Relational Similarity Machines (RSM):
A Similarity-based Learning Framework for Graphs

Ryan A. Rossi
Adobe Research
rrossi@adobe.com

Rong Zhou
Google
rongzhou@google.com

Abstract—Relational machine learning has become increas-
ingly important due to the recent proliferation and ubiquity
of network data. However, existing methods are not designed
for interactive learning and have many unrealistic assumptions
that greatly limit their utility in practice. For instance, most
existing work has focused on graphs with high relational
autocorrelation (homophily) and perform poorly otherwise. To
overcome these limitations, this paper presents a similarity-
based relational learning framework called Relational Simi-
larity Machines (RSM) for networks with arbitrary relational
autocorrelation. The RSM framework is designed to be fast,
accurate, and flexible for learning on a wide variety of networks.
The experiments demonstrate the effectiveness of the RSM
framework.

Keywords-Semi-supervised learning (SSL), statistical rela-
tional learning, heterophily, collective classification, similarity-
based graph learning, interactive relational learning

I. INTRODUCTION

Networks (relational data, graphs) encode dependencies
between entities (people, computers, proteins) and allow us
to study phenomena across social [1], technological [2], and
biological domains [3]. Recently, relational machine learning
(RML) methods were developed to leverage relational depen-
dencies [4], [5], [6] between nodes to improve predictive
performance [7], [8], [9], [10], [5], [11].

Relational classifiers can sometimes outperform traditional
iid ML techniques by exploiting dependencies between
class labels (attributes) of related nodes. However, the
performance of RML methods can degrade when there are few
labeled instances (majority of neighboring instances are also
unlabeled). Collective Classification (CC) aims to solve this
problem by iteratively predicting labels and propagating them
to related instances [12]. Unfortunately, the performance of
CC methods may also degrade when there are very few labels
available, e.g., label density < 0.01 [9]. In both situations, if
not careful, the performance of RML methods may degrade
to a point where iid techniques perform better.

Despite the fundamental importance of these techniques,
the vast majority of RML methods rely on a significant
amount of relational autocorrelation, i.e., homophily [13]
existing in the data. It has been noted that RML techniques
may perform worse than iid methods when there is low
or even modest relational autocorrelation (Figure 1). One

Nesreen K. Ahmed

nesreen.k.ahmed@intel.com

Hoda Eldardiry
Palo Alto Research Center
hoda.eldardiry@parc.com

Intel Labs

particular case that arises quite often in practice is shown
in Figure 1. For instance, molecular, chemical, and protein
networks often have between 2 and 20 class labels, which are
highly correlated with the structural properties and behavior
surrounding a given node or edge in the graph [14], [15].
Furthermore, the nodes whom share class labels are often
not directly connected, or even in the same community,
but share similar structural properties and behavior (or
role [16]) in the network as shown in Figure 1. Current
methods work well when the neighboring labels of a node
are highly correlated (i.e., the neighbors of a node have the
same class label), but perform poorly otherwise. Instead,
this work proposes a relational learning framework based
on maximizing similarity called RSM, which generalizes
across the spectrum of relational data characteristics, and
avoids the issues, assumptions, and limitations of existing
methods. In particular, RSM is able to learn and accurately
predict the class labels of nodes (links, subgraphs) in large
(attributed) networks that are extremely noisy and sparsely
labeled (with unbalanced classes). Most importantly, RSM is
designed for interactive RML and able to handle networks
with arbitrary relational autocorrelation by adjusting a simple
hyperparameter.

In addition, existing methods also have difficulty learning
with graph data that is large, noisy, probabilistic, sparsely
labeled, attributed, and are sensitive to many other issues
and data characteristics that often arise in practice. Moreover,
obtaining labeled data is also expensive, and thus RML meth-
ods should be robust to learning with few labeled instances.
Furthermore, relational representation and transformations
of the nodes, links, and/or features can dramatically affect
the capabilities and results of such algorithms [6]. Unlike
previous work, RSM is designed to be fast and scalable for
real-time interactive RML.

To solve these problems, this paper introduces rela-
tional similarity machines (RSM) — an efficient interactive
similarity-based graph learning framework. The framework
is well-suited for classification tasks in graphs with arbitrary
homophily and heterophily. It also generalizes to both graph-
based supervised and semi-supervised learning (SSL) [17]
and gives rise to a variety of methods for both settings. RSM
is extremely fast, space-efficient, accurate, flexible with many

OC1
OCz
OcG

Si S] O

Figure 1. In practice, nodes with the same class label are often not directly
connected, or even in the same community, but share similar structural
properties (roles [16]). Sets of nodes of the same class are denoted by
C1,C2,C3, and Cy, ie., Yv;,v; € Cy, &(v;) = &(vj). Current methods
work well when the neighboring labels of a node are highly correlated
(i.e., the neighbors of a node have the same class label), but perform
poorly otherwise. In contrast, RSM performs well on networks with arbitrary
relational autocorrelation and therefore does not have the same issues,
assumptions, and limitations of previous methods. In the above example,
nodes that belong to the same class are often connected to nodes of a
different class. For instance, nodes that belong to class C7 are almost
always connected to nodes of C2, and never nodes of the same class C1.
Similarly, nodes in class C'> mostly connect to nodes of class C and less
frequently nodes belonging to class C'3. Further, nodes in class C's connect
to nodes of all classes.

interchangeable components, and highly scalable for real-
time interactive learning. In addition, RSM is designed to be
intuitive and easy to adapt and encode application constraints.
The similarity-based graph learning framework also has many
other attractive properties including its robustness to noise
as well as its ability to handle sparsely labeled graph data.

The main strengths of our approach include:

« A general principled similarity-based relational learning
framework for supervised and semi-supervised learning
(SSL) in large graphs.

