
Deep Inductive Network Representation Learning
Ryan A. Rossi

Adobe Research

rrossi@adobe.com

Rong Zhou

Google

rongzhou@google.com

Nesreen K. Ahmed

Intel Labs

nesreen.k.ahmed@intel.com

ABSTRACT
This paper presents a general inductive graph representation learn-

ing framework called DeepGL for learning deep node and edge

features that generalize across-networks.
1
In particular, DeepGL be-

gins by deriving a set of base features from the graph (e.g., graphlet
features) and automatically learns a multi-layered hierarchical

graph representation where each successive layer leverages the

output from the previous layer to learn features of a higher-order.

Contrary to previous work, DeepGL learns relational functions (each
representing a feature) that naturally generalize across-networks

and are therefore useful for graph-based transfer learning tasks.

Moreover, DeepGL naturally supports attributed graphs, learns in-

terpretable inductive graph representations, and is space-efficient

(by learning sparse feature vectors). In addition, DeepGL is expres-

sive, flexible with many interchangeable components, efficient with

a time complexity of O(|E |), and scalable for large networks via an

efficient parallel implementation. Compared with recent methods,

DeepGL is (1) effective for across-network transfer learning tasks

and large (attributed) graphs, (2) space-efficient requiring up to

6× less memory, (3) fast with up to 182× speedup in runtime per-

formance, and (4) accurate with an average improvement in AUC

of 20% or more on many learning tasks and across a wide variety

of networks.

KEYWORDS
Inductive network representation learning, inductive learning, trans-

fer learning, network embeddings, representation learning, attrib-

uted networks, function learning, network motifs, deep learning

1 INTRODUCTION
Learning a useful graph representation lies at the heart and success

of many machine learning tasks such as node and link classifica-

tion [20, 34], anomaly detection [5], link prediction [6], dynamic net-

work analysis [21], community detection [25], role discovery [27],

visualization and sensemaking [24], network alignment [16], and

many others. Indeed, the success of machine learning methods

largely depends on data representation [12, 28]. Methods capable of

learning such representations have many advantages over feature

1
This manuscript first appeared in April 2017 as R. Rossi et al., “Deep Feature Learning

for Graphs” [30].

This paper is published under the Creative Commons Attribution-NonCommercial-

NoDerivs 4.0 International (CC BY-NC-ND 4.0) license. Authors reserve their rights to

disseminate the work on their personal and corporate Web sites with the appropriate

attribution.

WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC BY-NC-ND 4.0 License.

ACM ISBN 978-1-4503-5640-4/18/04.

https://doi.org/10.1145/3184558.3191524

engineering in terms of cost and effort. For a survey and taxonomy

of relational representation learning, see [28].

Recent work has largely been based on the popular skip-gram

model [18] originally introduced for learning vector representa-

tions of words in the natural language processing (NLP) domain.

In particular, DeepWalk [23] applied the successful word embed-

ding framework from [19] (called word2vec) to embed the nodes

such that the co-occurrence frequencies of pairs in short random

walks are preserved. More recently, node2vec [13] introduced hy-

perparameters to DeepWalk that tune the depth and breadth of the

random walks. These approaches have been extremely successful

and have shown to outperform a number of existing methods on

tasks such as node classification.

However, the past work has focused on learning only node fea-
tures [13, 23, 32] for a specific graph. Features from these methods

do not generalize to other networks and thus are unable to be used

for across-network transfer learning tasks.
2
In contrast, DeepGL

learns relational functions that generalize for computation on any

arbitrary graph, and therefore naturally supports across-network

transfer learning tasks such as across-network link classification,

network alignment, graph similarity, among others. Existing meth-

ods are also not space-efficient as the node feature vectors are

completely dense. For large graphs, the space required to store

these dense features can easily become too large to fit in-memory.

The features are also notoriously difficult to interpret and explain

which is becoming increasingly important in practice [9, 33]. Fur-

thermore, existing embedding methods are also unable to capture

higher-order subgraph structures as well as learn a hierarchical

graph representation from such higher-order structures. Finally,

these methods are also inefficient with runtimes that are orders of

magnitude slower than the algorithms presented in this paper (as

shown later in Section 3). Other key differences and limitations are

discussed below.

