
Leveraging Multiple GPUs and CPUs for
Graphlet Counting in Large Networks

Ryan A. Rossi
Palo Alto Research Center

rrossi@parc.com

Rong Zhou
Palo Alto Research Center

rzhou@parc.com

ABSTRACT
Massively parallel architectures such as the GPU are becoming
increasingly important due to the recent proliferation of data.
In this paper, we propose a key class of hybrid parallel graphlet
algorithms that leverages multiple CPUs and GPUs simulta-
neously for computing k-vertex induced subgraph statistics
(called graphlets). In addition to the hybrid multi-core CPU-
GPU framework, we also investigate single GPU methods
(using multiple cores) and multi-GPU methods that leverage
all available GPUs simultaneously for computing induced
subgraph statistics. Both methods leverage GPU devices only,
whereas the hybrid multi-core CPU-GPU framework lever-
ages all available multi-core CPUs and multiple GPUs for
computing graphlets in large networks. Compared to recent
approaches, our methods are orders of magnitude faster, while
also more cost effective enjoying superior performance per
capita and per watt. In particular, the methods are up to 300+
times faster than a recent state-of-the-art method. To the
best of our knowledge, this is the first work to leverage multi-
ple CPUs and GPUs simultaneously for computing induced
subgraph statistics.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; I.2.6 [Artificial
Intelligence]: Learning; G.1.0 [Numerical Analysis]: Par-
allel Algorithms

Keywords
Graphlets; induced subgraphs; network motifs; graphlet de-
composition; GPU computing; multi-GPU; heterogeneous
computing; parallel algorithms; graph mining; roles; relational
learning; graph classification; graph kernels; node and edge
embedding

1. INTRODUCTION
Graphlets are small k-vertex induced subgraphs and are impor-
tant for many predictive and descriptive modeling tasks [21,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM ’16 Indianapolis, Indiana USA
c© 2016 ACM. ISBN 0-12345-67-8/90/01. . . $15.00

DOI: 10.475/123 4

18, 12] in a variety of disciplines including bioinformatics [29,
27], cheminformatics [25], and image processing and computer
vision [31, 32]. Given a network G, our approach counts the
frequency of each k-vertex induced subgraph patterns (See
Table 1). These counts represent powerful features that suc-
cinctly characterize the fundamental network structure [27].
Indeed, it has been shown that such features accuratly capture
the local network structure in a variety of domains [14, 8, 9].
As opposed to global graph parameters such as diameter for
which two or more networks may have global graph parameters
that are nearly identical, yet their local structural properties
may be significantly different.

Despite the practical importance of graphlets, existing
algorithms are slow and are limited to small networks (e.g.,
even modest graphs can take days to finish), require vast
amounts of memory/space-inefficient, are inherently sequential
(inefficient and difficult to parallelize), and have many other
issues. Overcoming the slow performance and scalability
limitations of existing methods is perhaps the most important
and challenging problem remaining. This work proposes a
fast hybrid parallel algorithm for computing both connected
and disconnected subgraph statistics (of size k) including
macro-level statistics for the global graph G as well as micro-
level statistics for individual graph elements such as edges.
Furthermore, a number of important machine learning tasks
are likely to benefit from the proposed methods, including
graph anomaly detection [20, 5], entity resolution [6], as well
as features for improving community detection [26], role
discovery [22], and relational classification [10].

The recent rise of Big Data has brought many challenges
and opportunities [28, 1, 2]. Recent heterogeneous high per-
formance computing (HPC) architectures offer viable plat-
forms for addressing the computational challenges of mining
and learning with big graph data. General-purpose graph-
ics processing units (GPGPUs) [7] are becoming increas-
ingly important with applications in scientific computing,
machine learning, and many others [11]. Heterogeneous (hy-
brid) computing architectures consisting of multi-core CPUs
and multiple GPUs are an attractive alternative to traditional
homogeneous HPC clusters (HPCC). Despite the impressive
theoretical performance achievable by such hybrid architec-
tures, leveraging this computing power remains an extremely
challenging problem.

Graphics processing units (GPUs) offer cost-effective high-
performance solutions for computation-intensive data mining
applications. As an example, the Nvidia Titan Black GPU has
2880 cores capable of performing over 5 trillion floating-point
operations per second (TFLOPS). For comparison a Xeon

1

10.475/123_4

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 i
n
 s

e
c
o
n
d
s

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 i
n
 s

e
c
o
n
d
s

Figure 1: The distribution of graphlet computation
times for the edge neighborhoods obey a power-law.
The time taken to count k = {2, 3, 4} graphlets for
each edge is shown above and clearly obeys a power-
law distribution (tech–internet-as).

E5-2699v3 processor can perform about 0.75 TFLOPS, but
can cost 4x as much. Besides TFLOPS, GPUs also enjoy a sig-
nificant advantage over CPUs in terms of memory bandwidth,
which is more important for data-intensive algorithms such
as graphlet decomposition. For Titan Black, its maximum
memory bandwidth is 336 GB/sec; whereas E5-2699v3’s is
only 68 GB/sec. Higher memory bandwidth means more graph
edges can be traversed on the GPU than the CPU in the
same amount of time, which is one of the main reasons why
our approach can outperform the state-of-the-art.

However, unlike the single GPU-based approach proposed
in [19], we adopt a hybrid parallelization strategy that exploits
the complementary features of multiple GPUs and CPUs to
achieve significantly better performance. We begin with the
key observation that the amount of work required to compute
graphlets for each edge in G obeys a power-law (See Figure 1).
Strikingly, a handful of edges require a lot of work to determine
the local graphlet counts (due to the density and structure
of the local edge neighborhood), whereas the vast majority
of other edges require only a small amount of work. Such
heterogeneity can cause significant load balancing issues,
especially for GPUs that are designed to solve problems with
uniform workloads (e.g., dense matrix-matrix multiplications).
This motivates our hybrid approach that dynamically divides
up the work between GPU and CPU, to reduce inter-processor
communication, synchronization and data transfer overheads.

This work demonstrates that parallel graphlet methods
designed for heterogeneous computing architectures consisting
of many multi-core CPUs and multiple GPUs can signifi-
cantly improve performance over GPU-only and CPU-only
approaches. In particular, our hybrid CPU-GPU framework is
designed to leverage the advantages and key features offered
by each type of processing unit (multi-core CPUs and GPUs).
As such, our approach leverages the fact that graphlets can
be computed via M independent edge-centric neighborhood
computations. Therefore, the method dynamically distributes
the edge-centric graphlet computations to either a CPU or a
GPU. In particular, the edge-centric graphlet computations
that are fundamentally unbalanced and highly-skewed are
given to the CPUs whereas the GPUs work on the more
well-balanced and regular edge neighborhoods (See Figure 4).
These approaches capitalize on the fact that GPUs are gener-
ally best for computations that are well-balanced and regular,
whereas CPUs are designed for a wide variety of applications

and thus more flexible [15, 16]. Our approach also leverages
dynamic load balancing and work stealing strategies to ensure
all GPU and CPU workers (cores) remain fully utilized.