« Accurate for prediction in graphs with arbitrary homophily
and heterophily

« Fast and scalable for interactive relational learning and
other applications requiring real-time performance

« Flexible with many interchangeable components (e.g.,
parameterized similarity function)

II. RELATIONAL SIMILARITY MACHINES

This section describes a general relational learning framework
based on the notion of maximum similarity called relational
similarity machines (RSM). The similarity-based relational
learning framework gives rise to a large class of graph-
based supervised and semi-supervised learning algorithms
and serves as a unifying basis for studying them.

Let G = (V,E,X) be an attributed graph where V is
a set of nodes FE is a set of edges and X is the set of n
training objects {(x1,41),- .-, (Xi,Yi),- -, (Xn, Yn)} where

each x; € R is a d-dimensional feature vector for node
v; and y; € {1,2,...,k} is the class label of v;, also
denoted simply as &(v;). For convenience, let X € R"*9
and Z € R™*? be matrices consisting of n training and m
test instances, respectively. Further, we define x; € R? (or
X ;.) as the i*® row vector of X, and similarly z; is the j
row vector of Z.

Definition 2.1 (Within-network classification): Given
a (attributed) graph G, a known set of node labels
Y*¢ = {y;|v; € V*} for nodes V! C V, the within-network
classification task is to infer Y* — the set V% =V \ V¥ of
remaining vertices with unknown labels.

We define C to be the set of class labels, and thus, k& = |C|
is the number of unique labels. As shown later, our approach
naturally generalizes to both binary classification problems
where y; € {1,2} as well as large multiclass classification
problems where |C| > 2, and thus, y; € {1,2,...,k}.
Further, let A = [A;;] be the adjacency matrix of G where
A;; = 1 if there exists (v;,v;) € E and A;; = 0 otherwise.
Note A may also be used to encode edge attributes; given
w for (vi,vj) € E, A;; = w. WLOG sets are ordered, thus
V ={v1,...,0,...,vj,...,0, } is an ordering of the nodes in
G s.t. v; < vj iff f(v;) < f(vj) where f(-) is an arbitrary
function. Vertices u and v are adjacent if (v,u) € E. Given
a vertex v € V, let T'(v) = {w|(v,w) € E} be the set of
vertices adjacent to v in G. For a vertex v € V, let d,, be
the degree of v. The maximum degree is denoted by A.

Assume w.lo.g. that rows of X and Z have been
normalized to length 1 using the /2-norm. Nevertheless, given
a radius of sufficient magnitude it is conceptually simple
and trivial algebraically to approximate a hyperplane by a
spherical area, i.e., simply add the radius of the sphere to
the coefficients of each point and normalize. Thus, general
classification of points in R are easily addressed in RSM.

A general computational framework for RSM is given in
Alg. 1. The RSM framework gives rise to a large space of
potential relational learning methods due to RSM’s powerful
representation and flexibility. Furthermore, many of the
learning components in Alg. 1 are naturally interchangeable.
The subsequent sections discuss the main components of
RSM. In particular, Section II-A presents the supervised
learning component whereas Section II-B introduces the
semi-supervised learning (SSL) component of RSM.

A. Supervised Component

Given an unlabeled test node v; € V% and its feature vector
z; € R? we demonstrate how to estimate the weights for v;
from the set of labeled nodes V' (Line 11-17). First, the set
of labeled nodes V* is decomposed into two key subsets:

N = {Uj S I‘h(vi) ‘ v; € VZ} (1)
Q=A{v; Tn(vi) |v; €V} (2)

where N (Eq. 1) is the set of labeled neighbors within h-hops
of v; € V* and) (Eq. 2) is the set of labeled non-neighbors.

These sets are then used to decompose the similarity scores
of the labeled nodes V* into k-dimensional weight vectors
wi and w! where w € R is the weight vector estimated
using N (Eq. 1) and w! € R* is the weight vector estimated
using @) (Eq. 2). The similarity score S;; in Line 12 of Alg. 1
represents the similarity between the feature vector z; of the
test node v; € V* and the feature vector x; of v; € V¢, Note
Sy is implicitly computed and the full similarity matrix S is
never stored as .S;; is immediately combined and discarded.

The similarity scores accumulated from each set of labeled
nodes are then combined as follows:

Supervised

w; = ozsz + (1- a)w{ 3)

~—— ———
Relational 1ID

where « is a hyperparameter which satisfies 0 < o < 1,
and w; € RF is the non-negative vector with W;; > 0. For
convenience, assume w.lo.g. that w; is also a stochastic
row vector with), Wi, = w;e = 1. For a completely
supervised variant of RSM, we simply skip Lines 18-25 in
Alg. 1 and set 7 = 1. The class of a test node v; € V" is
then predicted as:

&(z;) = arg max [awl + (1 - a)wl, 4
kec

where £(z;) is the class with maximum similarity taken over

all other class labels.

B. Semi-Supervised Learning Components

In this section we discuss the semi-supervised learning (SSL)
components of RSM that make use of unlabeled data to
improve predictions. In this work, we consider the similarity
between the set of unlabeled nodes V* (Line 19-25) and use
this similarity to estimate class probabilities for the test node
v; being predicted. Given an unlabeled test node v; € V*
(to predict), we decompose V™ into the sets:

N' = {v; € Tp(v;) | v; € V"} 5)
Q" = {vj € Th(vi) | v; € V"} (6)

where N’ is the set of unlabeled neighbors of v; and Q' is
the set of unlabeled non-neighbors, i.e., nodes that are not
neighbors of v;. The weights are decomposed into mf* € R¥
and m/ € R* where mZ is the weight vector estimated
using N’ and m! is the weight vector estimated using ()’

Given v;,v; € V* and their d-dimensional feature vectors

z; and z;, we first derive a measure of similarity S;; =

® (z;,z;) where @ (-,-) is an arbitrary similarity function.

