete
subgraph) of the largest possible size in a given graph. The problem is, in general,
NP-hard to solve, even in an approximate sense [33]. As a result one is inclined to
believe that exact algorithms for finding maximum cliques will be too slow to be
practical for large network analysis applications. In fact, because of this inclination,
in a number of network analysis problems where maximum cliques are the natural
and accurate models, practitioners frequently settle for loose, approximate models
representing “dense-enough” subgraphs that can be detected fast or heuristic clique
methods that generally perform well enough in practice. Yet, many real-world problems
have features that do not elicit worst-case behaviors from well-designed algorithms.

In this manuscript, we present a demonstrably fast, parallel, exact algorithm for
the maximum clique problem.1 The presentation includes the design, implementation,
analysis and performance evaluation of the algorithm. Further, enabled by its efficiency,
we use the clique finder to achieve three goals: (i) study maximum cliques in large-scale
social and information networks, (ii) find the largest temporal strong components in
time-varying networks, and (iii) obtain compression-friendly orderings of vertices in
graphs.

The algorithm. In its basic form, our algorithm is a branch-and-bound method
with novel pruning strategies. Several key components stand out as features contribut-
ing to its efficiency and distinguishing it from existing algorithms.

First, the algorithm begins by finding a large clique using a near linear-time
heuristic; the obtained solution is checked for optimality (using the bounds described in
Section 3) before the algorithm proceeds any further, and the algorithm is terminated
if the solution is found to be optimal. Second, we use the heuristic solution, in
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Fig. 1. A log-log plot of the runtime of our
clique finder on 32 social and information net-
works drawn from a variety of domains. The plot
shows that the runtime scales almost linearly with
network dimension.
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combination with (tight) upper bounds on the largest clique, to aggressively prune
the graph. The upper bounds are computed at the level of the input graph or local
neighborhoods. Third, we use implicit graph edits and periodic full graph updates in
order to keep our implementation efficient. Fourth, we parallelize the search procedure.
The parallel search is designed such that processes (workers) immediately communicate
changes to upper and lower bounds on the size of maximum clique. As a result, vertices
with especially large search spaces can be pruned by other processes, which occasionally
results in a super-linear speedup. Finally, rather than a fixed algorithm, our method is
a framework that can be specialized into different variants. The framework is tunable
in the sense that the graph representation, data structures, and the implementations
of the algorithm can be adapted based on the properties of the input graph and the
target system. The framework is discussed in detail in Section 4, the bounds it makes
use of in its pruning strategies are reviewed in Section 3, and the framework’s overall
performance is evaluated and compared against existing methods in Section 5. We have
made our implementation publicly available at https://github.com/ryanrossi/pmc.

Cliques in large social and information networks. Our investigation on
large-scale social and information networks (Section 2) reveals that finding the largest
clique in such networks can in practice be done fast (Table 1, Figure 1). By way of
example, using the maximum clique algorithm proposed here, we can find the maximum
clique in social networks with nearly two billion edges in about 20 minutes on a 16-core
shared memory system. More generally, our method is observed to have a roughly
linear runtime (Figure 1) for these networks. As a point of comparison, our new solver
significantly outperforms a recent fast maximum clique finder we developed [46] as well
as an off-the-shelf clique enumerator (Section 5). Consequently, we expect the new
algorithm to be useful for various tasks in which maximum cliques are needed such as
analyzing large networks, evaluation of graph generators, community identification,
and anomaly detection.

Applications. One motivation for this work came from a connection between
the largest temporal strong component of a dynamic network and maximum cliques in
an associated graph. In a network where each edge represents a contact – a phone call,
an email, or physical proximity – between two entities at a specific point in time, one
gets an evolving network structure [26] where a temporal path represents a sequence of
contacts that obeys time. A temporal strong component is a set of vertices where all
pairwise temporal paths exist, just like a strong component is a set of vertices where
all pairwise paths exist.

Surprisingly, checking if an evolving network has a temporal strong component
of size k is NP-complete [40, 3]. For some intuition, consider the following “wrong”
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reduction from the perspective of establishing NP-hardness. A temporal strong
component of size k corresponds to a clique of size k in a temporal reachability graph
where each edge represents a temporal path between vertices. Finding the maximum
clique, then, reveals the largest temporal strong component. At a first glance, this is
no help as even approximating the largest clique in a graph is NP-hard. With a fast
algorithm in place, however, the connection can be exploited. We apply our maximum
clique finder for this analysis and discuss properties of temporal components we find
in Twitter and phone call networks in Section 6.1.

Previous studies found bipartite cliques useful for compressing networks [10]. Here
we tackle an easier problem and use cliques to compute a compression-friendly ordering
that makes many edges in the graph local. We find (Section 6.2) that this ordering
generates results that are nearly as good as existing heuristics tailor-designed for that
problem.

Related work. Pardalos and Xue [45] provide a good review of exact algorithms
for maximum clique that existed prior to 1994. Notable methods proposed since then
include, among others, the works of Bomze et al. [8], Österg̊ard [42], Tomita et al. [55],
and San Segundo et al. [49]. In a recent work, Prosser [47] provides a computational
study comparing various exact algorithms for maximum clique. The vast majority
of existing work focuses on sequential maximum clique finders, but there is growing
work on parallel algorithms as well. Recent work on parallel algorithms include the
multithreaded algorithm of McCreesh and Prosser [39] and the MapReduce-based
method due to Xiang et al. [61].

A related problem to maximum clique finding is maximal clique enumeration:
identifying all the maximal cliques in G. There is a considerable body of recent
work on this problem. Tomita et al. [56] look at the worst-case time complexity of
generating all maximal cliques and conduct computational experiments. Eppstein
et al. [24, 23] show how efficient data structures can be used to design algorithms
for clique enumerations in near optimal time. Schmidt et al. [51] develop parallel
algorithms for maximal clique enumeration, and Cheng et al. [13, 14] consider clique
enumeration on massive graphs. Xie et al. [62] show the connection of the clique
enumeration problem to frequent pattern mining. Du et al. [20, 21] find that maximal
cliques in social networks are distributed according to a power-law. In particular the
authors of [21] take advantage of the properties of social and information networks in
order to enumerate all maximal cliques faster. In comparison, we show here how we
can develop fast algorithms for solving the maximum clique problem for these networks
and temporal strong components by appropriately applying pruning steps and bounds.