In this work, we present a general, expressive, and flexible deep
graph representation learning framework called DeepGL that over-

comes many of the above limitations.
3
Intuitively, DeepGL begins

by deriving a set of base features using the graph structure and any

attributes (if available). The base features are iteratively composed

using a set of learned relational feature operators that operate over
the feature values of the (distance-ℓ) neighbors of a graph element

(node, edge; see Table 1) to derive higher-order features from lower-

order ones forming a hierarchical graph representation where each

layer consists of features of increasingly higher orders. At each

feature layer, DeepGL searches over a space of relational functions

2
The terms transfer learning and inductive learning are used interchangeably.

3
Note a deep learningmethod as defined by Bengio et al. [7, 8] is one that learnsmultiple

levels of representation with higher levels capturing more abstract concepts through a

deeper composition of computations [12, 17]. This definition includes neural network

based approaches as well as DeepGL and many other deep learning paradigms.

https://doi.org/10.1145/3184558.3191524

WWW ’18 Companion, April 23–27, 2018, Lyon, France R. A. Rossi et al.

defined compositionally in terms of a set of relational feature opera-
tors applied to each feature given as output in the previous layer.

Features (or relational functions) are retained if they are novel and

thus add important information that is not captured by any other

feature in the set. See below for a summary of the advantages and

properties of DeepGL.

1.1 Summary of Contributions
The proposed approach, DeepGL, provides a general powerful

framework for learning deep graph representations from attrib-

uted graphs that are naturally inductive for use in across-network

learning tasks. DeepGL overcomes many limitations of existing

work and has the following key properties:

• Novel framework: This paper presents a deep hierarchical

inductive graph representation learning framework called

DeepGL for large (attributed) networks that generalizes for

discovering both node and edge features. DeepGL searches

a space of relational functions (representing features) that

are expressed as compositions of relational feature operators

applied to a set of base features. The framework is flexible

with many interchangeable components, expressive, and

shown to be effective for a wide variety of applications.

• Inductive representation learning: Contrary to existing

node embedding methods, DeepGL is naturally inductive by

learning relational functions that generalize for computa-

tion on any arbitrary graph and therefore supports across-

network transfer learning tasks.

• Space efficiency: While most existing methods learn dense

high-dimensional feature vectors that are often impractical

for large graphs (e.g., too large to fit in-memory), DeepGL

is space-efficient by learning a sparse graph representation

that requires up to 6x less space than existing work.

• Fast, parallel, and scalable: It is fast with a runtime that

is linear in the number of edges. It scales to large graphs via

a simple and efficient parallelization. Notably, strong scaling

results are observed in Section 3.

• Hierarchical graph representation: DeepGL learns hier-

archical graph representations with multiple layers where

each successive layer uses the output from the previous layer

as input to derive features of a higher-order.

• Interpretable and explainable: Unlike existing embed-

ding methods, DeepGL learns interpretable and explainable

features.

2 FRAMEWORK
This section presents the DeepGL framework. Since the framework

naturally generalizes for learning node and edge representations,

it is described generally for a set of graph elements (e.g., nodes or
edges).

4

2.1 Base Graph Features
The first step of DeepGL (Alg. 1) is to derive a set of base graph fea-
tures5 using the graph topology and attributes (if available). Initially,

4
For convenience, DeepGL-edge and DeepGL-node are sometimes used to refer to

the edge and node representation learning variants of DeepGL, respectively.

5
The term graph feature refers to an edge or node feature.

Table 1: Summary of notation. Matrices are bold upright ro-
man letters; vectors are bold lowercase letters.

G (un)directed (attributed) graph

A sparse adjacency matrix of the graph G = (V , E)
N , M number of nodes and edges in the graph

F , L number of learned features and layers

G set of graph elements {д1, д2, · · · } (nodes, edges)

d+v , d
−
v , dv outdegree, indegree, degree of vertex v

Γ+(дi), Γ−(дi) out/in neighbors of graph element дi
Γ(дi) neighbors (adjacent graph elements) of дi
Γℓ (дi) ℓ-neighborhood Γ(дi) = {дj ∈ G | dist(дi , дj) ≤ ℓ }

dist(дi , дj) shortest distance between дi and дj
S set of graph elements related to дi , e.g., S = Γ(дi)
X a feature matrix

x an N or M -dimensional feature vector

xi the i-th element of x for graph element дi
|X | number of nonzeros in a matrix X
F set of feature definitions/functions from DeepGL

Fk k-th feature layer (where k is the depth)

fi relational function (definition) of xi
Φ set of relational operators Φ = {Φ1, · · · , ΦK }