Recall the supervised component (Line 11-17) of RSM used
S;j = ® (z;,x;) to update the weight corresponding to the
class of the training node v; € V£, However, in this case both
the class label of v; and v; are unknown. Thus, instead of
using the similarity .S;; to update the estimate of a particular
class (Section II-A), we instead use .S;; to update all class

Algorithm 1 Relational Similarity Machines (RSM) Framework

1 procedure RSM(G, X, Z, Tmax,)
2 Normalize all data; Set 7 < 1and U = ()

3 Estimate the class priors P = [~ p; ~-]7 where p, € R¥ is the
estimated prior for v;

4 repeat > outer iterations 7 = 1,2, ..., Tmax

5 Compute relational features based on neighbor classes

6 Compute relational features based on neighbor attributes

7 Append the relational features from Line 5-6 to the current set of

features and renormalize.

8 for each v; € V" in order > next test instance
9 Selwf,wf,mf,m{toO:[O~~0]6Rk
10 Obtain a set J by sampling (V¢ U U) via an arbitrary (weighted/u-

niform) distribution F (if needed, otherwise J = V* U U)
11 parallel for each v; € J > Supervised component

12 Set s;; to be ®(z;, x;)

13 Letk € {1,...,|C|} be the class label of v; € V*

14 if v; € T'y,(v;) then

15 Update wh? «— wll + pis, - 545 > labeled neighbor

16 else Update w{k — wfk + pik - sij > labeled non-neigh.

17 end parallel

18 Obtain a set J by sampling (V* \ U) via an arbitrary (weighted/u-

niform) distribution F (if needed, otherwise J = V* \ U)

19 parallel for each v; € J > Semi-supervised component

20 Set s;; to be ®(z;,z;)

21 for each class k € C do

22 if v; € T'x(v;) then

23 mB «— mI + s,;(pixpjr) © unlabeled neighbor

24 else ml, < ml, + sij(pixpjr) > unlabel. non-neigh.

25 end parallel

26 Normalize wit, w!, m, m! (see text for discussion).

27 Update p; via Eq.(3)—~(8)

28 Solve y; < arg rl?eaé(Pir > k is the class label

29 end for

30 Given P, estimate c = [¢; ca -+ ¢; ---]foreachv; € (V¥ \ U)
where c; is a measure of “confidence” for v;

31 Find V' C V* s.t. V' is the top-~ nodes with largest confidence and
k= [¢p|V* \ U|].Set U +- U U V' and update 1 if needed.

32 Include P, WE, W, M®, M’ and/or c as features (see text)

33 Set 7 < 7 + 1 and renormalize data

34 until stopping criterion is reached or 7 > Tyax

estimates (Lines 21-24). More specifically, given a class k €
C, the update is S;;(P;; Pji) where P;;, and Pjj, represent
the current probability that v; and v; belong to class k. Thus,
S;; is essentially a weighted similarity using the current
class probabilities P;, and P;;. The weighted similarities
are added to either mZ or m! (Lines 21-24). The semi-
supervised weight vectors m and m! accumulated from
the sets of unlabeled neighbors (Eq. (5)) and unlabeled non-
neighbors (Eq. (6)) of a given test node v; € V" are then
used to derive m; € R” as follows:

Semi-Supervised

m; = ﬂmf + (1- ﬁ)mf (7)
—— —
Relational 11D

where [is a hyperparameter which satisfies 0 < 5 < 1
and effectively determines the weight given to the unlabeled
disconnected nodes relative to the importance of the unlabeled
connected nodes. Hence, as 8 — 1 the weights estimated
via the connected unlabeled nodes are given more influence
in the learning and conversely for 5 — 0.

In addition to the above SSL strategy, we also estimate the
confidence of each unlabeled test node after every iteration
7 in Alg 1 and predict the labels of the top-x nodes for
which we are most certain (min uncertainty) where x =
[¢ - |[V¥\ U] and v is the fraction of nodes to predict
labels for at each iteration. These nodes are added to U and
used in subsequent iterations (Alg. 1 Line 31).

C. Collective Update

Now we jointly estimate pETH) for test node v; € V' using
the k-dimensional weight vectors w; and m; as follows:

current estimate previous
—_—— PN,
1

~— ~~
Supervised SSL

The update equations in Eq. (3)-(8) combine the learned
weights from the different learning components that leverage
labeled (supervised) and unlabeled nodes (semi-supervised),
as well as connected (neighbors) and disconnected (non-
neighbor) nodes. Thus, pETH) is the new estimate and
derived by combing the estimated weights from the four
different learning settings. It is straightforward to leverage
other update equations as well as add regularization for
different applications and data characteristics. This is es-
pecially useful for interactive relational learning [18]. A
fundamental advantage over other approaches is the accuracy,
efficiency, and flexibility of RSM for graphs with homophily
and heterophily. To ensure RSM is fast with real-time response
rates for interactive learning, we sample from the various
types of nodes (Alg. 1: Line 10 and 18).

D. Maximizing Relational Similarity

At the heart of relational similarity machines (RSM) lies the
notion of maximum similarity. Let X € R"*? be a matrix
where the rows represent training nodes and the columns
represent features. Further, let Z be a matrix of test node
feature vectors, then the class of a single test node z; € V*
is predicted as follows. First, the similarity of z; with respect
to each training example in X is computed. For instance,
suppose x; belongs to class k € C then S;; = ®(z;,x;) is
added to the kth element wy, of the weight vector w. Note
we use w in this section to denote an arbitrary weight vector
which is not to be confused with w in Section II-A. The
similarity of the instances in X of class k with respect to
the test node feature vector z; is formalized as,

> B (zix,))

XjEXk

Wy =

where X}, is the set of training node feature vectors from X
of class k € C. Thus w is simply

> O (zix5)

Xj€X1
W = : (10)
> P (zi,x5)

x;€X.

After computing w, then z; is assigned to the class with
maximum similarity. Therefore, we predict the class of z;
using the following decision function:

&(z;) = argmax wy (11
kec
where £(-) is the predicted class. The above requires z; to
be more similar to class k£ than to any other class.