2. Cliques in social and information networks. Before presenting the details
of our new algorithm, we begin by demonstrating how fast it finds maximum cliques
in various social and information networks and highlighting observations we make
regarding the cliques obtained.

We experiment in this section with 32 networks categorized in 8 broad classes. In
the appendix we report results on a more extensive collection of networks comprising
76 social and information networks and 63 dense graphs from the 1996 DIMACS Clique
Challenge [58]. Table 1 lists the names and sizes of the 32 networks considered here
(detailed data on the properties of these networks is provided in Tables 4–6 in the
appendix). Table 1 also lists the size of the largest clique in each network and the time
it took the algorithm to find each clique. We plot the runtime pictorially in Figure 1,
which shows a linear scaling between a thousand and a hundred million vertices.

Below we briefly describe the networks and what cliques in them signify. For all
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of the networks, we discard edge weights and self-loops when they exist. In addition,
if the graph is directed, we remove non-reciprocated edges. This strategy will identify
fully-directed cliques. Further, for networks with multiple components, we consider
only the largest connected component (when undirected) and the largest strongly
connected component (when directed).

1. Biological networks. We study a network where the nodes are proteins and
the edges represent protein-protein interactions (dmela [53]) and another where nodes
are substrates and edges are metabolic reactions (celegans [30]). Cliques in these
networks signify biologically relevant modules.

2. Collaboration networks. These are networks in which nodes represent
individuals and edges represent scientific collaborations or movie production collabora-
tions (mathscinet [43]; dblp, hollywood [5]). Large cliques in these networks are
expected because they are formed when collaborations involve many participants.

3. Interaction networks. Here, nodes represent individuals and edges represent
interaction in the form of message posts (wiki-talk [37]). Cliques in such networks
represent mutually interacting groups of individuals.

4. Retweet networks. Here, nodes are Twitter users and two users are connected
by an edge if they have retweeted each other (retweet). We collected the network
retweet ourselves. A clique here is a group of users that have all mutually retweeted
each other; it may represent an interest cartel or an anomaly.

5. Technological networks. The nodes in these networks are routers and
edges are observed communications between the entities (as-skitter, rl-caida [11];
whois [59]). A clique represents all-to-all communication amongst entities.

6. Web link networks. Here, nodes are web-pages and edges are hyperlinks
between pages (wikipedia [17]; arabic-2005, it-2004, uk-2005 [4]). Large cliques
represent large sets of pages where full pairwise navigation is possible.

7. Facebook networks. Nodes represent people and edges are “Facebook friend-
ships” (cmu, mit, stanford, berkeley, uillinois, penn, texas [57]; fb-a, fb-b [60];
uci-uni [27]). Cliques here are groups of people with mutual friendships.

8. Social networks. Nodes are again people and edges are social relationships in
the form of friendship or follower (orkut, livejournal, youtube [63]; slashdot [38];
gowalla [15]; flickr [28]; twitter [36]; friendster [Internet Archive]).

We summarize below our findings about cliques in these networks and the perfor-
mance of our algorithm:

• We observe that the initial heuristic step of the algorithm finds the largest clique
in most cases: 17 of the 32 instances considered here, and 54 of the 76 networks
considered in Tables 4–6 in the appendix; see the left plot in Figure 2 for a summary.
This property helps our exact maximum clique algorithm terminate quickly.

• We studied the relationship between the largest k-core (a notion to be discussed
in Section 3) and the largest clique. The right part in Figure 2 shows a summary
of the results we obtained on all the 76 networks. In the collaboration and most
web-link networks, we find that the largest k-core coincides with a maximum clique
in the graph. The social networks, in comparison, have a much larger difference
between the two, which suggests a fundamental difference in the types of networks
formed via collaboration relationships versus social relationships.

• We observe that technological networks have surprisingly large cliques. Given that
a clique represents an overly redundant set of edges, this would suggest that these
maximum cliques represent over-built technology, or critical groups of nodes.

• We observe that for the twitter network, the nodes in the largest clique are
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Table 1
Properties of and results on 32 of the social and information networks studied here. The number

of vertices |V | and edges |E| are appended by K for thousands, M for millions and B for billions. The
column K + 1 corresponds to a core number-based upper bound on maximum clique size, ω̃ denotes
the size of the clique obtained by the initial heuristic step, and ω denotes the actual maximum clique
size. The last column shows the runtime of the exact algorithm. It can be seen that the algorithm
took less than 21 minutes to solve the “largest” problem in the collection.

graph |V | |E| K + 1 ω̃ ω Time (s.)

1. celegans 453 2.0K 11 9 9 <.01
dmela 7.4K 26K 12 7 7 0.06

2. mathsciet 333K 821K 25 25 25 0.08
dblp 317K 1.0M 114 114 114 0.05

hollywood 1.1M 56M 2209 2209 2209 1.69

3. wiki-talk 92K 361K 59 14 15 0.09

4. retweet 1.1M 2.3M 19 13 13 0.58

5. whois 7.5K 57K 89 55 58 0.09
rl-caida 191K 608K 33 17 17 0.13

as-skitter 1.7M 11M 112 66 67 1.2

6. arabic-2005 164K 1.7M 102 102 102 0.03
wikipedia2 1.9M 4.5M 67 31 31 1.16

it-2004 509K 7.2M 432 432 432 0.12
uk-2005 130K 12M 500 500 500 0.06

7. cmu 6.6K 250K 70 45 45 0.09
mit 6.4K 251K 73 32 33 0.1

stanford 12K 568K 92 51 51 0.09
berkeley 23K 852K 65 42 42 0.16
uillinois 31K 1.3M 86 56 57 0.18

penn 42K 1.4M 63 43 44 0.24
texas 36K 1.6M 82 49 51 0.33
fb-a 3.1M 24M 75 23 25 6.3
fb-b 2.9M 21M 64 23 24 5.52

uci-uni 59M 92M 17 6 6 33.86

8. slashdot 70K 359K 54 25 26 0.06
gowalla 197K 950K 52 29 29 0.2
youtube 1.1M 3.0M 52 16 17 0.84

flickr 514K 3.2M 310 45 58 5.2
livejournal 4.0M 28M 214 214 214 2.98

orkut 3.0M 106M 231 44 47 48.49
twitter 21M 265M 1696 174 323 598

friendster 66M 1.8B 304 129 129 1205

neither of the two obvious suspects, that is, (i) just spam accounts nor (ii) legitimate
accounts with massive numbers of followers and following similar large numbers.
Rather, it is a strange combination of the two sets. We believe that most members
of this clique likely reciprocate all follower relationships.