K(·) a feature score function

λ tolerance/feature similarity threshold

α transformation hyperparameter (e.g., bin size in log binning 0 ≤
α ≤ 1)

x′ = Φi ⟨x⟩ relational operator applied to each graph element

the feature matrix X contains only the attributes given as input by

the user. If no attributes are provided, thenXwill consist of only the

base features derived below. Note that DeepGL can use any arbitrary

set of base features, and thus it is not limited to the base features

discussed below. Given a graph G = (V ,E), we first decompose G
into its smaller subgraph components called graphlets (network

motifs) [1] using local graphlet decomposition methods [3] and

concatenate the graphlet count-based feature vectors to the feature

matrix X. This work derives such features by counting all node or

edge orbits with up to 4 and/or 5-vertex graphlets. Orbits (graphlet

automorphisms) are counted for each node or edge in the graph

based on whether a node or edge-based feature representation is

warranted (as our approach naturally generalizes to both). Note

there are 15 node and 12 edge orbits with 2-4 nodes; and 73 node

and 68 edge orbits with 2-5 nodes.

We also derive simple base features such as in/out/total/weighted

degree and k-core numbers for each graph element (node, edge)

in G. For edge feature learning we derive edge degree features for
each edge (v,u) ∈ E and each ◦ ∈ {+,×} as follows:[

d+v ◦ d
+
u , d−v ◦ d

−
u , d−v ◦ d

+
u , d+v ◦ d

−
u , dv ◦ du

]
(1)

where dv = d+v ◦ d
−
v and recall from Table 1 that d+v , d

−
v , and dv

denote the out/in/total degree of v . In addition, egonet features

are also used [4]. Given a node v and an integer ℓ, the ℓ-egonet

of v is defined as the set of graph elements ℓ-hops away from v
(i.e., distance at most ℓ) and all edges and nodes between that set.

The external and within-egonet features for nodes are provided

in Figure 1 and used as base features in DeepGL-node. For all the

above base features, we also derive variations based on direction

(in/out/both) and weights (weighted/unweighted). Observe that

DeepGL naturally supports many other graph properties including

Deep Inductive Network Representation Learning WWW ’18 Companion, April 23–27, 2018, Lyon, France

ego-­‐center

within-­‐ego

external-­‐ego

(a) External egonet features (b) Within egonet features

Figure 1: Egonet Features. The set of base (ℓ=1 hop)-egonet
graph features. (a) the external egonet features; (b) the
within egonet features. See the legend for the vertex types:
ego-center (•), within-egonet vertex (•), and external egonet
vertices (◦).

efficient/linear-time properties such as PageRank. Moreover, fast

approximation methods with provable bounds can also be used to

derive features such as the local coloring number and largest clique

centered at the neighborhood of each graph element (node, edge)

in G.
A key advantage of DeepGL lies in its ability to naturally handle

attributed graphs. In particular, any set of initial attributes given as

input can simply be concatenated with X and treated the same as

the initial base features.

!input

x2"

x1"

ℱ1

xi"

ℱ2
 ℱ3

xj

xk"wjk

ℱ/

wij

…
"

⋯
"
⋯
" ⋯"

⋯"
⋯" ⋯"

⋯"

X,"ℱ!
⋯"

⋯"

⋯
"

⋯
"

Figure 2: Overview of theDeepGL architecture for graph rep-
resentation learning. Let W =

[
wi j

]
be a matrix of feature

weights where wi j (or Wi j) is the weight between the fea-
ture vectors xi and xj . Notice thatW has the constraint that
i < j < k and xi , xj , and xk are increasingly deeper. Each
feature layer Fh ∈ F defines a set of unique relational func-
tions Fh = { · · ·, fk , · · · } of order h (depth) and each fk ∈ Fh
denotes a relational function. Further, letF = F1∪F2∪· · ·∪Fτ
and |F | = |F1 | + |F2 | + · · · + |Fτ |. Moreover, the layers are or-
dered where F1 < F2 < · · · < Fτ such that if i < j then Fj is
said to be a deeper layer w.r.t. Fi . See Table 1 for a summary
of notation.

2.2 Relational Function Space & Expressivity
In this section, we formulate the space of relational functions

6
that

can be expressed and searched over by DeepGL. A relational func-

tion (feature) in DeepGL is defined as a composition of relational

feature operators applied to an initial base feature x. Recall that
unlike recent node embeddingmethods [13, 23, 32], the proposed ap-

proach learns graph functions that are transferable across-networks

for a variety of important graph-based transfer learning tasks such

6
The terms graph function and relational function are used interchangeably.

as across-network prediction, anomaly detection, graph similarity,

matching, among others.