2. RELATED WORK
Recently, Milinković et al. [19] proposed a GPU algorithm
for counting graphlets based on a recent sequential graphlet
algorithm called orca [13]. However, this paper is funda-
mentally different. First and foremost, that approach is not
hybrid and is only able to use a single GPU for computing
graphlets. In addition, that work focuses on computing con-
nected graphlets only, whereas we compute both connected
and disconnected induced subgraphs. Moreover, that approach
computes graphlets for each vertex in parallel (vertex-centric),
whereas our methods are naturally edge-centric and search
edge neighborhoods in parallel. Furthermore, that work does
not provide any comparison to understand the utility and
speedup (if any) offered by their approach.

In this work, we propose a heterogeneous graphlet framework
for hybrid multi-GPU and CPU systems that leverages all
available GPUs and CPUs for efficient graphlet counting. Our
single-GPU, multi-GPU, and hybrid CPU-GPU algorithms are
largely inspired by the recent state-of-the-art parallel (CPU-
based) exact graphlet decomposition algorithm called pgd [4,
3], which is known to be significantly faster and more efficient
than other methods including rage [17], fanmod [30], and
orca [13]. Moreover, pgd has been parallelized for multi-core
CPUs and is publicly available1. Our approach is evaluated
against pgd and a recent orca-GPU approach in Section 5.

Table 1: Summary of the graphlet notation and prop-
erties

Graphlets are grouped by number of vertices (k-graphlets) and
categorized into connected and disconnected graphlets. Connected
graphlets of each size are then ordered by density. The complement
of each connected graphlet is shown on the right and represent
the disconnected graphlets. Note 4-path is a self-complementary?.
Graphlets of size k=2 are included for completeness.

k Connected Disconnected

g
r
a
p
h
l
e
t
s

2 H1 edge H2 2-node-independent

3
H3 triangle H6 3-node-independent

H4 2-star H5 3-node-1-edge

4

H7 4-clique H17 4-node-independent

H8 chordal-cycle H16 4-node-1-edge

H9 tailed-triangle H15 4-node-2-star

H10 4-cycle H14 4-node-2-edge

H11 3-star H13 4-node-1-triangle

H12 4-path?

3. GRAPHLET DECOMPOSITION
Graphlets are at the heart and foundation of many network
analysis tasks (e.g., relational classification, network align-
ment) [21, 18, 12]. Given the practical importance of graphlets,

1www.github.com/nkahmed/pgd

2

http://github.com/nkahmed/pgd

this paper proposes a hybrid CPU-GPU algorithm for com-
puting the number of embeddings for both connected and
disconnected k-vertex induced subgraphs (See Table 1).

3.1 Preliminaries
Let G = (V,E) be an undirected graph where V is the set
of vertices and E is its edge set. The number of vertices is
n = |V | and number of edges is m = |E|. We assume all
vertex and edge sets are ordered, i.e., V = {v1, v2, ..., vi, ..., vN}
such that vi−1 appears before vi and so forth. Similarly, the
ordered edges are denoted E = {e1, e2, ..., ei, ..., eM}. Given a
vertex v ∈ V , let Γ(v) = {w|(v, w) ∈ E} be the set of vertices
adjacent to v in G. The degree dv of v ∈ V is the size of the
neighborhood |Γ(v)| of v. We also define ∆ to be the largest
degree in G.

Definition 1 (Graphlet). A graphlet Hi = (Vk, Ek)
is a subgraph consisting of a subset Vk ⊂ V of k vertices from
G = (V,E) together with all edges whose endpoints are both
in this subset Ek = {∀e ∈ E | e = (u, v) ∧ u, v ∈ Vk}.

Let H(k) denote the set of k-vertex induced subgraphs and
H = H(2) ∪ · · · ∪ H(k). A k-graphlet is simply an induced
subgraph with k-vertices.

3.2 Problem Formulation
It is important to distinguish between the two fundamen-
tal classes of graphlets, namely, connected and disconnected
graphlets (see Table 1). A graphlet is connected if there is a
path from any node to any other node in the graphlet (see
Definition 2). Table 1 provides a summary of the connected
and disconnected k-graphlets of size k = {2, 3, 4}.

Definition 2 (Connected graphlet). A k-graphlet
Hi = (Vk, Ek) is connected if there exists a path from any ver-
tex to any other vertex in the graphlet Hi, ∀u, v ∈ Vk, ∃Pu−v :
u, . . . , w, . . . , v, such that d(u, v) ≥ 0 ∧ d(u, v) 6= ∞. By
definition, a connected graphlet Hi has only one connected
component (i.e., |C| = 1).

Definition 3 (Disconnected graphlet). A k-graphlet
Hi = (Vk, Ek) is disconnected if there is not a path from any
vertex v ∈ Hi to any other vertex w ∈ Hi.

Unlike most existing work that is only able to compute con-
nected graphlets of a certain size (such as k = 4), the goal of
this work is to compute the frequency of both connected and
disconnected graphlets of size k ∈ {2, 3, 4}. More formally,

Problem 1 (Global graphlet counting). Given the
graph G, find the number of embeddings (appearances) of each
graphlet Hi ∈ H in the input graph G. We refer to this problem
as the global graphlet counting problem. A graphlet Hi ∈ H is
embedded in G, iff there is an injective mapping σ : VHi → V ,
with e = (u, v) ∈ EHi if and only if e′ = (σ(u), σ(v)) ∈ E.

4. HYBRID CPU-GPU FRAMEWORK
This work proposes parallel graphlet decomposition methods
that are designed to leverage (i) parallelism (multiple cores
on a CPU or GPU) as well as (ii) heterogeneity that leverages
simultaneous use of a CPU and GPU (as well as multiple
CPUs and GPUs). To the best of our knowledge, this is the
first work to use multiple GPUs (and of course multiple GPUs
and CPUs) for computing induced subgraph statistics.

u	 v	

… …
Su	 Sv	

…
 T	

u	 v	

…

Ec	

Figure 2: Let T be the set of nodes completing a
triangle with the edge (v, u) ∈ E, and let Sv and Su

be the set of nodes that form a 2-star with v and u,
respectively. Note that Su ∩ Sv = ∅ by construction
and |Su ∪ Sv| = |Su| + |Sv|. Further, let Ec be the set
of edges that complete a cycle (of size 4) w.r.t. the
edge (v, u) where for each edge (p, q) ∈ Ec such that
p ∈ Sv and q ∈ Su and both (p∩Su)∪(q∩Sv) = ∅, that is,
p is not adjacent to u (p 6∈ Γ(u)) and q is not adjacent
to v (q 6∈ Γ(v)).

• Single GPU Methods (using multiple cores)
• Multi-GPU Methods.
• Hybrid Multi-core CPU-GPU Methods.

Methods from all three classes are shown to be effective
on a large collection of graphs from a variety of domains
(e.g., biological, social, and information networks [24]). In
particular, methods from these classes have three important
benefits. First, the performance is orders of magnitude faster
than the state-of-the-art. Second, the GPU methods are cost
effective enjoying superior performance per capita. Third,
the performance per watt is significantly better than existing
traditional CPU methods.