3. Bounds on maximum clique size. As a prelude to our maximum clique
algorithm, we review a few easy-to-derive upper bounds on the size of the largest
clique ω(G) in a graph G. These bounds will allow us to terminate our algorithm
once we have found something that hits the upper bound or stop a local search early
because no larger clique exists.

A simple upper bound on the size of the largest clique is the maximum degree
∆(G) in the graph. Usually this is too simple to be useful. A stronger bound can be
obtained using k-cores. A k-core in a graph G is a vertex induced subgraph where
all vertices have degree at least k [52]. The core number of a vertex v is the largest
k such that v is in a k-core. We denote it by K(v), and we denote by K(G) the
largest core number in the entire graph G. Suppose that G contains a clique of size
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Fig. 2. These two plots summarize the results on all the 76 social and information networks
listed in Tables 4–6 in the appendix. The left figure depicts a plot of the ratio of the clique size
obtained by our heuristic (ω̃) to the largest clique size obtained by the entire algorithm (ω). It shows
that the heuristic gives the exact solution in the biological, collaboration, and web networks in all
but one case. In the right figure is shown a plot of the ratio of the maximum clique size (ω) to the
largest core number plus one (K + 1). The figures identifies the networks where the core number
tightly bounds the largest clique.

q. Then each vertex in the clique has degree q − 1 and the entire graph must have a
(q − 1)-core. Thus K(G) + 1 is an upper bound on the largest clique size ω(G). Note
that in contrast to cliques, the core numbers of all vertices in a graph can be computed
with a linear-time algorithm [2].

The value K(G) is also known as the degeneracy of the graph. The quantity
K(G) + 1 is an upper bound on the number of colors used by a greedy coloring
algorithm that processes vertices in order of decreasing core numbers – also known as
degeneracy order [25]. The number of colors used by any greedy coloring of G is also
an upper bound on the size of the largest clique because a clique of size k requires k
colors. Let L(G) be the number of colors used by a greedy coloring algorithm that uses
the degeneracy order. Then L(G) ≤ K(G) + 1 and we get a potentially tighter bound
on the size of the largest clique. The bound L(G) can be computed in linear time with
some care on the implementation of the greedy coloring scheme. We summarize the
bounds we have at this point:

Fact 3.1. ω(G) ≤ L(G) ≤ K(G) + 1 ≤ ∆(G) + 1.

We can further improve the bounds in Fact 3.1 by using one additional fact about
a maximum clique in a graph. Define the neighborhood graph of a vertex v to be
the graph induced by v and its neighbors. Then any neighborhood graph of a vertex
within the largest clique has a clique of the same size within the neighborhood graph
as well. The way our algorithm proceeds is by iteratively removing vertices from the
graph that cannot be in the largest clique. Let NR(v), the reduced neighborhood graph
of v, be the vertex-induced subgraph of G corresponding to v and all neighbors of v
that have not been removed from the graph yet. All the bounds in Fact 3.1 apply to
finding the largest clique in each of these neighborhood subgraphs. We can therefore
state:
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Fact 3.2.

ω(G) ≤ max
v

L(NR(v)) (3.1)

≤ max
v

K(NR(v)) + 1 (3.2)

≤ max
v

∆(NR(v)) + 1. (3.3)

Computing the tighter bounds in Fact 3.2 requires slightly more than linear work.
For each vertex, we need to form the neighborhood graph. If we look at the union of
all of these neighborhood graphs, there is a vertex in some neighborhood graph for
each edge in G. Thus there are a total of O(|E|) vertices in all neighborhoods. By the
same argument, there are O(|E|+ |T |) edges where |T | is the total number of triangles
in the graph. Consequently, we can make the following statement:

Fact 3.3. The total work involved in computing the bounds in Fact 3.2 is bounded
by O(|E|+ |T |).

4. A maximum clique algorithms framework. Given an undirected graph
G = (V,E), let Cv denote a clique of the largest size containing the vertex v. A
maximum clique in G can be found by computing Cv for every vertex v in V and then
picking the largest among these. This clearly is wasteful. Most branch-and-bound
type algorithms for maximum clique speed up the process by keeping around the size
of the largest clique computed at any point in the course of the algorithm (maxSoFar)
and avoiding computation of every Cu, u ∈ V , that would eventually be smaller
than maxSoFar, a process generically referred to as pruning [45, 42, 55, 46, 61]. The
algorithms differ chiefly in the way the pruning is done. The algorithm we developed
in a recent work [46] uses a hierarchical pruning strategy that relies primarily on
comparisons of degrees of vertices in the original input graph with maxSoFar, effectively
using the weakest bound in Fact 3.1. In comparison, the new method presented here
uses the tightest bound in Fact 3.2. Furthermore, it contains a variety of new
algorithmic and performance optimization ingredients that result in significantly
superior performance.

For reference throughout the discussion in this section, we outline our algorithm
in the psuedocodes in Algorithm 1 and Algorithm 2.