2.2.1 Composing Relational Functions. The space of relational
functions searched via DeepGL is defined compositionally in terms

of a set of relational feature operators Φ = {Φ1, · · · ,ΦK }. A few

relational feature operators are defined formally in Table 2; see [28]

(pp. 404) for a wide variety of other useful relational feature op-

erators. The expressivity of DeepGL (space of relational functions

expressed by DeepGL) depends on a few flexible and interchange-

able components including: (i) the initial base features (derived

using the graph structure, initial attributes given as input, or both),

(ii) a set of relational feature operators Φ = {Φ1, · · · ,ΦK }, (iii) the
sets of “related graph elements” S ∈ S (e.g., the in/out/all neigh-
bors within ℓ hops of a given node/edge) that are used with each

relational feature operator Φp ∈ Φ, and finally, (iv) the number of

times each relational function is composed with another (i.e., the
depth). Observe that under this formulation each feature vector

x′ from X (that is not a base feature) can be written as a composi-

tion of relational feature operators applied over a base feature. For

instance, given an initial base feature x, by abuse of notation let

x′ = Φk (Φj (Φi ⟨x⟩)) = (Φk ◦ Φj ◦ Φi)(x) be a feature vector given
as output by applying the relational function constructed by com-

posing the relational feature operators Φk ◦ Φj ◦ Φi to every graph

element дi ∈ G and its set S of related elements.
7
Obviously, more

complex relational functions are easily expressed such as those

involving compositions of different relational feature operators

(and possibly different sets of related graph elements). Furthermore,

DeepGL is able to learn relational functions that often correspond

to increasingly higher-order subgraph features based on a set of ini-

tial lower-order (base) subgraph features (Figure 2). Intuitively, just

as filters are used in Convolutional Neural Networks (CNNs) [12],

one can think of DeepGL in a similar way, but instead of simple

filters, we have features derived from lower-order subgraphs be-

ing combined in various ways to capture higher-order subgraph

patterns of increasingly complexity at each successive layer.

2.2.2 Summation and Multiplication of Functions. We can also

derive a wide variety of relational functions compositionally by

adding and multiplying relational functions (e.g., Φi + Φj , and Φi ×
Φj). A sum of relational functions is similar to an OR operation

in that two instances are “close” if either has a large value, and

similarly, a product of relational functions is analogous an AND

operation as two instances are close if both relational functions

have large values.

2.3 Searching the Relational Function Space
A general and flexible framework for DeepGL is given in Alg. 1.

Recall that DeepGL begins by deriving a set of base features which

are used as a basis for learning deeper and more discriminative

features of increasing complexity (Line 2). The base feature vectors

are then transformed (Line 3). For instance, one may transform

each feature vector xi using logarithmic binning as follows: sort xi
in ascending order and set the αM graph elements (edges/nodes)

7
For simplicity, we use Φ⟨x⟩ (whenever clear from context) to refer to the application

of Φ to all sets S derived from each graph element дi ∈ G and thus the output of Φ⟨x⟩
in this case is a feature vector with a single feature-value for each graph element.

WWW ’18 Companion, April 23–27, 2018, Lyon, France R. A. Rossi et al.

Algorithm 1 DeepGL: Deep Inductive Graph Representation

Learning Framework

Require:
a (un)directed graph G = (V , E); a set of relational feature operators
Φ = {Φ1, · · · , ΦK }, and a feature similarity threshold λ.

1: F1 ← ∅ and initialize X if not given as input

2: Given G , construct base features (see text for further details) and

concatenate the feature vectors toX and add the function definitions

to F1; and set F ← F1.

3: Transform base feature vectors; Set τ ← 2

4: repeat ▷ feature layers Fτ for τ = 2, ..., T

5: Search the space of features defined by applying relational feature

operators Φ = {Φ1, · · · , ΦK } to features

[
· · · xi xi+1 · · ·

]
given as output in the previous layer Fτ−1 (via Alg. 2). Add feature

vectors to X and functions/def. to Fτ .

6: Diffuse new feature vectors via a feature diffusion process (Eq. 3)

7: Transform feature vectors of layer Fτ

8: Evaluate the features (functions) in layer Fτ using the criterion K

to score feature pairs along with a feature selection method to select

a subset (Alg. 3).