The above formalization corresponds to the supervised
learning component presented in Section II-A where &), can
be defined as the feature vectors for the train nodes in NV, @,
or both V¥ = NUQ. It is straightforward to extend the above
to the SSL components described formally in Section II-B.
We now state the complete decision function that uses both
the supervised and semi-supervised weight vectors. More
formally, the class label of a test node z; is:

(12)
keC

arg max l (U)ik + mik) + Pik

The RSM framework uses parameterized similarity func-
tions and does not require mappings in high-dimensional
Hilbert spaces. A few of the similarity functions investigated
in this work are given below. Recall that X and Z are matri-
ces consisting of training and test node features, respectively.
We can interpret ZX” as a similarity matrix S with the dot
product as the similarity measure.

Radial Basis Functions (RBF): Given d-dimensional vec-
tors z; and x;, the RBF similarity function is:

L 112
(2, ;) exp< HZXJ”> (13)

202

where the radius of the RBF function is controlled by choice
of o, i.e., tightness of the similarity measure.

Polynomial Functions: A common class of similarity
measures are polynomial functions of the form:

D(z;,x;5) = <<zi,xj> —i—c)q (14)

where ¢ is the degree of the polynomial and c is a
regularization term trading off higher-order terms for lower-
order ones in the polynomial. A generalization of the above
is ®(2;,%;) = (a(z;,x;) +c)”. Linear-RSM and quadratic-
RSM are special cases of Eq. (14) where ¢ = 1 and q = 2,
respectively. Polynomial kernels are important for NLP and

other applications [19].
Sigmoid Kernel: The sigmoid kernel is defined as
®(z;,%;) = tanh (a (z;, x;) + ¢), (15)

where a and c are constants representing the slope and
intercept, respectively. The sigmoid kernel is important in
neural networks and deep learning [20], [21].

Cauchy Similarity Function: The Cauchy “long-tailed”
similarity function is defined as:

1
®(z0%) = | — =T
g <1+|z10§]|2>

E. Over and Under Fitting Conditions

Parameterized similarity measures such as RBF’s ¢ and
the degree-q of the polynomial kernel control the tightness
of such measures. Extreme values of these parameters
correspond to fotal overfitting (extreme tightness) where
0 — 00, or total underfitting (lack of tightness) at the other
extreme where ¢ — 0. Let S = (Z, X) be defined as
the similarity matrix Vv; € V¥ v; € V¢ : ®(z;,%;). As
o — 0 (or ¢ — 0 in polynomial functions) then S — ee”
where e = [11 --- 1) and thus § is close to low-rank.
Consequently, all objects appear equally similar, and results
in a decision function that assigns each test instance to the
class with the largest number of instances, thus, this extreme
case is called extreme underfitting. Similarly, ¢ — oo then
S — I where I is the identity matrix and thus is full rank
with all eigenvalues equal to 1. As the similarity matrix S
converges towards I, the decision function converges towards
extreme overfitting.

F. Discussion

To ensure RSM is fast for large graph data, Alg. 1 samples
nodes in the training set from each class (Line 10 and 18).
Recall that n» denotes the number of train instances, m denotes
the number of test instances, and d is the number of features.
Sampling has three important advantages. First, it serves as a
bound on the time complexity per node and reduces it from
O(nd) to O(]J| - d) where |J| < n. Second, it reduces the
impact when one or more classes are significantly skewed
or underrepresented (e.g., one can ensure that approximately
the same number of unlabeled and labeled nodes are used in
the prediction). Finally, a stratified sampling approach can be
used to select nodes proportionally from the different classes
(or for the unlabeled nodes, one can use the probability
distributions estimated for each node).

III. COMPLEXITY ANALYSIS

Time Complexity: Given n training instances, m test
instances, and d features. RSM takes O(nd) time on a single
test instance (in the stream), and therefore O(nmd) for all
m test examples. The complexity for both sparse and dense

training sets X € R™*? are given below. Consider the case
where X is sparse and stored as a sparse matrix using
compressed sparse column/row format. The cost of a single
test example is O(|X|) linear in the number of nonzeros in
X denoted by |X|. Further, assuming p processing units,
then O(|X|/p), and hence is very scalable for real-time
systems. Now suppose X is a dense matrix. Given a dense
training set X € R™*? (few zeros), it takes O(nd) time for
each test object, and (’)("—d) assuming p processing units.
The time is reduced by sampling from the various types of
instances (Alg. 1: Line 10 & 18). In particular, the time
to infer the label of a single test instance is reduced from
O(nd) to O(|J| - d) where |J| < n.

Space Complexity: Finally, we discuss the space complexity
of the proposed relational learning framework. Given a single
test node to predict, RSM takes only O(k) space where k
is the number of classes. This is of course in addition to
the graph and features. For parallel learning and inference
using p workers, the lock-free version of RSM takes O(pk)
space. To avoid locks, each worker maintains a k-dimensional
vector of similarity scores, which are then combined upon
completion. Now, suppose collective inference is used, then
RSM takes only O(nk) space where n is the number of test
nodes with unknown class labels.

IV. EXPERIMENTS

The experiments are designed to investigate the effectiveness
and scalability of the RSM learning framework.

A. Experimental Setup

The data used in the experiments is available at Network
Repository [22]. Unless otherwise mentioned, we perform a
grid search over «, 3 € {0,0.01,0.1,0.25,0.5,0.75,0.99, 1}
and o € {0.001,0.01,0.05,0.1}. We use 10% of the labeled
nodes as training unless otherwise mentioned. The model is
selected using 5-fold cross-validation and results are averaged
over 20 trials. The initial class prior is set to the overall class
label distribution and a fast belief-propagation approach is
used to obtain an initial estimate. Unfortunately, there are
no existing interactive RML methods to use as baselines
for evaluating RSM. Nevertheless, we extend WVRN [7],
RPT [23], SVM-G (with Graphlet features) [24] and RSM-iid
for interactive RML and use these as baselines for comparison.
These baseline models were chosen since they have similar
time and space complexity and are straightforward to extend
for interactive RML.