4.1. The fast heuristic clique finder. Our exact maximum clique algorithm
begins by calling a fast heuristic clique finder that makes use of core numbers of
vertices, which in turn is computed in a prior auxiliary step (see Lines 2 and 3 in the
procedure MaxClique in Algorithm 2). The goal of the initial heuristic step is to find
a large clique in the graph quickly. The heuristic is similar to the maximum-degree
based heuristic described in [46], which, in exploring for a maximum clique in which a
vertex v participates, simply picks a vertex of the highest degree in the neighborhood
of v. The heuristic search described here differs as we use core numbers of vertices to
guide the search instead. The inspiration for this change is the relationship between
core numbers, the degeneracy order, and a simple 2-approximation algorithm for the
densest subgraph problem [35, 12].

The heuristic, outlined in Algorithm 1, builds a clique by searching around each
vertex in the graph and greedily adding vertices from the neighborhood as long as they
form a clique. The order of vertices is the degeneracy order (the input parameter K
contains the needed core numbers of the vertices; we write it in boldface to indicate
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Algorithm 1 Our greedy heuristic to find a large clique. This is used as the first
step in the exact algorithm, outlined in Algorithm 2. The input array K holds core
numbers of vertices. The output of the algorithm is a large clique H.

1 procedure HeuristicClique(G = (V,E) ,K)
2 Set H = {}, Set max = 0
3 for each v ∈ V in decreasing core number order do
4 if v’s core number is ≥ max then
5 Let S be the neighbors of v with core numbers ≥ max
6 Set C = {}
7 for each vertex u ∈ S by decreasing core number do
8 if C ∪ {u} is a clique then
9 Add u to C

10 if |C| > max then
11 Set H = C, Set max = |H|
12 return H, a large clique in G

that it is a vector (an array)). Because the core numbers are also a lower bound on the
size of the largest clique a vertex participates in, we can efficiently prune the greedy
exploration.

As mentioned in Section 2, this heuristic step in itself finds the largest clique in
the graph in over half of the social networks we consider. It can therefore be used
as a stand-alone procedure. All steps in Algorithm 1, except for the statements in
Lines 7–9, can be performed using work proportional to the degree of a vertex. Those
statements in turn require work proportional to the size of the subgraph induced
by the neighborhood of a vertex. The overall runtime can therefore be (loosely)
upper-bounded by O(|E| ·∆(G)).

4.2. Initial pruning. After our exact algorithm finds a heuristic clique H in
the input graph G using the core numbers of the vertices, it puts those numbers to
another strategic use. Suppose we find a clique in G of size ω̃ = |H|. Then we can
eliminate all vertices with core numbers strictly less than ω̃ from our search (Line 4 in
MaxClique). This pruning operation works because a clique of size ω̃ + 1 or larger
must have vertices with core numbers at least ω̃. In a few cases, we observed this
step suffices to certify that H is the maximum clique as we remove all of the graph.
This happens, for instance, with the LiveJournal network. Moreover, this pruning
procedure reduces memory requirements significantly for most networks.

In our implementation, for this initial pruning, vertices are explicitly removed
from the graph. This step often removes a substantial fraction of the total vertices
and reduces the total memory required to store the graph.

4.3. Searching. After we reduce the size of the graph via the initial pruning, we
then run a search strategy over all the remaining vertex neighborhoods in the graph
(the while-loop in MaxClique). The algorithm we run is similar to a standard (Bron-
Kerbosch) branch-and-bound scheme for maximal clique enumeration [9]. However,
we unroll the first two levels of branching and apply our clique bounds in order to find
only the largest clique.

At this point, we wish to introduce a bit of terminology. Recall (from Section 3)
that NR(v) is the reduced neighborhood graph of v. Let dR(v) denote the reduced
degree of v. The reduced neighborhood graphs exclude vertices that have been removed
from the graph due to changes in the lower bound on the clique size caused by k-cores
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Algorithm 2 Our exact maximum clique algorithm. See Section 4.5 for
details about how to parallelize it.

1 procedure MaxClique(G = (V,E))
2 Set K = CoreNumbers(G) . K is a vertex-indexed array

3 Set H = HeuristicClique(G,K) . H is global (is updated in Branch)

4 Remove (explicitly) vertices with K(v) < |H|
5 while |G| > 0 do
6 Let u be the vertex with smallest reduced degree
7 InitialBranch(u) . the routine grows H

8 Remove u from G
9 Periodically, explicitly remove vertices from G

10 Return H, the largest clique in G

11 procedure InitialBranch(u)
12 Set P = NR(u)
13 if |P | ≤ |H| then return

14 Set KN = CoreNumbers(P)
15 Set K(P ) = maxv∈P KN(v)
16 if K(P ) + 1 < |H| then return

17 Remove any vertex with KN(v) < |H| from P
18 Set L = Color(P , KN) in degeneracy order . L is nr of colors

19 if L ≤ |H| then return

20 Branch(P , {})

21 procedure Branch(P,C)
22 while |P | > 0 and |P |+ |C| > |H| do
23 Select a vertex w from P and remove w from P
24 Set C′ = C ∪ {w}
25 Set P ′ = P ∩ {NR(w)}
26 if |P ′| > 0 then
27 Set L = Color(P ′) in natural (any) order
28 if |C′|+ L > |H| then
29 Branch(P ′, C′)

30 else if |C′| > |H| then . C′ is maximal

31 Set H = C′ . new max clique

32 Remove any v with K(v) < |H| from G . implicitly

and vertices whose local searches have terminated. At the risk of being overly formal,
let ω̃ be the current best lower bound on the clique size, and let X be a set of vertices
removed via searching. Then:

NR(v) = G({v} ∪ {u : (u, v) ∈ E,K(u) ≥ ω̃, u 6∈ X}).

We explore the remaining vertices in order of the smallest to largest reduced degree.
For each vertex, we explore its neighborhood using the function InitialBranch. When
InitialBranch returns, we have found the largest clique involving that vertex, and
so we can remove it from the graph. This is done by marking it as removed in an
array and then checking that array before using information about the vertex in the
future. This implementation provides constant time deletion operations, albeit with
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Fig. 3. An example used to illustrate the
workings of Algorithm 2. See discussion at the
end of Section 4.3.
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an additional check on use. To eliminate these checks, we find it advantageous to
periodically recreate the graph data structure in light of all the deletions and recompute
k-cores. This reduces the cost of the intersection operations. In addition, we believe
that this step aggregates memory access to a more compact region thereby improving
caching on the processor. We do this every four seconds of wall clock time. The four
second interval worked well in our experiments, but the choice is rather arbitrary, and
we did not investigate other choices of intervals in any detail. Here, incorporating the
streaming algorithm proposed in [50] may help make the recomputation of k-cores
more efficient.