9: Discard features from X that were pruned (not in Fτ) and set F ←

F ∪ Fτ

10: Set τ ← τ + 1 and initialize Fτ to ∅ for next feature layer

11: until no new features emerge or the max number of layers is reached

12: return X and the set of relational functions (definitions) F

with smallest values to 0 where 0 < α < 1, then set α fraction of

remaining graph elements with smallest value to 1, and so on. Many

other techniques exist for transforming the feature vectors and the

selected technique will largely depend on the graph structure.

The framework proceeds to learn a hierarchical graph representa-

tion (Figure 2) where each successive layer represents increasingly

Table 2: Definitions of a few relational feature operators. Re-
call the notation from Table 1. For generality, S is defined in
Table 1 as a set of related graph elements (nodes, edges) of
дi and thus sj ∈ S may be an edge sj = ej or a node sj = vj ; in
this work S ∈

{
Γℓ(дi), Γ

+
ℓ
(дi), Γ

−
ℓ
(дi)

}
. The relational operators

generalize to ℓ-distance neighborhoods (e.g., Γℓ(дi)where ℓ is
the distance). Note x =

[
x1 x2 · · · xi · · ·

]
∈ RM where xi

is the i-th element of x for дi .

Operator Definition

Hadamard Φ⟨S, x⟩ =
∏
sj ∈S

x j

mean Φ⟨S, x⟩ = 1

|S |
∑

sj ∈S
x j

sum Φ⟨S, x⟩ =
∑

sj ∈S
x j

maximum Φ⟨S, x⟩ = max

sj ∈S
x j

Weight. Lp Φ⟨S, x⟩ =
∑

sj ∈S

��xi − x j ��p
RBF Φ⟨S, x⟩ = exp

(
− 1

σ 2

∑
sj ∈S

[
xi −x j

]
2

)

deeper higher-order (edge/node) graph functions: F1 < F2 < · · · <

Fτ s.t. if i < j then Fj is said to be deeper than Fi . In particular, the

feature layers F2,F3, · · · ,Fτ are derived as follows (Alg. 1 Lines 4-

11): First, we derive the feature layer Fτ by searching over the space

of graph functions that arise from applying the relational feature

operators Φ to each of the novel features fi ∈ Fτ−1 learned in the

previous layer (Alg. 1 Line 5). An algorithm for deriving a feature

layer is provided in Alg. 2. Next, the feature vectors from layer Fτ
are transformed in Line 7 as discussed previously.

The resulting features in layer τ are then evaluated. The feature

evaluation routine (in Alg. 1 Line 8) chooses the important features

(relational functions) at each layer τ from the space of novel rela-

tional functions (at depth τ) constructed by applying the relational

feature operators to each feature (relational function) learned (and

given as output) in the previous layer τ − 1. Notice that DeepGL is

extremely flexible as the feature evaluation routine (Alg. 3) called

in Line 8 of Alg. 1 is completely interchangeable and can be fine-

tuned for specific applications and/or data. This approach derives

a score between pairs of features. Pairs of features xi and xj that
are strongly dependent as determined by the hyperparameter λ and

evaluation criterion K are assignedWi j = K(xi , xj) andWi j = 0

otherwise (Alg. 3 Line 2-6). More formally, let EF denote the set of

connections representing dependencies between features:

EF =
{
(i, j) | ∀(i, j) ∈ |F | × |F | s.t. K(xi , xj) > λ

}
(2)

The result is a weighted feature dependence graph GF . Now, GF is

used to select a subset of important features from layer τ . Features
are selected as follows: First, the feature graph GF is partitioned

into groups of features {C1,C2, . . .} where each set Ck ∈ C repre-

sents features that are dependent (though not necessarily pairwise

dependent). To partition the feature graph GF , Alg. 3 uses con-

nected components, though other methods are also possible, e.g.,
a clustering or community detection method. Next, one or more

representative features are selected from each group (cluster) of

dependent features. Alternatively, it is also possible to derive a new

feature from the group of dependent features, e.g., finding a low-

dimensional embedding of these features or taking the principal

eigenvector. In Alg. 3 the earliest feature in each connected com-

ponent Ck = {..., fi , ..., fj , ...} ∈ C is selected and all others are

removed. After pruning the feature layer Fτ , the discarded features

are removed fromX and DeepGL updates the set of features learned

thus far by setting F ← F ∪ Fτ (Alg. 1: Line 9). Next, Line 10

increments τ and sets Fτ ← ∅. Finally, we check for convergence,

and if the stopping criterion is not satisfied, then DeepGL learns

an additional feature layer (Line 4-11).

In contrast to node embedding methods that output only a node
feature matrix X, DeepGL also outputs the (hierarchical) relational

functions F corresponding to the learned features. Maintaining the

relational functions are important for transferring the features to

another arbitrary graph of interest, but also for interpreting them.