4.1 Parallel Graphlet Computations
Our algorithm searches over the set of edges E of the input
graph G = (V,E). Given an edge e = (u, v) ∈ E, let Γ(e)
denote the edge neighborhood of e defined as:

Γ(e) = Γ(u, v) = {Γ(u) ∪ Γ(v) \ {u, v}}, (1)

where Γ(u) and Γ(v) are the neighbors of u and v, respectively.
For convenience, let Γe = G({Γ(v) − u} ∪ {Γ(u) − v}) be
the (explicit) edge-induced neighborhood subgraph. Given an
edge e = (u, v) ∈ E, we explore the subgraph surrounding e
(called the egonet of e), i.e., the subgraph induced by both its
endpoints and the vertices in its neighborhood. Our approach
uses a specialized graph encoding based on the edge-CSC
representation [23].

The parallel scheme leverages the fact that the induced
subgraph (graphlet) problem can be solved independently for
each edge-centric neighborhood Γ(ei) ∈ {Γ(e1), . . . ,Γ(eM)}
in G, and therefore may be computed simultaneously in
parallel. A processing unit denoted by ω refers to a single
CPU/GPU worker (core). In the context of message-passing
and distributed memory parallel computing, a node refers to
another machine on the network with its own set of multi-
core CPUs, GPUs, and memory. Other important properties
include the search order Π in which edges are solved in parallel,
the batch size b (number of jobs/tasks assigned to a worker by
a dynamic scheduling routine), and the dynamic assignment

3

of jobs (for load balancing).
While there are only a few such parallel graphlet algorithms,

with the exception of pgd all of these methods are based on
searching over the vertices (as opposed to the edges). However,
as we shall see, the parallel performance of these approaches
are guaranteed to suffer more from load balancing issues,
communication costs, and other issues such as curse of the
last reducer, etc.

Improved Load Balancing: Let zj ∈ RN and xj ∈ RM be
counts of an arbitrary graphlet Hj ∈ H for vertices N = |V |
and edges M = |E|, respectively. Given a vertex vi ∈ V and
an edge ek ∈ E, let zij and xkj denote the number of vertex
and edge incident counts of a graphlet Hj for vertex vi and
edge ek, respectively. Furthermore, let

Zj =
∑
vi∈V

zij and Xj =
∑
ek∈E

xkj (2)

where Zj and Xj are the global frequency of graphlet Hj

in the graph G. Thus, it is straightforward to verify that
Zj = Xj . Further, let Z̄j = Zj/N and X̄j = Xj/M be the
mean vertex and edge count for graphlet Hj ∈ H, respectively.
Now, assuming N � M ,2 then X̄j < Z̄j . Clearly, more
work is required to compute graphlets for each vertex vi
on average (compared to the number of graphlets counted
per edge). This implies that edge-centric parallel algorithms
are guaranteed to have better load balancing (among other
important advantages) than existing vertex-centric algorithms.

4.2 Preprocessing Steps
Our approach benefits from the preprocessing steps below
and the useful computational properties that arise.

P1 The vertices V = {v1, . . . , vN} are sorted from smallest
to largest degree and relabeled such that d(v1) ≤ d(v2) ≤
d(vi) ≤ d(vN).

P2 For each Γ(vi) ∈ {Γ(v1), . . . ,Γ(vN)}, order the neighbors
Γ(vi) = {. . . , wj , . . . , wk, . . .} s.t. j < k if f(wj) ≥ f(wk).
Thus, the set of neighbors Γ(vi) are ordered from largest
to smallest degree.

P3 Given an edge (v, u) ∈ E, we ensure that v is always
the vertex with largest degree dv, that is, dv ≥ du. This
gives rise to many useful properties and as we shall
see can lead to a significant reduction in runtime. For
instance, our approach avoids searching both Sv and Su

for computing 4-cycles, and instead, allows us to compute
4-cycles by simply searching one of those sets. Thus, our
approach always computes 4-cycles using Su since (by
the property above) is guaranteed to be less work/faster
than if Sv is used (and the runtime difference can be
quite significant).

Each step above is computed in O(N) or O(M) time and is
easily parallelized.

4.3 Hybrid CPU-GPU
The algorithm begins by computing an edge ordering Π =
{e1, . . . , eM} where the edges that are most difficult (with
highly skewed, irregular, unbalanced degrees) are placed up-
front, followed by edges that are more evenly balanced. In
other words, Π is a permutation of the edges by some func-
tion or graph property f(·) such that k < j for ek and ej if

2This holds in practice for nearly all real-world graphs

f(ek) > f(ej), and ties are broken arbitrarily (e.g., using ids).
For instance, edges can be ordered from largest to smallest
degree (a proxy for the difficulty and unbalanced nature of
the edge). For implementation purposes, Π is essentially a
double-ended queue (dequeue) where elements can be added
or removed from either end (i.e., push and pop operations at
either end). Afterwards, the previous edge ordering Π is split
into three initial sets:

Π =
{
e1, . . . , ek︸ ︷︷ ︸

Πcpu

,

unprocessed (j−k)−1

ek+1, . . . , ej−1︸ ︷︷ ︸
Πunproc

, ej , ej+1, . . . , eM︸ ︷︷ ︸
Πgpu

}
(3)

Now, the edges Πgpu = {ej , ej+1, ej+2, . . . , eM}3 are split into
p disjoint sets {I1, I2, . . . , Ip} with approximately equal work
among each GPU device. This is accomplished by partitioning
the edges in a round-robin fashion. Each GPU computes the
induced subgraphs centered at each of the edges in Ii, which
can be thought of as a local job queue for a particular GPU.
Similarly, the CPU workers compute the induced subgraphs
centered at each edge in Πcpu. Once an edge is assigned, it is
removed from the corresponding local queue (for either CPUs
or GPUs).

Once a CPU worker finishes all edges (or more generally
tasks) in its local queue, it takes (dequeues) the next b un-
processed edges from the front of Πunproc (the global queue
of remaining/unassigned work) and pushes them to its local
queue. On the other hand, once a GPU’s local queue becomes
empty (and thus the GPU becomes idle), it is assigned the
next chunk of unprocessed edges from the back of the queue
(i.e., dequeued and pushed onto that GPU’s local queue).
Unlike the CPU, we must transfer the assigned edges to the
corresponding GPU.

Finally, the graphlet counts from the multiple CPUs and
GPU devices are combined to arrive at the final global and
local graphlet counts. Similarly, if the local graphlet counts
for each edge are warranted (also known as micro graphlet
counts), then one would simply combine the per edge results
to arrive at the final counts for each edge (and each graphlet).
Recall that to compute all k ∈ {2, 3, 4}-vertex graphlets,
our algorithm only requires us to store counts for triangles,
cliques, and cycles, and from these, we can easily derive the
other counts for both connected and disconnected graphlets
in constant time. This not only avoids communication costs
(and thus significantly reduces the amount of communications
that would otherwise be needed by other algorithms), but
also reduces space and time.

Other important aspects include:

• Dynamic load balancing is performed for both CPUs and
GPUs. For the CPUs, once a worker completes the tasks
in its local queue, it immediately takes the next b tasks
from the front of Π. We typically use a very small chunk
size b for the CPU. The intuition is that these tasks are
likely skewed and thus may take a significant amount of
time to complete. Moreover, the overhead associated with
this dynamic load balancing on the CPU is quite small
(relative to the GPU of course, where the communication
costs are significantly larger).

• To avoid communication costs and other performance
degrading behavior, it is important that the GPUs are

3The edges can be thought of as edge neighborhoods, since the
induced subgraphs are counted over each edge neighborhood.