The first step of InitialBranch is a set of tests to check if any of the bounds
from Fact 3.2 rule out finding a bigger clique in the neighborhood of the vertex u
being explored. The first test (Line 13) essentially corresponds to the weakest bound,
Equation (3.3), in Fact 3.2. To check against the bound given by Equation (3.2), we
compute the core numbers for each vertex in the neighborhood subgraph. If the largest
core number in the neighborhood subgraph is no better than the current lower bound,
we immediately return and add the vertex to the list of searched vertices (Line 16). If
it isn’t, then we compute a greedy coloring of the subgraph using the degeneracy order
in order to obtain the coloring bound from Fact 3.2 (Equation (3.1)). We check against
this bound, and we immediately return if the comparison suggests no larger clique is
present (Line 19). If none of these checks pass, then we enter into a recursive procedure
that examines all subsets of the neighborhood in a search for cliques (Branch).

The procedure Branch maintains a reduced neighborhood subgraph P and a
clique C. The invariant shared by these sets is that we can add a vertex from P to
C and get a clique one vertex larger. We pick a vertex and do this. To be precise,
we pick the vertex with the most-recently introduced color (in our implementation,
this is the largest color where colors are positive integer numbers), as this is a weak
clique indicator. We then check if the clique C ′ is maximal by testing if there exists
any set P ′ that satisfies the invariant. If it is not, then we test if it is possible that C ′

and P ′ have a large clique. The largest clique possible is |C ′|+ ω(P ′) ≤ |C ′|+ L(P ′),
and so using the function Color, we compute a new greedy coloring to get the upper
bound L(P ′). Unlike the greedy coloring in InitialBranch, here we do not use the
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degeneracy ordering as it was not worth the extra work in our investigations. If C ′

and P ′ pass these tests, we recurse on C ′ and P ′. If C ′ is maximal, then we compare
it against the current best clique H, and update H if C ′ is larger.

Illustration (Figure 3). We use the example in Figure 3 to illustrate several
of the points we have been discussing thus far. The core number K(G) of this graph is
4, which yields the upper bound of 5 on the maximum clique size. The clique detected
by our heuristic is {1, 8, 23}; the graph has two maximum cliques: {19, 20, 21, 22}
and {23, 24, 25, 26}. Our algorithm removes vertices 10, 11, 12, 13 and 16, 17, 18 in the
initial pruning. Subsequently, our method will explore vertex 9 and remove it based
on the maximum neighborhood core of 3. It explores vertex 15 next and removes it
due to the neighborhood core bound. It then removes vertex 14 due to an insufficient
degree. Subsequently, it finds the clique around vertex 19, then prunes all vertices
except 1 through 8 due to core number bounds. Finally, it eliminates vertex 1 due
to the neighborhood core bound; all other vertices are then iteratively removed via
degree bounds.

4.4. Performance optimization. To keep the presentation simple, we have left
out several details on performance enhancement that we have in our implementation.
(The code is available online for interested readers). To give an example, we use an
adjacency matrix structure for small graphs in order to facilitate constant-time edge
queries, and we use a fast procedure for neighborhood set intersection that runs in
time proportional to the size of the output set.

In the overall algorithm, we identify the following elements as the most important
for attaining high-performance:

– finding a good initial solution via the fast heuristic clique finder,
– using the smallest to largest ordering in the main loop; this helps ensure that

neighborhoods of high degree vertices are as small as possible,
– using efficient data structures for all the operations and graph updates, and
– aggressively using k-core bounds and coloring bounds to remove vertices early.

4.5. Parallelization. We have parallelized the search procedure in the algorithm.
Our own implementation uses shared memory, but we describe the parallelization at a
high-level such that it could be used with a distributed memory architecture as well.
The focus of our discussion is on the general scheme and not on the particular details.

The parallel constructs we use are a worker task-queue and a global broadcast
channel. In fact, the basic algorithm remains the same. We compute the majority of
the preprocessing work in serial with the exception of a parallel search for the clique in
the initial heuristic step. Here, we assume that each worker has a copy of the graph and
distribute vertices to workers to find the largest heuristic clique in the neighborhood.
In serial, we reduce the graph in light of the bounds, and then re-distribute a copy
of the graph to all workers. At this point, we view the main while loop as a task
generator and farm the current vertex out to a worker to find the largest clique in
that neighborhood. Workers cooperate by communicating improved bounds between
each other whenever they find a clique and whenever they remove a vertex from the
graph using the shared broadcast channel. When a worker receives an updated bound,
we have found that it is often possible for that worker to terminate its own search
at once. Unlike most previous algorithms, the speedup from our parallel maximum
clique algorithms can be super linear since we are less dependent on the precise order
of vertices explored. In our own shared memory implementation, we avoid some of the
communications by using global arrays and locked updates.
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5. Performance evaluation. As demonstrated in Table 1 and Figure 1, our
clique finder runs fast on social and information networks and it exhibits roughly
linear runtime scaling as the problem size is increased. We used a two processor, Intel
E5-2670 system with 16 cores and 256 GB of memory for those tests and the additional
tests presented in this section. None of the experiments came close to using all the
memory. In this section we look at four additional questions regarding performance:
a) How does the runtime of our algorithm breakdown into time spent in the initial

heuristic and the rest of the algorithm?
b) How scalable is our parallel algorithm?
c) How does our method compare to other clique finders on social and information

networks?
d) Is the tighter upper bound that results from using neighborhood cores (as opposed

to cores in the original graph) worth the additional effort?
In what follows, we will refer to the new algorithm we propose here (outlined in
Algorithm 1 and 2) as “pmc” (short for parallel maximum clique). For detailed
performance analysis purposes we will consider several variants of pmc.