B. Experiments on Graphs with Homophily

This section investigates the classification performance
of RSM for graphs with homophily. Classification results
comparing RSM to the baseline methods are shown in
Table 1. Note £ in Table I is an intuitive measure of
homophily called label consistency [7] defined as L(G) =

1/|E|Z(vi,vj)EE ,C(’Ui,’l)j) where E(vi,vj) =1if f(’Uz) =

Table I
CLASSIFICATION RESULTS FOR GRAPHS WITH HOMOPHILY

Accuracy

Graph [C| L RSM RSM-IID WVRN SVM-G RPT

aff-polbooks 3 66.6% 89.25 71.16 74.41 69.89 70.97
bio-Gene 2 79.7% 85.27 64.88 72.41 61.85 60.24
Enzymes349 2 50.0% 77.81 67.93 62.50 55.36 66.07
musicGenre 8 84.9% 82.35 51.57 60.59 48.63 55.56

&(v;) the class labels of node v; and v; match and O other-
wise. Similar results were observed with other “homophily
measures” such as assortativity/relational autocorrelation. In
all cases, RSM outperforms the other methods and the results
are significant at p-val <0.05. These results demonstrate the
effectiveness of RSM for classification on graphs with high
degrees of homophily (Table I). Notably, the label consistency
ranges from 50% observed in Enzymes349 all the way up
to 84.9% in musicGenre.

C. Experiments on Graphs with Heterophily

We also investigate the effectiveness of RSM on graphs with
heterophily. Results are provided in Table II. F1 score is
used for evaluation due to the unbalanced nature of these
graph problems and the large number of classes [25]. Notice
the label consistency L of these graphs is small as shown
in Table II which indicates heterophily. In all cases, RSM
outperforms WVRN, SVM-G, and RPT across all networks
with an average gain of 24%, 52%, and 17% respectively.
More strikingly, we observe that RSM-1ID outperforms WVRN,
SVM-G, and RPT across all graphs with heterophily. Notably,
RSM-IID uses only relational and graph topology features
such as 3 and 4-vertex graphlet counts. This indicates the
importance of appropriately moderating the heterophily and
homophily dependencies. Further, existing relational learning
methods are unable to handle graphs with low levels of
label consistency (heterophily). It is evident from the results
that RSM is flexible for prediction in networks with both
homophily and heterophily.

Table 1T
HETEROPHILY CLASSIFICATION RESULTS

F1 score

Graph |C| L RSM RSM-IID WVRN SVM-G RPT

DD645 20 2.0% 0.769 0.701 0.607 0.634 0.680
DD411 20 12.5% 0.712 0.695 0.605 0.239 0.615

DD5 19 6.7% 0.561 0.510 0.303 0.426 0.465
DD244 20 7.1% 0.742 0.708 0.558 0.175 0.646
DD159 20 2.70% 0.734 0.702 0.605 0.280 0.652
DD185 18 12.5% 0.738 0.644 0.585 0.262 0.489

D. Real-time Performance

We investigate the real-time performance capabilities of RSM
for the interactive RML problem (Figure 3). Overall, RSM
is shown in Table III to be extremely fast with real-time
response times in the range of a few ms or less. Notably, the
results indicate that RSM is fast and naturally able to support
real-time interactive learning and inference. In particular, RSM
is able to provide rapid immediate (and visual) feedback to
the user at real-time interactive response times (Section IV-F).

Table III

AVERAGE TIME PER TEST INSTANCE
Graph \d IC| avg, time
soc—TerroristRel 90 2 0.18 ms
aff—polbooks 12 3 0.12 ms
cora 272 7 0.97 ms
DD6 417 20 3.10 ms
political-retweet 1848 2 0.15 ms

E. Farallel Scalability

This section demonstrates the parallel scalability of the
proposed learning framework in Figure 2. Given p parallel
workers (cores, processors), speedup is defined as .S, = TT;‘*
where Tiq is the runtime of the sequential algorithm and
T}, is the runtime of the parallel algorithm on p workers. In
particular, we observe strong scaling results in Figure 2. Note
a machine with two Intel Xeon E5-2687 CPUs @3.10GHz

were used with 8 cores each.

—e— DD21

—=—facebook-uni
—4— citeseer
—A—cora

12 4 8 16 32
Processing units

Figure 2. Parallel scaling. Strong scaling results are observed across a
variety of networks including social and information networks.

F. Effectiveness for Interactive RML

Relational Machine Learning (RML) [4] methods exploit the
relational dependencies between nodes to improve predictive
performance [7]. However, these approaches often fail in
practice due to low relational autocorrelation, noisy links,
sparsely labeled graphs, and data representation [6]. To
overcome these problems, we designed the class of RSM
models to be fast for interactive RML with real-time response
rates. This allows users to interactively search the space of
RSM models in an interactive and visual fashion. For instance,

Figure 3. Overview and effectiveness of RSM for interactive RML. The
visualization above is from cora.

a user can specify the RSM model in real-time using a visual
interface as well as perform evaluation, analyze errors, and
make adjustments and refinements in a closed-loop [18].

An overview is provided in Figure 3. We first interactively
learn a model in Figure 3, then select the misclassified nodes
for further analysis. The global statistics of the selected
subgraph are shown in the right-most panel. Node color
represents the model’s uncertainty using an entropy-based
measure, whereas the size of the node indicates whether it was
correctly classified or not. In Figure 3, misclassified nodes
are given a larger size so that they can easily be identified for
further exploration. Localized updates are also used in RSM
to enable real-time inference and exploration capabilities by
leveraging fast exact or approximate solutions to support
real-time interactive queries seamlessly; see Figure 4. Many
components in RSM may be explored in real-time using
interactive visualization and analytic techniques (Figure 3),
including the attribute to predict, initial features to use
(non-relational and graph-based features), local model for
estimation, kernel function (RBF, linear, polynomial), hyper-
parameters (for selected kernel), node- and feature-wise
normalization scheme (L1, min-max), as well as whether
to use both supervised and SSL components, among many
others. See Figure 3 (right panel).