4

initially assigned a large fraction of the edges to process
(which are then split among the GPUs). For majority of
large real-world networks (with power-law), GPUs are ini-
tially assigned about 80% of the edges, and this seemed to
work well, as it avoids both extremes (that is, significantly
under- or oversubscribing the GPUs). In particular, signifi-
cantly oversubscribing the GPUs causes a lot of work to be
stolen by the GPUs (and the overhead associated with it,
such as additional communication costs for the edges that
will be stolen by the CPU (or even another GPU), whereas
significantly undersubscribing the GPUs increase the load
balancing overhead (causing additional communication
costs, etc.). Ideally, we would want to assign the largest
fraction of edges to the GPUs such that both the GPUs
and CPUs finish at exactly the same time, and thus, avoid
any communication or other costs associated with load
balancing, etc.

• Note b is a chunk size, and is different for CPU and GPU
devices. In particular, for CPU, we typically set b = 1,
since these tasks are the most difficult to compute, and the
runtime for each is likely to be skewed and irregular. This
also helps avoid costs associated with work-stealing, which
occurs when all such edge-centric tasks have been assigned,
but not yet finished. Hence, to avoid the case where all but
a single CPU workers have finished, and the remaining
CPU worker has many edge-centric tasks in its local queue.
In this case, of course, the tasks remaining in that CPU
workers local queue would be stolen and distributed among
the idle CPU workers. Note that as discussed later, one
can also divide tasks at a much finer level of granularity,
as many of the core computations carried out for a single
edge-centric task can be computed independently. For
instance, cliques and cycles are completely independent
once the sets T and Su are computed.

• Shared job queue with work stealing so that every multi-
core CPU and GPU remains fully utilized.

• Data is never moved once it is partitioned and distributed
to the workers.

• It is straightforward to see that |Tu| ≤ |Γ(u)|, that is, the
number of triangles centered at u is bounded above by the
number of neighbors (degree of u). Similarly, |Su| ≤ |N(u)|,
that is, the number of 2-stars centered at u is bounded
above by |Γ(u)|. Hence, |Su|+ |Tu| = |Γ(u)|. See Figure 2
for further intuition. We use the above fact to reduce the
space requirements as well as improve locality.

• Given two vertices wi, wj ∈ T that form a triangle with
ek = (v, u)4, what is the most efficient search strategy
(Alg. 3)? As a result of the past ordering and relabeling,
searching the neighbors of wj for wi always results in less
work. Observe that since the vertices in the set T are
ordered from largest to smallest degree, then |Γ(wj)| <
|Γ(wi)|, and thus, we search |Γ(wj)| for vertex wi. Hence, if
(wi, wj) ∈ E, then the subgraph induced by {v, u, wi, wj}
denoted G({v, u, wi, wj}) is a 4-clique H7 (See Table 1)

More importantly, our hybrid multi-core algorithm ensures all
CPUs and GPU devices are always working simultaneously.
The only exception arises when all but a single edge remains

4Thus, there are two triangles centered at ek = (v, u), namely,
{v, u, wi} and {v, u, wj}.

Algorithm 1 This algorithm computes all 3-vertex graphlets
via neighbor iteration and also leverages a hash table for fast
lookups. Used mainly for CPU-based enumeration of 3-vertex
induced subgraphs.

Output:

A set T of vertices that complete triangles with ek
A set Su of vertices that form 2-stars centered at u with ek

1 procedure 3-Graphlets(G, ek,Ψ)

2 Set T ← ∅ and Su ← ∅
3 parallel for w ∈ Γ(v) where w 6= u do

4 Set Ψ(w) = λ1

5 parallel for w ∈ Γ(u) where w 6= v do

6 if Ψ(w) = λ1 then

7 T ← T ∪ {w} and set Ψ(w) = λ3 . triangle

8 else Su ← Su ∪ {w} and set Ψ(w) = λ2 . 2-star

9 Set Xk,3 ← |T |

Algorithm 2 This algorithm computes all 3-vertex graphlets
using binary search. For multi-core architectures with limited
memory (such as GPUs).

1 procedure 3-Graphlets-BinSearch(G, ek)

2 Let ek = (v, u) ∈ E be an edge in G s.t. dv ≥ du
3 Set T ← ∅ and Su ← ∅
4 parallel for each w ∈ Γ(u) where w 6= v do

5 if v ∈ Γ(w) via binary search then . O(log dw)

6 T ← T ∪ {w} . triangle

7 else Su ← Su ∪ {w} . 2-star

8 end parallel

9 Set Xk,3 ← |T |

(is currently being processed by one or more other workers).
In this case, there is no further work remaining (as the edge
task has already been split and assigned to other workers).
Nevertheless, we stress that this case is unlikely due to the
fact that edges with large degrees are always processed first
by both GPU and CPU workers. Thus, the remaining edge
is likely to be easily computed. As mentioned, even a single
edge neighborhood has many independent components that
can be computed in parallel by other workers. Work-stealing
is used to ensure that all processing units are fully utilized.

4.4 Finer-Granularity and Work Stealing
Each job in Π may represent the computations required for a
single edge, or they may represent an even smaller unit of
work. For a single edge ek ∈ E, we compute (i) the sets T
and Su, then (ii) we find the total k-cliques for a given edge
using T , and (iii) the total cycles of size k using Su. Note
that (ii) and (iii) are independent and thus can be computed
in parallel. A job may also represent these smaller units of
work. For instance, if T (or Su) are large and computationally
expensive to compute, then the worker in the simplest case
can push T (or Su) on the job queue for others to work on.
Further, one can split T (or Su) into even more finer grained
independent jobs such that:

T = {w1, · · · , wi︸ ︷︷ ︸
T1:i

, wi+1, · · · , wt︸ ︷︷ ︸
Ti+1:t

} (4)

5

Algorithm 3 Clique counts restricted to searching T

1 procedure CliqueRes(T , ek)

2 Set Xk,7 ← 0

3 parallel for each wi ∈ T in order w1, w2, · · · of T do

4 for all each wj ∈ {wi+1, ..., w|T |} in order do

5 if wi ∈ Γ(wj) via binary search then

6 Xk,7 ← Xk,7 + 1

7 end parallel

8 return Xk,7

Algorithm 4 Cycle counts restricted to Su and Sv

1 procedure CycleRes(Su, Sv , ek)

2 Set Xk,10 ← 0

3 parallel for each w ∈ Su do

4 for all r ∈ Sv do

5 if r ∈ Γ(w) via binary search then

6 Xk,10 ← Xk,10 + 1

7 end parallel

8 return Xk,10

Whenever possible work is stolen locally to minimize commu-
nication. Notice that if work is stolen locally from a GPU, i.e.,
a GPU worker computes 4-cliques for a given edge ek using
the already computed set T , then expensive communication is
avoided due to the set T being stored in global memory. In fact,
one could store T and Su contiguously in a single global array,
and since |T |+ |Su| = du, then we can allocate contiguous
memory for storing such sets for each edge. Alternatively, one
could simply allocate an array of size ∆ · Pi where Pi is the
number of cores (unique workers) for the ith GPU (or CPU).
Hence, ∆ serves as an upper bound and in most cases requires
significantly less space than the previous approach, since each
GPU worker simply indexes into their own subarray which
stores T and Su. However, one may need to communicate T
so that the GPU worker to compute 4-cliques from T has a
copy (stored in their subarray). The only exception is if that
is the last edge to be assigned to that GPU, and thus, the
state of the subarray can persist until termination. However,
suppose work is stolen from another GPU (not locally), then
we would need to communicate not only the edge id, but the
portion of T (or Su) assigned to the GPU worker would also
be needed.