5.1. Dataset. For the results reported in this section, we additionally use prob-
lems from the DIMACS Clique Challenge [58]. We do so in order to evaluate the
performance of our clique finder on an established benchmark of difficult problems.
These problems represent particularly hard instances; some of them remain unsolvable
in reasonable time by the best, tailor-designed state-of-the-art maximum clique algo-
rithms. Detailed data on the properties of these graphs is given in Table 8 and Table 7
in the appendix. We restate here a few of the more general features. These graphs are
all small, ranging between 45 to 1500 vertices. They contain, however, an enormous
number of edges and triangles in comparison with the social and information networks.
The number of triangles range between 34 thousand and 520 million. We divide the 63
graphs in the collection our method was able to solve into an “easy” set of 27 graphs
(where our algorithm finds a solution in less than a second) and a “hard” set of 31
graphs (where the solution time could vary from a second to an hour). Tables 8 and 7
are grouped according to these two categories.

5.2. Runtime breakdown (Question (a)). As mentioned earlier, our maxi-
mum clique algorithm (Algorithm 2) begins by computing core numbers of vertices
and subsequently invoking a fast heuristic clique finding step (Algorithm 1). With
the help of the core numbers, the solution obtained by the heuristic step (clique H)
is used to prune out portions of the input graph that cannot result in a larger clique
(Line 4 of Algorithm 2). If the heuristic solution is in fact optimal, the remaining
graph would necessarily be empty and the algorithm would terminate immediately,
returning H as the solution. In that case, the runtime of the overall algorithm would
simply be the runtime of the heuristic. Tables 4 through 7 in the appendix list the
runtime of just the heuristic (tω̃) and of the overall algorithm (tω) for all of the graphs
in the testbed. It can be seen that for a vast majority of the social and information
networks, the runtimes tω and tω̃ within an order of magnitude, while for some of the
DIMACS graphs the ratio tω̃/tω can be many order of magnitude. Figure 4 provides a
pictorial summary: it shows a plot of the ratio just mentioned for the test graphs in
the different categories with non-trivial runtimes of over 0.01 seconds.

5.3. Parallel speedup (Question (b)). At the left in Figure 5 we show the
speedup obtained, as more processors are employed, by our pmc method for three
social networks. At the right in the same figure we show speedup results of pmc
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Fig. 5. Speedup of our parallel maximum clique algorithm on social and information networks
(left) and DIMACS graphs (right). Single processor runtimes in seconds are shown in parentheses.

for seven of the DIMACS graphs. The runtime for both includes all the serialized
preprocessing work, such as computing the core numbers initially. The figures show
two different behaviors. For social networks, we only get mild speedups on 16-cores,
the best result being for the largest problem soc-orkut. For the DIMACS graphs on
the other hand, we observe roughly linear and, sometimes, super-linear speedup as we
increase the number of processes. The super-linear speedup is due to fast returns from
unfruitful branches as a result of the parallel exploration of the search space. These
results indicate that our parallelization strategy is promising and helps reduce the
runtime for difficult problems. In future work, we plan to investigate the performance
of the same strategy on implementations for distributed-memory and other emerging
architectures.

5.4. Performance profile plots. To help address the two remaining questions
c) and d), we use performance profile plots to compare algorithms [19]. Performance
profile plots compare the performance of multiple algorithms on a set of problems (test
set). The essential underlying idea is the use of a cumulative distribution function for
a performance metric (in our case runtime), instead of, for example, taking averages
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Fig. 6. Performance profile plots comparing a serial version of pmc and its variants against
three existing maximum clique algorithms on 30 social and information networks.

or sum-totals over all the test cases. Performance profile plots are similar to ROC
curves in that the best results are curves that lie towards the upper left. For a quick
intuition, suppose we have N problems (test cases) in total and that an algorithm
solves M of them within 4 times the speed of the best solver for each problem. Then
we would have a point (τ, r) = (log2 4,M/N) in the plot. Note that the horizontal axes
reflects a speed difference factor of 2τ . The fraction of problems that an algorithm
solves successfully is given by the left-most highest point on the curve. In Figure 6,
for instance, the method labeled BK only solves around 80% of the problems in the
test set, and it does so at a factor of 210 times the runtime of the fastest algorithm in
the set (pmc).

5.5. Comparison with other methods on social networks (Question (c)).
The test we conduct here begins with a “self-comparison”. In particular, we consider
several variants of pmc in order to assess the effects of the various components on
the method’s performance. We then compare these variants against a set of existing
methods. The variants of pmc we consider are: a serial version with neighborhood
cores exploited (pmc), the same version but without exploiting neighborhood cores
(pmc no neigh cores), and a version that uses only the k-core pruning steps and searches
vertices in their native order, the order in which they were read from disk, rather than
degeneracy order (pmc native ordering).

We compare these three variants of pmc against each other and against three
state-of-the-art maximum clique finders: the recent method FMC (for fast maximum
clique) from [46], the method MaxCliqueDyn [34] which dynamically adapts a greedy
color sort, and a recent implementation of the Bron-Kerbosch (BK) algorithm in the
igraph package [18]. Figure 6 shows the results of such comparisons on a set of 30
social and information networks.

From the performance profile plots in Figure 6, for these types of networks, we
find little difference between using and not using the neighborhood cores within our
own framework, and somewhat more pronounced difference between using degeneracy
ordering versus native ordering. Relative to the alternative algorithms in the compari-

14



(a) DIMACS-Hard (Serial) (b) DIMACS-Hard (16 Threads)

Fig. 7. Performance profile plots comparing two versions of pmc (with and without neighborhood
cores) on DIMACS-Hard graphs. The left figure shows comparison of serial versions of the two
variants, the right figure shows similar comparison of the parallel versions.

son, we see that the most optimized version of the method proposed here (pmc) offers
a dramatic performance improvement. Compared to the BK algorithm, pmc is over
1000 times faster for some problems and solves all of the instances. Compared to the
FMC algorithm, pmc is about 50 times faster. This illustrates that our algorithm uses
properties of the social and information networks to quickly hone in on the largest
clique.