G. Varying Inference Types

Previous work defined different “relational models” based

on the class of relational features used. The simplest models

leverage only one class of features. The most accurate models

typically combine other classes of features including:

e Collective Inference (CI): Model using neighbor labels.

e Relational Inference (RI): The RI model uses neighbor
attributes.

e Relational-Collective Inference (RCI): The RCI model
uses both neighbor labels and neighbor attributes.

Collective inference uses ‘“neighbor labels” to estimate the

nodes with unknown labels, whereas relational inference uses

“neighbor attributes” [26]. Our approach naturally leverages
both collective and relational inference.

= p— LS
sos @ owm o 1 om m

Figure 4. At the heart of RSM is the ability to interactively learn models
in real-time and adjust them accordingly, as well as tune parameters,
explore/construct features, among many other possibilities. In the screenshot
above (from soc—terror), the user interactively learns a global model (see
the leftmost black side panel for stats and accuracy), and then selects a
subgraph H by visually selecting nodes and edges with a simple and intuitive
drag-of-the-mouse/gesture. From this selected subgraph (in real-time), a
local RSM model is learned for H; and the subgraph statistics and accuracy
are reported in the red side panel on the left side. Node color represents the
class label (terrorist/normal), whereas the link color encodes the number
of 3-star graphlet patterns centered at each edge (both can be adapted in
real-time by the user). The weight (or strength) of the nodes and links
represent the local max k-core number and triangle counts, respectively.

In Figure 5, we investigate the impact of RSM using the
different classes of features. The default hyperparameters
were used in Figure 5. In particular, 0 = 0.01, and «,
B are set to 0.5. We make three important observations
from Figure 5. First, RSM-RCI that uses both collective
inference (CI) and relational inference (RI) always improves
over RSM-CI and RSM-RI. Second, RSM-CI, RSM-RI, and
RSM-RCI are most useful for graphs with only a few known

12 —=—RSM

10 —e— RSM-CI
- —+—RSM-RI
G 8 —+— RSM-RCI
1S
(S
o
S 4
E

2

0

0.005 0.01 0025 005 0.

Label Density

Figure 5. Impact of different classes of features on classification using
soc—TerrorRel. Accuracy (percent) improvement of RSM-CI, RSM-RI, and
RSM-RCI over a basic variant of RSM. See text for discussion.

labels (sparsely labeled graphs). In particular, we see that
the improvement over RSM is largest when label density of
the graph is the smallest (label density=0.005). Third, we
observe in Figure 5 that RSM-RI generally leads to the largest
improvement over RSM compared to RSM-CI.

Table IV
IMPACT OF NODE AND FEATURE-WISE NORMALIZATION.

NODE-WISE NORMALIZATION

None L1 L2 min-max
None 0.102 0.754 0.688 0.684
FEATURE-WISE L1 0.526 0.871 0.848 0.841
NORMALIZATION L2 0747 0846 0845 0.853
min-max 0.859 0.855 0.864 0.859

H. Impact of Node and Feature-wise Normalization

In this section, we investigate the impact of normalization on
multiclass classification by varying both the feature-wise and
node-wise normalization technique used in RSM. Table IV
reports the F1 scores for DD68 with |C| = 20 class labels.
We observe in Table IV that the normalization technique
may significantly impact predictive performance. Overall, the
best F1 score is obtained when L1 is used for both feature-
wise and node-wise normalization. Note that L1 performs
reasonably well on other graphs as well. However, there are
some graphs where other normalization schemes may result
in significant improvement over L1. Furthermore, we have
also observed graphs where different feature-wise and node-
wise normalization techniques give the best classification
performance.

1. Varying Outer (SSL) Iterations

We also investigate the impact of varying the number of out-
er/SSL iterations of RSM for two different networks. Results
are provided in Figure 6. Note the same hyperparameters,
normalization schemes, and similarity functions were used for
consistency and comparison. Both experiments use RSM-RBF,
though similar behavior was also observed with RSM-LINEAR
and other polynomial similarity machines. In particular, we
observe that the improvement in accuracy generally increases
rapidly as a function of the number of outer iterations, then
begins to stabilize.

V. RELATED WORK

Statistical Relational Learning: Relational and graph-based
machine learning has become increasingly important due to
the recent proliferation and ubiquity of network data [4].
However, existing SRL methods such as Relational Depen-
dency Networks (RDNs) [27] and Probabilistic Soft Logic
(PSL) [28] are inefficient, perform poorly, and/or do not
scale to graphs that are either large or streaming [4]. In
contrast, RSM is efficient in terms of time and space, while

DD21 DD687

@
S

——0.01 —=—0.01

——0.1

NI
S o

Improvement
Improvement
8

\ -i

o
)
w
IS
&)
o
~
©
o

1 2 3 4 5 6 7 8

SSL lters. SSL lters.

Figure 6. Accuracy (percent) improvement over label propagation as the
number of outer/SSL iterations increases.

also providing high accuracy for a variety of classification
tasks. Another key difference is that RSM avoids many of
the unrealistic assumptions made by existing methods which
have greatly limited the use of these techniques in practice.
For instance, past work has focused primarily on network
data that has significant levels of relational autocorrelation
(homophily) [4], [6], [7], [23]. These methods perform well
only when such high levels of relational autocorrelation are
present and fail otherwise. This assumption is often violated
in the noisy data found in many real-world settings. Moreover,
in cases where there does not exist high autocorrelation in the
data, then relational learning methods may actually be less
accurate than traditional iid machine learning methods. In
contrast, RSM is flexible and general enough for prediction in
networks with both homophily and heterophily. Additionally,
one may also adapt RSM for use with relational active
learning [29] and active search methods [30]. Moreover,
RSM is flexible with many interchangeable components, and
thus may use methods from collective classification [31],
[9], relational classification [23], [32], and relational repre-
sentation learning [6] for improving performance in some
situations.