To avoid bulk synchronization, workers store and aggregate
statistics locally, and thus avoid unnecessary communications.
In the case of global graphlet statistics computed for G, each
worker maintains local aggregates and communicates them
only once upon completion and thus has a cost of O(κ) where
κ is the number of induced subgraph statistics.

4.5 Unrestricted counts
The GPU workers use binary search to derive the sets T and
Su from Alg. 2, whereas the CPU workers compute T and Su

from Alg. 1 (or Alg. 2 if memory is limited and/or dynamically
selected). The key difference is that the CPU workers create a
fast hash table on the neighbors of v for ek = (v, u) allowing
for o(1) time checks. Moreover, the hash table is also exploited
for encoding nodes with particular types and enabling us to
check an arbitrary type of vertex in o(1) time. Note that the
λi’s in Alg. 1 represent distinct vertex types, and are used

later for finding cliques (Alg. 5) and cycles (Alg. 6) extremely
fast. We also avoid the O(|Γ(v)|) time it costs to reset Ψ for
each edge by defining λi to be unique for each edge. Observe
that each CPU worker in Alg. 1 maintains Ψ taking O(N)
space, whereas Alg. 2 only requires O(|T |+ |Su|) = O(du)
space to store T and Su (which Alg. 1 also uses). Note that
Sv is easily computed (if needed) from Alg. 1 and Alg. 2 by
simply setting Sv ← Γ(v), and then removing each vertex
w ∈ Te (on-the-fly), that is, Sv ← Sv \ {w}.

The proposed approach derives all k-graphlets for k ∈
{2, 3, 4} using only the local edge-based counts of triangles,
cliques, and cycles, along with a few other constant time graph
and vertex parameters such as number of vertices N = |V |,
edges M = |E|, as well as vertex degree dv = |Γ(v)|. Given
an edge ek ∈ E from G, let Xk,3, Xk,7, and Xk,10 be the
frequency of triangles, cliques, and cycles centered at the
edge ek ∈ E in the graph G, respectively. Observe that Xk,i

(or simply xi) is the count of the induced subgraph Hi for
an arbitrary edge ek (See Table 1). The local (micro-level)
3-graphlets for edge ek are as follows:

x3 = |T | (5)

x4 = (du + dv − 2)− 2|T | (6)

x5 = N − x4 + |T | − 2 (7)

x6 = (N
3)− (x3 + x4 + x5) (8)

Further, notice that given x3 = |T | for ek = (v, u) ∈ E, we can
derive |Su| and |Sv| (that is, the number of 2-star patterns
centered at u and v of ek, respectively) as:

|Su| = du − |T | − 1 (9)

|Sv| = dv − |T | − 1 (10)

Therefore, the number of two-stars centered at ek denoted x4

can be rewritten simply as x4 = |Su|+ |Sv|. These 3-vertex
induced subgraph statistics are then used as a basis to derive
the induced subgraphs of size k + 1.

Notice that GPU workers compute Xk,3 (as well as T and
Su) for edge ek using Alg. 2, whereas CPU workers compute
Xk,3 from Alg. 1. Afterwards, Xk,7 and Xk,10 can be computed

Algorithm 5 Clique counts via neighbor iteration

1 procedure Clique(Ψ, T , ek)

2 Set Xk,7 ← 0

3 parallel for each w ∈ T do

4 for each r ∈ Γ(w) do

5 if Ψ(r) = λ3 then Set Xk,7 ← Xk,7 + 1

6 Reset Ψ(w) to 0

7 end parallel

8 return Xk,7

Algorithm 6 Cycle counts via neighbor iteration

1 procedure Cycle(Ψ, Su, ek)

2 Set Xk,10 ← 0

3 parallel for each w ∈ Su do

4 for each r ∈ Γ(w) do

5 if Ψ(r) = λ2 then set Xk,10 ← Xk,10 + 1

6 Reset Ψ(w) to 0

7 end parallel

8 return Xk,10

6

in any order as they are completely independent, and can
even be stolen by another parallel worker (CPU and/or GPU
worker that requires more work). A GPU worker computes
the number of 4-cliques Xk,7 centered at edge ek via Alg. 3,
whereas a CPU worker mainly leverages Alg. 5 for computing
Xk,7, but may also exploit Alg. 3 if determined (dynamically)
that it requires less work than the other approach. Similarly, a
GPU worker computes the number of 4-cycles Xk,10 centered
at ek via Alg. 4, whereas a CPU worker computes Xk,10 via
Alg. 6.

Given only the triangles Xk,3, cliques Xk,7, and cycles Xk,10

for each edge ek = (v, u) ∈ E, we derive the unrestricted counts
for connected and disconnected graphlets of size k ∈ {3, 4}.
We first derive the unrestricted counts for connected and
disconnected 3-graphlets as follows:

C3 =
∑

ek=(v,u)∈E

Xk,3 =
∑

ek=(v,u)∈E

|T | (11)

C4 =
∑

ek=(v,u)∈E

|Sv|+ |Su| (12)

C5 =
∑

ek=(v,u)∈E

N − (|Sv|+ |Su|+ |T |)− 2 (13)

Note that C6 is not needed since X6 can be computed directly
from X3,X4, andX5. The unrestricted counts for the connected
4-graphlets (4-vertex connected induced subgraphs) are derived
as follows:

C7 =
∑

ek=(v,u)∈E

Xk,7 (14)

C8 =
∑

ek=(v,u)∈E

(T
2) (15)

C9 =
∑

ek=(v,u)∈E

|T | · |Sv| · |Su| (16)

C10 =
∑

ek=(v,u)∈E

Xk,10 (17)

C11 =
∑

ek=(v,u)∈E

(|Sv|
2

)
+
(|Su|

2

)
(18)

C12 =
∑

ek=(v,u)∈E

|Sv| · |Su| (19)

Given an arbitrary edge ek ∈ E, let us define De = N − (|Sv|+
|Su|+ |T |)− 2 for convenience. The unrestricted counts for
the disconnected 4-graphlets (4-vertex disconnected induced
subgraphs) are derived as follows:

C13 =
∑

ek=(v,u)∈E

|T | ·De (20)

C14 =
∑

ek=(v,u)∈E

M − dv − du + 1 (21)

C15 =
∑

ek=(v,u)∈E

(|Sv|+ |Su|) ·De (22)

C16 =
∑

ek=(v,u)∈E

(
De
2

)
(23)

Recall that all unrestricted counts C3, ..., C16 are computed
in O(M) time and easily parallelized.