5.6. Assessment of using neighborhood cores (Question (d)). We already
saw from the tests discussed in the previous paragraphs that using neighborhood cores
in our maximum clique algorithm makes little difference for social and information
networks. How about for the DIMACS (and similarly-structured) graphs? The plot in
Figures 7(a) and 7(b) show results on the 30 hard instances of the DIMACS problems
for a test assessing the impact of using and not using neighborhood cores. The plots
show results for two cases: pmc run in serial (a) and pmc run in parallel on 16 threads
(b). It can be seen that, in the serial case, the neighborhood cores greatly help reduce
the work in the majority of cases. In a few cases, not using them entails a large increase
in work (the point furthest to the right in the serial figure). All of the work involved
in computing these cores is parallelized, and we observe that, in parallel, using them
is never any worse than about 20.5 ≈ 144% the speed of the fastest method.

5.7. Summary of performance results. In summary, we observe that a) the
overall runtime of our algorithm is of the same order of magnitude as the time
spent in the initial heuristic for social and information networks, and easy DIMACS
graphs, whereas the variation is more significance for the denser DIMACS graphs;
b) our parallelization strategy is effective; c) our algorithm outperforms existing
algorithms dramatically; and d) neighborhood core bounds are of great help for solving
challenging problems. We recommend using neighborhood cores as they help the
algorithm terminate faster with challenging problems and almost never take more than
twice the time for easy ones.

6. Applications. Although the maximum clique problem is generally NP-hard,
as we saw in previous sections, our procedure runs in nearly linear time on many
real-world networks. This makes it plausible for the procedure to be used as a part in a
fast method for another, encompassing real-world problem, opening up an opportunity
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Fig. 8. An example, adopted from [3], illus-
trating a temporal network. The reader can verify
that there exist temporal paths from node A to all
other nodes, from B to all other nodes, from C to
all other nodes, from D to all nodes but F, from E
to all nodes but F, and from F to all other nodes.
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for potentially great impact. In this section, we illustrate this potential by using our
method as a subroutine in algorithms for two applied problems: finding the largest
temporal strong component in a dynamic network and finding a compression-friendly
order of the nodes of a network.

6.1. Temporal strong components. Temporal strong components were re-
cently proposed by Bhadra et al. and Nicosia et al. to extend the idea of a strong
component in a (static) network to a temporal (dynamic) network [3, 40]. Let V be a
set of vertices, and ET ⊆ V × V × R+ be the set of temporal edges between vertices
in V . Each edge (u, v, t) has a unique time t ∈ R+. For such a temporal network, a
path represents a sequence of edges that must be traversed in increasing order of edge
times. That is, if each edge represents a contact between two entities, then a path is a
feasible route for information. See Figure 8 for an illustration.

Temporal paths are inherently asymmetric because of the directionality of time.
Two vertices (u,w) are strongly connected if there exists a temporal path P from u
to w and from w to u. A temporal strongly connected component (temporal SCC)
is defined as a maximal set of vertices C ⊆ V such that any pair of vertices in C
are strongly connected. Note that this is exactly the same definition as a strong
component in a graph where we replaced the notion of a path with a temporal path.
In the example in Figure 8, the set {A,B,C,D,E} forms a temporal SCC.

As previously mentioned, checking if a graph has a k-node temporal SCC is
NP-complete [3, 40]. Nonetheless, we can compute the largest such strong component
using a maximum clique algorithm. Let us briefly explain how (see Algorithm 3 for
an outline). The first step is to transform the temporal graph into what is called a
strong-reachability graph. For each pair of vertices in V , we place an edge in the
strong reachability graph if there is a temporal path between them. This is easy to do
by using a method developed by [44]. With this reachability graph, the second step of
the computation is to remove any non-reciprocated edges and then find a maximum
clique. That maximum clique is the largest set of nodes where all pairwise temporal
paths exist, and hence, is the largest temporal strong component [40]. Note that the
removal of non-reciprocated edges can result in some vertices being singletons, which
are in turn removed prior to the computation of the temporal SCC. Thus the vertex
set VR in the reachability graph could be a strict subset of the vertex set V in the
temporal graph.

Dataset. We study three types of temporal networks. In each, the nodes
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Algorithm 3 Largest Temporal Strong Component.
Input: Temporal Graph G = (V,ET )

1 procedure max-tscc(G = (V,ET ))
2 ER = reach(G)
3 Remove non-reciprocal edges from ER
4 Obtain VR by discarding singleton vertices from V
5 Compute the max-clique C in the reachability graph (VR, ER)

6 procedure reach(G = (V,ET ))
7 Sort edges to be in reverse time order
8 Set ER to be the set of all self-loops
9 for (i, j, t) ∈ ET do

10 Add (i, k) to ER for all k where (j, k) ∈ ER
11 Return ER

Table 2
For each temporal network, we list the number of temporal edges, the number of vertices and

edges in the reachability graph, the size ω of the temporal strong component and the runtime of our
maximum clique algorithm.

graph |ET | |VR| |ER| ω Time (s.)

infect-dublin 415K 11K 176K 84 <.01
infect-hyper 20K 113 6.2K 106 <.01

fb-messages 61K 1.9K 532K 707 0.05
reality 52K 6.8K 4.7M 1236 0.19

retweet-elect 61K 18K 66K 166 0.02
retweet-copen 45K 8.6K 474K 581 0.22

represent people.
1. Contact networks: The edges here represent face-to-face contacts in a social
experiment designed to simulate epidemic spreading of a contagious agent (infect-
dublin, infect-hyper [29]). See ref. [54] for more details about these data.
2. Interaction networks: The edges represent private Facebook messages (fb-
messages [41]) or cellular telephone calls in data gathered at the Reality Mining
project at MIT (reality [22]).
3. Retweet networks: The edges here are retweets. We analyzed a network of
political retweets centered around the November 2010 election in the US (retweet-
elect [16]), and a similar network of retweets about a UN conference held in Copen-
hagen (retweet-copen [1]). The latter data was collected over a two week period.