Semi-Supervised Learning (SSL): While pure supervised
learning (SL) techniques use only labeled data for training,
semi-supervised learning (SSL) techniques also use unlabeled
data for training [17], [33]. The MultiRankWalk (MRW)
proposed by Li et al. uses random walks to estimate the
class labels of the unlabeled nodes [34]. An approach similar
to WVRN and MRW was proposed by Wang et al. which
estimates the node class using a probabilistic approach [35].
Most of these techniques are based on simple belief prop-
agation [36], are inefficient, lack support for attributes,
do not leverage a parameterized similarity function, and
have many other differences and disadvantages. In contrast,
RSM is efficient, parallel, flexible, leverages a parameterized
similarity function, naturally handles large attributed graphs,
and supports the full spectrum of relational dependencies
including homophily, heterophily, and dependencies between
these two extremes. Unlike other graph-based SSL methods,
RSM also supports supervised learning only without semi-

supervision (i.e., turning off Lines 19-25 in Alg. 1 and setting

Tmax —]-)

Learning in Graph Streams: Most existing work on graph
streams has focused on estimating structural properties such
as triangles or more generally graphlets [37]. There has also
been some work on graph classification [38] and ranking
nodes in graph streams [39]. In contrast, RSM naturally
supports classification in graph stream data. It is also fast
and efficient for classifying new nodes that arrive or become
active at a particular time. For a single edge insertion or
deletion, observe that the updates required by RSM are
localized. The localized updates are efficient to compute and
can be viewed as a local approximation. In the simplest case,
RSM can classify a new node by considering only localized
information such as the nodes adjacent to it; however in the
general case RSM also considers a sample of unrelated nodes
from the various classes. Moreover, RSM can also naturally
leverage both the graph structure and any existing attributes.

Interactive ML: Existing work has focused mainly on
traditional machine learning problems that are limited to
independent and identically distributed (IID) data [40]. In
addition, Oglic et al. propose interactive kernel PCA [41].
Kapoor et al. [42] use a human-assisted optimization strategy
in the design of multiclass classifiers for iid data. In
contrast, this work demonstrates the utility of RSM for the
interactive relational learning task; RSM is integrated into
a visual graph mining and learning platform and shown to
be effective for a variety of interactive relational learning
tasks. Visual analytic methods are becoming increasingly
important [43], [44], [45], [46] and have been deployed for
numerous real-world applications, including maritime risk
assessment [47], astrophysics [48], financial planning [49],
law enforcement [50], and many others [51], [52], [53].
Majority of existing work in visual analytics has largely
centered around visualization and human computer interac-
tion (HCI) techniques. However, some work has investigated
combining traditional ML methods with visual analytics (e.g.,
interactive PCA [54], classification via supervised dimension
reduction [55]). In contrast, we demonstrate the effectiveness
of RSM by combining it with visual analytic techniques for
real-time interactive relational learning with visualization and
easy-to-use interaction techniques.

VI. CONCLUSION

We have described a general similarity-based relational
learning framework called relational similarity machines
(RSM) for graph data based on the notion of maximum
similarity. Unlike previous work, RSM is designed to be fast
and scalable for real-time interactive RML. The experiments
demonstrated the effectiveness and efficiency of RSM on
a wide variety of graph data. The RSM framework has all
the following desired properties: (a) it naturally supports
interactive RML, (b) it is space- and time-efficient, (c) has

excellent predictive accuracy, (d) generalizes to graphs with
homophily and heterophily, and (e) flexible with many
interchangeable components.

REFERENCES

[1] N. K. Ahmed, J. Neville, and R. Kompella, “Space-efficient sampling
from social activity streams,” in SIGKDD BigMine, 2012, pp. 53-60.

[2] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, A. Vah-
dat et al., “The Internet AS-level Topology: three data sources and one
definitive metric,” SIGCOMM, vol. 36, no. 1, pp. 17-26, 2006.

[3] D. S. Bassett and E. Bullmore, “Small-world brain networks,” The
Neurosci., vol. 12, no. 6, pp. 512-523, 2006.

[4] L. Getoor and B. Taskar, Eds., Intro. to SRL. MIT Press, 2007.

[5] L.De Raedtand K. Kersting, Prob. Induc. Logic Prog. Springer, 2008.

[6] R.A.Rossi, L. K. McDowell, D. W. Aha, and J. Neville, “Transforming

graph data for statistical relational learning,” JAIR, vol. 45, 2012.

[7] S. A. Macskassy and F. Provost, “Classification in networked data: A

toolkit and a univariate case study,” JMLR, vol. 8, pp. 935-983, 2007.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning proba-

bilistic relational models,” in IJCAI. Springer-Verlag, 1999, pp. 1300-

1309.

[9] L. K. McDowell, K. M. Gupta, and D. W. Aha, “Cautious collective
classification,” JMLR, vol. 10, pp. 2777-2836, 2009.

[10] L.McDowell, K. Gupta, and D. Aha, “Meta-prediction for coll. classif.”
in FLAIRS, 2010.

[11] J. Neville, D. Jensen, and B. Gallagher, “Simple estimators for rela-
tional Bayesian classifers,” in ICDM, 2003.

[12] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” Al Mag., vol. 29, no. 3,
2008.

[13] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Ann. Rev. of Soc., vol. 27, no. 1, 2001.

[14] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph kernels,” JMLR, vol. 11, pp. 1201-1242, 2010.

[15] E. J. Gardiner, P. Willett, and P. J. Artymiuk, “Graph-theoretic tech-
niques for macromolecular docking,” Journal of Chemical Information
and Computer Sciences, vol. 40, no. 2, pp. 273-279, 2000.

[16] R. A. Rossi and N. K. Ahmed, “Role discovery in networks,” Transac-
tions on Knowledge and Data Engineering, vol. 27, no. 4, pp. 1112—
1131, April 2015.

[17] X.Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,”
Synthesis Lectures on Al and ML, vol. 3, no. 1, pp. 1-130, 2009.