4.6 Global Graphlet Frequencies
Now, using the above unrestricted counts, we can derive

the connected and disconnected global (macro-level) graphlet
counts of size k ∈ {2, 3, 4} for the graph G as:

X1 = M (24)

X2 = (N
2)−M (25)

X3 = 1/3 · C3 (26)

X4 = 1/2 · C4 (27)

X5 = C5 (28)

X6 = (N
3)−

(
X3 +X4 +X5

)
(29)

X7 = 1/6 · C7 (30)

X8 = C8 − C7 (31)

X9 = 1/2
(
C9 − 4X8

)
(32)

X10 = 1/4 · C10 (33)

X11 = 1/3(C9 −X9) (34)

X12 = C12 − C10 (35)

X13 = 1/3 ·
(
C13 −X9

)
(36)

X14 = 1/2 ·
(
C14 − 6X7 − 4X8 − 2X9 − 4X10 − 2X12

)
(37)

X15 = 1/2 · (C15 − 2X12) (38)

X16 = C16 − 2X14 (39)

X17 = (N
4)−

∑
Xi for i = 7, . . . , 16 (40)

4.7 Complexity
This section gives the space and time complexity. Let Tmax

and Smax denote the maximum number of triangles and stars
incident to a selected edge e ∈ E. Our algorithm solves
the graphlet decomposition problem for k-vertex induced
subgraphs in:

O
(
M∆

(
Tmax + Smax

))
UsingM processors (cores, workers), this reduces toO(∆(Tmax+
Smax)). For the local graphlet problem, finding all graphlets
centered at an edge e = (v, u) in G is solved in O

(
du(|T |+

|Su|)
)

time.
Given an arbitrary edge ek ∈ E in G, Alg 2 computes T

and Su in O(
∑

w∈Γ(u) log dw) time. This is due to the fact

that each vertex w ∈ Γ(u) takes O(log dw) time to check if
(v,w) ∈ E. However, Alg 1 finds T and Su in O(dv + du)
time. In particular, Alg 1 first marks the neighbors of v in
O(dv) time. Now, for each w ∈ Γ(u), we check in o(1) time if
(v, w) ∈ E (using the fast lookup table), as this implies that
w completes a triangle with (v, u). Thus, taking a total of
O(dv + du) time. Note that in terms of space, Alg 2 is more
efficient, since Alg 1 requires an additional O(N) space for Ψ.
Note that each parallel worker maintains a local hash table
Ψ, and thus too expensive for GPUs that have thousands of
workers/cores. Thus, Alg. 2 is used for GPUs since they have
limited memory while also having many more cores (workers)
than CPUs. Now, given T and Su for edge ek, we compute 4-
cliques in O(∆|T |) time. More precisely, the 4-cliques centered
at ek ∈ E are computed in exactly O(

∑
wi∈T Γ(wi)) time. In

a similar fashion, Similarly, we compute 4-cycles in O(∆|Su|)
time, and more precisely, O(

∑
wi∈T Γ(wi)).

Space: Each GPU has a copy of the graph taking O(|E|+
|V |+1) space and a set of edges Ii. In addition, each GPU has
an array of length Pi ·∆i where ∆i is the maximum degree of
any vertex u in the set of edges Ii and Pi is the total cores

7

Table 2: Results demonstrate the effectiveness of the
hybrid parallel graphlet decomposition algorithms.
In particular, we find that by leveraging the unique
features and advantages of CPUs and GPUs, one can
obtain significant speedups over existing methods
that leverage only CPUs or GPUs, but not both.

Speedup (times faster)
Multi-

graph K ∆ ∆gpu α GPU GPU Hybrid

socfb-Texas84 81 6312 450 0.031 4.65x 21.91x 263.26x
socfb-UF 83 8246 370 0.05 1.6x 55.65x 165.63x

socfb-MIT 72 708 266 0.7 11.98x 28.47x 106.14x
socfb-Stanford3 91 1172 365 0.05 21.07x 63x 133.15x

socfb-Wisc87 60 3484 300 0.04 17.88x 142.41x 189.08x
socfb-Indiana 76 1358 329 0.04 22.25x 96.89x 207.11x

soc-flickr 309 4369 4196 0.04 7.32x 31.85x 102.24x
soc-google-plus 135 1790 328 0.07 4.95x 11.98x 56.03x

soc-youtube 49 25409 1079 0.07 3.87x 26.82x 180.64x
soc-brightkite 52 1134 132 0.12 2.51x 8.09x 17.67x

soc-livejournal 213 2651 157 0.05 8.92x 70.01x 98.83x
soc-twitter 125 51386 13533 0.05 2.68x 21.76x 372.72x

soc-orkut 230 27466 646 0.05 6.12x 57.71x 129.26x

ia-enron-large 43 1383 243 0.176 2.94x 10.79x 28.30x
ia-wiki-Talk 58 1220 1034 0.02 23.35x 37.50x 85.46x

ca-HepPh 238 491 169 0.35 1.42x 6.62x 17.14x

brain-mouse-ret1 121 744 712 0.26 3.21x 5.14x 32.71x

web-baidu-baike 78 97848 11919 0.03 4.83x 39.55x 156.45x
web-arabic05 101 1102 49 0.14 5.19x 29.51x 60.02x

tech-internet-as 23 3370 208 0.35 1.26x 3.55x 12.78x
tech-as-skitter 111 35455 4768 0.08 0.62x 1.89x 58.62x

C500-9 432 468 450 0.42 3.13x 21.99x 33.23x
p-hat500-1 86 204 199 0.1 13.8x 28.02x 46.23x

p-hat1000-1 163 408 323 0.1 14.95x 67.87x 117.3x

(workers/processing units) of the ith GPU. Thus, ∆i is an
upper bound on the maximum size any edge neighborhood
task would require, see Figure 2 for intuition. Thus, the total
space for the ith GPU is:

O
(
|E|+ |V |+ |Ii|+ (Pi ·∆i)

)
Note the above is for global (macro) graphlet counts. Now,
suppose we want to compute the local graphlet counts centered
at each edge. This would require three additional arrays all
of size |Ii|. Notice that for global macro counts, each GPU
simply communicates the total number of triangles, cliques,
and cycles, which can be easily aggregated locally (as opposed
to the count of triangles, cliques, and cycles for each edge in
Ii). This avoids expensive and unnecessary communications.

Each CPU worker has a local hash table Ψ taking O(N)
space, as well as two arrays for storing T and Su of length ∆,
thus the total space per CPU worker is O(N + 2∆). Assuming
P workers, the total space is: O(P (N + 2∆)) = O(PN). The
graph is O(|V |+ |E|+ 1) and shared among the CPU workers.

4.8 Representative Methods from Framework
Observe that our approach succinctly generalizes across the
spectrum of GPU graphlet methods, including the following
three classes:

• Single GPU algorithm uses only a single GPU device
for computing induced subgraphs of size k ∈ {2, 3, 4}.
• Multi-GPU algorithm that leverages multiple GPU

devices for graphlets.

• Hybrid Multi-core CPU-GPU algorithm that leverages
the unique computing capabilities of each type of pro-
cessing unit.

For instance, if we manually set the upper bound on the local
CPU queue to α = 0, then this gives rise to the Multi-GPU
algorithm that leverages only GPU devices. Similarly, if we
manually set α = 0 and set the maximum number of GPU
devices to 1 (i.e., -GPUs 1), then we have the single GPU
algorithm. We investigate each of these methods in Section 5
and evaluate them against the state-of-the-art CPU parallel
graphlet decomposition (pgd) framework [4, 3].