Results and analysis. Figure 9 shows the reachability and largest temporal
strong component for the retweet-elect and reality networks. It took the
maximum clique finder less than a second to identify these components. We summarize
the remaining experiments on the temporal strong components in Table 2. For all of
these networks, we were able to identify the largest temporal strong component in less
than a second after we computed the reachability network. There are two reasons for
this performance. First, in all of the networks except for the interaction networks, the
largest clique is the set of vertices with highest core numbers. Second, our heuristic
computes the largest clique in all of these networks, and we are able to quickly reduce
the remaining search space when it isn’t the largest k-core as well.
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(a) Reachability (retweet-elect) (b) Temporal SCC (retweet-elect)

(c) Reachability (reality) (d) Temporal SCC (reality)

Fig. 9. Results on computation of temporal strong connected components in the retweet-elect
and reality networks. In order to compute the largest temporal SCC, we first compute the strong
reachability network (a, c). These networks are rather dense and often reveal clear community
structure. In the retweet-elect network, we see clear communities for the political left and right.
We find that the largest temporal SCC in retweet-elect (b) consists of 166 twitter users classified as
politically “right” according to the original data with only a single exception. In the largest temporal
SCC in the reality network (d), we see a small group of core users maintaining connectivity among
various groups.

Observations. We observe several interesting properties in these temporal
strong components. In the two contact networks (infect-hyper and infect-dublin),
both of the largest strong components had about 100 vertices, despite the drastically
different sizes of the initial dataset. We suspect this is a consequence of the data
collection methodology since the infect-dublin data were collected over months
whereas the infect-hyper data were collected over days. In the interaction networks,
the components contain a significant fraction of the total vertices, roughly 20-30%.
In the retweet networks, the components are a much smaller fraction of the vertices.
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Fig. 10. Plots of the nonzero entries of the adjacency matrix of a graph before and after the
clique-based ordering of the columns is applied.

Table 3
Size in bytes required to store two Facebook graphs using the bvgraph compression scheme in

three different orders.

Graph Vertices Edges Native LLP PMC

fb-Penn 42K 1.4M 4237507 2740801 3104286
fb-Texas 36K 1.6M 4605427 3232909 3508224

Given the strong communication pattern between the groups, the components are
good candidates for centers of communities in the networks.

Together these results show that temporal strong components are a strict require-
ment on a group of nodes in a network. For instance, there is a considerable difference
in the size of temporal strong components between networks with asymmetry in the
relations (retweet-elect) compared with networks with symmetric relationships
(fb-messages and reality). This finding may be important for those interested in
designing seeded viral campaigns on these networks.

6.2. Ordering for network compression. In this application, we consider
using the maximum cliques of a network to produce an ordering of the vertices that
should be useful for compression, reducing the space needed to store the network
structure. Compression has two important benefits. First, it reduces the amount
of IO traffic involved in using the graph. Second, good compression schemes may
reduce the amount of work involved in running an algorithm on the graph [32, 31].
State-of-the-art network compression techniques heavily exploit locality of links within
the adjacency list representation of a graph to reduce the number of bits required
to store each edge [6, 7, 5]. Cliques are the densest local feature of a graph, and in
this application, we order the vertices of a network such that every vertex is in a
large clique. This ensures that there are many local edges within the graph. We then
evaluate how well the bvgraph [6, 7] compression method reduces the graph size using
this ordering.

The specific ordering we use is the result of the following process. Given a graph
G, we find a maximum clique C in G, remove C from G, and repeat the process until
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all vertices are removed. To improve the runtime, we ran our heuristic method to
find large cliques. We then order the vertices according to the cliques, C1, C2, . . ., CI ,
where I denotes the number of iterations needed. Internally within each Ci we order
the vertices by their degrees. We then permute the graph to use this ordering and use
the bvgraph compression scheme with all default settings to compress the networks.
Table 3 shows the results we get on two Facebook networks (and Figure 10 illustrates
the application of the clique-based reordering of the columns of the adjacency matrix
of a portion of the fb-Penn network). We compare the compression obtained by
reporting the size of each graph in bytes after compressing. We evaluate three orderings
of the vertices: the native order, the Layered Label Propagation (LLP) order proposed
to help improve compression with the bvgraph algorithm [5], and our clique-based
order computed using PMC. We find that our ordering results in better compression
than using the native ordering of the data and it is comparable to the LLP order
although slightly worse. Previous research found that identifying and compressing
large bicliques with a linear number of edges helped to improve upon methods that use
the adjacency list [10]. Given the success of this simple ordering, we plan to evaluate
these more involved schemes in future work.

7. Conclusions. We presented a new fast algorithm that finds the maximum
clique on billion-edge social networks in minutes. The algorithm exhibits linear runtime
scaling over graphs from a thousand vertices to a hundred million vertices and has good
parallelization potential. We applied the algorithm to compute the largest temporal
strong components of a dynamic network, which involves finding the largest clique in
a static reachability graph, and to obtain an ordering friendly for graph compression.
Our hope is that maximum clique will become a standard network analysis measure.
Towards that end, we make our software package and related information available
online for others to use: the original codes used to generate the results for this paper can
be found at http://www.cs.purdue.edu/~dgleich/codes/maxcliques and an updated
repository is available at https://github.com/ryanrossi/pmc.
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Appendix A. Dataset properties.
All of the tables in this appendix share the same columns. The headers indicate:

|V | number of vertices
|E| number of edges
|T | number of triangles
∆ maximum degree
davg average degree
κ mean clustering coefficient
Tmax maximum number of triangles incident on a vertex
Tavg average number of triangles incident on a vertex
K core number of the graph
ω size of maximum clique
tω run time of our exact maximum clique algorithm
ω̃ size of approximate maximum clique computed by our heuristic
tω̃ run time of our heuristic maximum clique algorithm

Table 4 Biological, Collaboration, Interaction, Road, and Retweet networks
Table 5 Technological and Social networks
Table 6 Facebook and Web networks

Table 7 DIMACS “Easy” graphs
Table 8 DIMACS “Hard” graphs
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