[18] R.Rossiand R. Zhou, “Toward interactive relational learning,” in AAAI,
2016, pp. 4383-4384.

[19] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin,
“Training and testing low-degree polynomial data mappings via linear
svm,” Journal of Machine Learning Research, vol. 11, no. Apr, pp.
1471-1490, 2010.

[20] Y. Bengio, “Learning deep architectures for ai,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[21] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85-117, 2015.

[22] R. A. Rossi and N. K. Ahmed, “An interactive data repository with
visual analytics,” SIGKDD Explor., vol. 17, no. 2, pp. 3741, 2016.
[Online]. Available: http://networkrepository.com

[23] J. Neville, D. Jensen, L. Friedland, and M. Hay, “Learning relational
probability trees,” in SIGKDD, 2003.

[24] N. Shervashidze, S. Vishwanathan, T. Petri et al., “Efficient graphlet
kernels for large graph comparison,” in AISTATS, 2009, pp. 488-495.

[25] L. Liu, “Hierarchical learning for large multi-class network classifica-
tion,” in ICPR, 2016, pp. 2307-2312.

[26] L. K. McDowell and D. W. Aha, “Labels or attributes? Rethinking the
neighbors for collective classification in sparsely-labeled networks,” in
CIKM, 2013, pp. 847-852.

[27] J. Neville and D. Jensen, “Relational dependency networks,” Journal of
Machine Learning Research, vol. 8, no. Mar, pp. 653-692, 2007.

[28] A.Kimmig, S. Bach, M. Broecheler, B. Huang, and L. Getoor, “A short
introduction to probabilistic soft logic,” in NIPS Workshop, 2012.

[29] M. Bilgic, L. Mihalkova, and L. Getoor, “Active learning for networked
data,” in ICML, 2010.

[30] X. Wang, R. Garnett, and J. Schneider, “Active search on graphs,” in
SIGKDD, 2013, pp. 731-738.

[31] M. Bilgic, G. M. Namata, and L. Getoor, “Combining collective classi-
fication and link prediction,” in ICDM Workshops, 2007.

[8

—_—

[43]
[44]

[45]

R. A. Rossi and J. Neville, “Modeling the evolution of discussion topics
and communication to improve relational classification,” in SOMA,
2010.

X. Zhu, Z. Ghahramani, J. Lafferty et al., “Semi-supervised learning
using gaussian fields and harmonic functions,” in ICML, vol. 3, 2003.
F. Lin and W. W. Cohen, “Semi-supervised classification of network
data using very few labels,” in ASONAM, 2010, pp. 192-199.

Z. Wang, F. Yin, W. Tan, and W. Xiao, “Classification in networked
data with heterophily,” The Scientific World Journal, 2013.

J. Pearl, “Reverend bayes on inference engines: A distributed hierarchi-
cal approach,” in AAAI, 1982, pp. 133-136.

N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From
static to streaming graphs,” TKDD, vol. 8, no. 2, pp. 1-56, 2014.

C. C. Aggarwal, “On classification of graph streams,” in SDM, 2011.

J. O’Madadhain and P. Smyth, “EventRank: A framework for ranking
time-varying networks,” in LinkKDD Workshop, 2005, pp. 9-16.

J. A. Fails and D. R. Olsen Jr, “Interactive machine learning,” in IUI,
2003, pp. 39-45.

D. Oglic, D. Paurat, and T. Gértner, “Interactive knowledge-based
kernel pca,” in PKDD, 2014.

A. Kapoor, B. Lee, D. S. Tan, and E. Horvitz, “Performance and
preferences: Interactive refinement of machine learning procedures.” in
AAAL 2012.

J. Kielman, J. Thomas, and R. May, “Foundations and frontiers in visual
analytics,” Info. Vis., vol. 8, no. 4, p. 239, 2009.

D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, Mastering the
information age-solving problems with visual analytics, 2010.

R. Arias-Hernandez, J. Dill, B. Fisher, and T. M. Green, “Visual
analytics and human-computer interaction,” Interact., vol. 18, no. 1, pp.
51-55, 2011.

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

G. Robertson, D. Ebert, S. Eick, D. Keim, and K. Joy, “Scale and
complexity in visual analytics,” Info. Vis., vol. 8, no. 4, pp. 247-253,
2009.

A. Malik, R. Maciejewski, B. Maule, and D. S. Ebert, “A visual
analytics process for maritime resource allocation and risk assessment,”
in VAST, 2011.

C.R. Aragon, S. S. Poon, G. S. Aldering, R. C. Thomas, and R. Quimby,
“Using visual analytics to develop situation awareness in astrophysics,”
Info. Vis., vol. 8, no. 1, pp. 3041, 2009.

A. Savikhin, H. C. Lam, B. Fisher, and D. S. Ebert, “An experimental
study of financial portfolio selection with visual analytics for decision
support,” in HICSS, 2011.

A. Malik, R. Maciejewski, T. F. Collins, and D. S. Ebert, “Visual
analytics law enforcement toolkit,” in HST, 2010, pp. 222-228.

S. Kim, Y. Jang, A. Mellema, D. S. Ebert, and T. Collins, “Visual
analytics on mobile devices for emergency response,” in VAST, 2007,
pp. 35-42.

N. Andrienko and G. Andrienko, “A visual analytics framework for
spatio-temporal analysis and modelling,” DMKD, vol. 27, no. 1, pp. 55—
83,2013.

M. Sedlmair, P. Isenberg, D. Baur, M. Mauerer, C. Pigorsch, and
A. Butz, “Cardiogram: visual analytics for automotive engineers,” in
SIGCHI, 2011, pp. 1727-1736.

D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang,
“IPCA: An Interactive System for PCA-based Visual Analytics,” in C.
Grap., vol. 28, no. 3, 2009, pp. 767-774.

J. Choo, H. Lee, J. Kihm, and H. Park, “ivisclassifier: An interactive
visual analytics system for classification based on supervised dimension
reduction,” in VAST, 2010.