5. EXPERIMENTS
This experiments in this section are designed to answer the
following two questions that lie at the heart of this work.
First, does the GPU and multi-GPU only algorithms improve
performance over the state-of-the-art CPU method? Second,
can we leverage the unique features and advantages of both
CPUs and GPUs to further improve performance?

For these experiments, two Intel Xeon CPU E5-2687 @
3.10GHz were used with 8 cores each. Further, we used 8
GeForce GTX TITAN Black GPUs and each GPU has 2880
cores (889 MHz base) and 6144 MB memory. We demonstrates
the effectiveness of our approach on a variety of real-world
networks from a range of domains with different properties. We
evaluate three parallel graphlet methods from the proposed
framework including: Single GPU only, Multi-GPUs, and
Hybrid approach that uses multiple CPUs and GPUs. Table 2
shows the speedup relative to the state-of-the-art method
called pgd [4, 3]. These results demonstrate the effectiveness
of the proposed methods. In particular, the multi-GPU only
and hybrid (CPU+GPU) are orders of magnitude faster
than pgd. For certain types of real-world networks, we find
that the methods are over 100 times faster, with the largest
improvement being 372x for soc− twitter. In Table 2, ∆gpu

Table 3: Connected 4-graphlet frequencies for a va-
riety of the real-world networks investigated from
different domains.

Connected Graphlets

graph

socfb-Texas84 70.7M 376M 1.2B 215M 664M 3.9B
socfb-UF 98M 433M 708M 186M 778M 874M

socfb-MIT 13.7M 88.5M 909M 50.9M 498M 3.8B
socfb-Stanford3 37.1M 226M 659M 151M 600M 1.8B

socfb-Wisc87 23M 121M 1.9B 59.3M 1.3B 3.8B
socfb-Indiana 60.2M 269M 1.6B 141M 495M 3.9B

soc-flickr 311M 1B 208M 252M 1.2B 3.7B
soc-google-plus 186M 994M 204M 463M 668M 3.7B

soc-youtube 3.8M 156M 1.2B 162M 1B 2.3B
soc-livejournal 307M 1.9B 1.8B 465M 778M 3.5B

soc-twitter 430M 2.3B 1.7B 990M 314M 1.9B
soc-orkut 280M 3.2B 953M 595M 520M 2B

ia-enron-large 2.3M 22.5M 376M 6.8M 185M 1.4B
ia-wiki-Talk 2.2M 32.3M 668M 33.8M 766M 1.5B

ca-HepPh 150M 35.2M 462M 821k 143M 204M

brain-mouse-ret1 71.4M 303M 1.1B 47.4M 1.1B 1.1B

web-baidu-baike 27.8M 248M 476M 653M 1.3B 1.2B
web-arabic05 232M 3.4M 26.5M 79.2k 490M 27.3M

tech-as-skitter 149M 2.4B 571M 817M 808M 2.8B

C500-9 656M 909M 201M 50.2M 7.3M 22.3M
p-hat1000-1 20.3M 265M 1.3B 282M 1.2B 3B

8

Orca−GPU Orca−GPU−S3

BA ER GEO
0

20

40

60

80

100

120

140

160

180

200

Figure 3: Runtimes of the existing single-GPU
method is normalized w.r.t. the runtime of our ap-
proach. For the BA graph, our approach is ≈55x
faster than Orca-GPU, and ≈71x faster than Orca-
GPU-S3. Furthermore, for the ER graph, our ap-
proach is ≈124x faster than Orca-GPU, and ≈181x
faster than Orca-GPU-S3.

represents the maximum degree of an edge assigned to the
GPUs. Strikingly, we observe that ∆gpu is usually much less
than ∆. Graphlet statistics for a few of the graphs are shown
in Table 3.

In addition, we also compare to the approach proposed by
[19], see Figure 3. Recall that approach is not hybrid (as the
one proposed in this work) nor does it use multiple GPUs.
Furthermore, we compute all connected and disconnected
graphlets up to size k = 4 (thus including k ∈ {2, 3, 4}),
whereas [19] is only able to compute connected graphlets of
size k = 4 — a much smaller subset. Despite this difference,
our approach is still orders of magnitude faster as shown in
Figure 3. In particular, Figure 3 demonstrates the effectiveness
of our approach. For comparison, we report results using
the same benchmark graphs (see [19]). In particular, that
work used random graphs generated from Barabási-Albert
(BA), Erdős-Rényi (ER) and geometric algorithms (GEO).
From each, we selected the largest graph for comparison
(1K vertices and 150K edges). Strikingly, our approach is
orders of magnitude faster with up to 181x improvement. It
is important to note that our approach is significantly faster
for real-world networks where the work associated with each
edge is fundamentally unbalanced and highly skewed. The
random graphs in Figure 3 represent prime candidates for
that approach. Observe that unlike many real-world networks,
the degree distribution of these synthetic graphs is not skewed
(does not obey a power-law) and are relatively dense (30%).
Nevertheless, our approach is still orders of magnitude faster.

Table 4: Varying edge ordering can significantly im-
pact performance. Results demonstrate the effective-
ness of the initial ordering technique.

Descending Reverse order
graph d vol d−1 vol−1

socfb-Texas84 263.3x 284.1x 23.5x 10.8x

Table 4 demonstrates the impact of various edge orderings
(using the Hybrid GPU-CPU approach). In particular, we

investigate ordering edges from largest to smallest degree d
and volume vol (i.e., vol(ek) = vol(u, v) =

∑
w∈Γ(u,v) dw,

which is the sum of degrees of vertices in Γ(u, v)). The impact
of the reverse ordering is also investigated, i.e., ordering edges
from smallest to largest degree and degree volume denoted
by d−1 and vol−1, respectively. Notably, we observe that
the ordering can significantly influence performance and in
some instances may even lead to slower performance than a
GPU-only approach.

0 2 4 6

x 10
4

0

0.05

0.1

0.15

0.2

Edge neighborhoods

T
im

e
 (

m
s
)

CPU

GPU

0 2 4 6

x 10
4

0

0.05

0.1

0.15

0.2

Edge neighborhoods

T
im

e
 (

m
s
)

Figure 4: CPU and GPU processing time for
each edge neighborhood. The x-axis represents edge
neighborhoods which are computed by either a CPU
or GPU, whereas the y-axis is the time (ms) for com-
puting each edge neighborhood. See text for discus-
sion.

Figure 4 validates the proposed hybrid (GPU+CPU) ap-
proach. Recall that our framework dynamically partitions
the edges among the CPUs and GPUs based on some notion
of difficulty. In particular, we see that edge neighborhoods
assigned to the CPU are indeed difficult and require signifi-
cantly more time to compute than the edge neighborhoods
processed by the GPUs. In addition, our approach is more
space-efficient for the GPU, which has significantly less RAM
than the CPU. Recall that GPUs are assigned neighborhoods
that are significantly more sparse than those given to the
CPUs, and therefore requires less space as well as avoiding ex-
pensive communications. Results in Figure 4 also demonstrate
the effectiveness of the dynamic load balancing approach used
in the hybrid graphlet algorithm, as it assigns edge neighbor-
hoods to the corresponding “best” processor type. Moreover,
the above also demonstrates the effectiveness and importance
of the initial edge ordering Π. Notably, we found degree to
be a useful approximation of the actual work required to
compute the local graphlet counts for each edge neighborhood.
However, ordering edges by vol can lead to improvements in
performance over degree (Table 4). Moreover, we also exploit
different graphlet algorithms (that essentially trade-off space
for time) by dynamically selecting the appropriate one at
runtime based on simple heuristics that can be derived in con-
stant time. The GPUs are then used to compute graphlets for
edge neighborhoods that are more well-balanced and regular,
which is exactly the type of problems for which they are most
effective.

Finally, memory use for GPUs is shown in Figure 5. We
notice that the graph usually exceeds the others. For as-skitter,
the memory used to store T and Su for each GPU worker is

9

fb−Texas84 flickr as−skitter
0

50

100

150

200

250

M
e

m
o

ry

Graph

T and S

Set of edges

fb−Texas84 flickr as−skitter
0

50

100

150

200

250

M
e

m
o

ry

Figure 5: Average memory (MB) per GPU for three
real-world networks.

slightly larger due to the large degrees. Finally, as expected
the set of edges Ii is always less than the others. We also note
that the communication overhead is insignificant compared to
the time to compute graphlets.

6. CONCLUSION
This work proposed a parallel graphlet decomposition method
that effectively leverages multiple CPUs and GPUs simul-
taneously. The algorithm is designed to exploit the unique
features and strengths of each type of processing unit and is
shown to be orders of magnitude faster than existing work
that is based on only a single type of computing device. In
particular, the proposed methods were shown to be up to
300+ times faster than the recent state-of-the-art. Besides
being orders of magnitude faster, our approach is also more
energy efficient. The proposed methods are also well-suited
for unbiased graphlet estimation, and we plan to investigate
this problem in future work.

7. REFERENCES
[1] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella.

Graph sample and hold: A framework for big graph
analytics. In SIGKDD, pages 1–10, 2014.

[2] N. K. Ahmed, J. Neville, and R. Kompella.
Space-efficient sampling from social activity streams. In
SIGKDD BigMine, pages 1–8, 2012.

[3] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield.
Efficient motif counting for large-scale network analysis
and mining. In ICDM, pages 1–10, 2015.

[4] N. K. Ahmed, J. Neville, R. A. Rossi, N. Duffield, and
T. L. Willke. Graphlet decomposition: Framework,
algorithms, and applications. In KAIS, pages 1–32, 2016.

[5] L. Akoglu, H. Tong, and D. Koutra. Graph based
anomaly detection and description: a survey. Data
Mining and Knowledge Discovery, pages 1–63, 2014.

[6] I. Bhattacharya and L. Getoor. Entity resolution in
graphs. Mining graph data, page 311, 2006.

[7] A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra.
Graphics processing unit (gpu) programming strategies
and trends in gpu computing. Journal of Parallel and
Distributed Computing, 73(1):4–13, 2013.

[8] K. Faust. A puzzle concerning triads in social networks:
Graph constraints and the triad census. Social Networks,
32(3):221–233, 2010.

[9] O. Frank. Triad count statistics. Annals of Discrete
Mathematics, 38:141–149, 1988.

[10] L. Getoor and B. Taskar. Introduction to statistical
relational learning. MIT press, 2007.

[11] A. Gharaibeh, E. Santos-Neto, L. B. Costa, and
M. Ripeanu. The energy case for graph processing on
hybrid cpu and gpu systems. In IA3 Workshop, 2013.

[12] W. Hayes, K. Sun, and N. Pržulj. Graphlet-based
measures are suitable for biological network comparison.
Bioinformatics, 29(4):483–491, 2013.

[13] T. Hočevar and J. Demšar. A combinatorial approach to
graphlet counting. Bioinformatics, 30(4):559–565, 2014.

[14] P. W. Holland and S. Leinhardt. Local structure in
social networks. Sociological Meth., 7:pp. 1–45, 1976.

[15] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, et al.
Debunking the 100X GPU vs. CPU myth: an evaluation
of throughput computing on CPU and GPU. In ACM
SIGARCH Comp. Arch. News, pages 451–460, 2010.

[16] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode,
S. Tomov, G. Juckeland, R. Dietrich, D. Poole, and
C. Lamb. Parallel performance measurement of
heterogeneous parallel systems with gpus. In ICPP,
pages 176–185, 2011.

[17] D. Marcus and Y. Shavitt. Rage–a rapid graphlet
enumerator for large networks. Computer Networks,
56(2):810–819, 2012.

[18] T. Milenkoviæ and N. Pržulj. Uncovering biological
network function via graphlet degree signatures. Cancer
informatics, 6:257, 2008.

[19] A. Milinković, S. Milinković, and L. Lazicć. A
contribution to acceleration of graphlet counting. In
Infoteh Jahorina Symposium, volume 14, pages 741–745.

[20] C. Noble and D. Cook. Graph-based anomaly detection.
In SIGKDD, pages 631–636, 2003.

[21] N. Pržulj, D. G. Corneil, and I. Jurisica. Modeling
interactome: scale-free or geometric? Bioinformatics,
20(18):3508–3515, 2004.

[22] R. Rossi and N. Ahmed. Role discovery in networks.
TKDE, 27(4):1112–1131, 2015.

[23] R. A. Rossi. Fast Triangle Core Decomposition for
Mining Large Graphs. In PAKDD, pages 310–322, 2014.

[24] R. A. Rossi and N. K. Ahmed. The network data
repository with interactive graph analytics and
visualization. In AAAI, pages 4292–4293, 2015.

[25] M. Rupp and G. Schneider. Graph kernels for molecular
similarity. Molecular Informatics, 29(4):266–273, 2010.

[26] S. Schaeffer. Graph clustering. Computer Science
Review, 1(1):27–64, 2007.

[27] N. Shervashidze, T. Petri, K. Mehlhorn, K. M.
Borgwardt, and S. Vishwanathan. Efficient graphlet
kernels for large graph comparison. In AISTATS, 2009.

[28] K. Taylor-Sakyi. Big data: Understanding big data.
arXiv preprint arXiv:1601.04602, 2016.

[29] S. Vishwanathan, N. Schraudolph, R. Kondor, and
K. Borgwardt. Graph kernels. JMLR, 11, 2010.

[30] S. Wernicke and F. Rasche. Fanmod: a tool for fast
network motif detection. Bioinformatics,
22(9):1152–1153, 2006.

[31] L. Zhang, R. Hong, Y. Gao, R. Ji, Q. Dai, and X. Li.
Image categorization by learning a propagated graphlet
path. TNNLS, 27(3):674–685, March 2016.

[32] L. Zhang, M. Song, Z. Liu, X. Liu, J. Bu, and C. Chen.
Probabilistic graphlet cut: Exploiting spatial structure
cue for weakly supervised image segmentation. In
CVPR, pages 1908–1915, 2013.

10

	Introduction
	Related Work
	Graphlet Decomposition
	Preliminaries
	Problem Formulation

	Hybrid CPU-GPU Framework
	Parallel Graphlet Computations
	Preprocessing Steps
	Hybrid CPU-GPU
	Finer-Granularity and Work Stealing
	Unrestricted counts
	Global Graphlet Frequencies
	Complexity
	Representative Methods from Framework

	Experiments
	Conclusion
	References