Moreover, DeepGL is an inductive representation learning approach

as the relational functions can be used to derive embeddings for

new nodes or even graphs.

2.4 Feature Diffusion
We introduce the notion of feature diffusion where the feature

matrix at each layer can be smoothed using an arbitrary feature

Deep Inductive Network Representation Learning WWW ’18 Companion, April 23–27, 2018, Lyon, France

Algorithm 2 Derive a feature layer using the features from the previous

layer and the set of relational feature operators Φ = {Φ1, · · · , ΦK }.

1 procedure FeatureLayer(G , X, Φ, F, Fτ , λ)
2 parallel for each graph element дi ∈ G do
3 Set t ← |F |
4 for each feature xk s.t. fk ∈ Fτ−1 in order do
5 for each S ∈

{
Γ+
ℓ
(дi), Γ−

ℓ
(дi), Γℓ (дi)

}
do

6 for each relational operator Φ ∈ Φ do
7 Xit = Φ(S, xk) and t ← t + 1

8 Add feature definitions to Fτ
9 return feature matrix X and Fτ

Algorithm 3 Score and prune the feature layer

1 procedure EvaluateFeatureLayer(G , X, F, Fτ)
2 Let GF = (VF , EF , W)

3 parallel for each feature fi ∈ Fτ do
4 for each feature fj ∈ (Fτ−1 ∪ · · · ∪ F1) do
5 if K

(
xi , xj

)
> λ then

6 EF = EF ∪ {(i, j)}
7 Wi j = K

(
xi , xj

)
8 Partition GF using conn. components C = {C1, C2, . . . }

9 parallel for each Ck ∈ C do ▷ Remove features

10 Find fi s.t. ∀fj ∈ Ck : i < j .
11 Remove Ck from Fτ and set Fτ ← Fτ ∪ {fi }

diffusion process. As an example, suppose X is the resulting feature

matrix from layer τ , then we can set X̄(0) ← X and solve

X̄(t) = D−1AX̄(t−1)
(3)

where D is the diagonal degree matrix and A is the adjacency

matrix of G. The diffusion process above is repeated for a fixed

number of iterations t = 1, 2, ...,T or until convergence; and X̄(t) =
D−1AX̄(t−1)

corresponds to a simple feature propagation. More

complex feature diffusion processes can also be used in DeepGL

such as the normalized Laplacian feature diffusion defined as

X̄(t) = (1 − θ)LX̄(t−1)
+ θX, for t = 1, 2, ... (4)

where L is the normalized Laplacian:

L = I − D1/2AD1/2
(5)

The resulting diffused feature vectors X̄ =
[

x̄1 x̄2 · · ·
]

are effectively smoothed by the features of related graph elements

(nodes/edges) governed by the particular diffusion process. Notice

that feature vectors given as output at each layer can be diffused

(e.g., after Line 5 or 9 of Alg. 1). Note X̄ can be leveraged in a

variety of ways: X ← X̄ (replacing previous) or concatenated by

X←
[
X X̄

]
. Feature diffusion can be viewed as a form of graph

regularization as it can improve the generalizability of a model

learned using the graph embedding.

2.5 Computational Complexity
Recall that M is the number of edges, N is the number of nodes,

and F is the number of features.

2.5.1 Learning. The total computational complexity of the edge
representation learning from the DeepGL framework is:

O
(
F (M +MF)

)
(6)

For node representation learning, the time complexity of DeepGL is:

O
(
F (M + NF)

)
(7)

Thus, in both cases, the runtime of representation learning in

DeepGL is linear in the number of edges. As an aside, the initial

graphlet features are computed using fast and accurate estimation

methods, see Ahmed et al. [3].

2.5.2 Inductive relational functions. We now state the computa-

tional complexity of directly computing the set of inductive rela-

tional functions (feature definitions) which were previously learned

on another arbitrary graph. Computation of the relational functions

F on another arbitrary graph is important for inductive across-

network learning tasks. Given the set of learned relational functions

F , the total computational complexity of the edge relational func-
tions is:

O
(
FM

)
(8)

Similarly, the time complexity of the node relational functions is also
O
(
FM

)
. Thus, the runtime of deriving the edge and node relational

functions in DeepGL is linear in the number of edges. Computing

the set of inductive relational functions on another arbitrary graph

obviously requires less work than learning the actual set of induc-

tive relational functions (Section 2.5.1). The key difference is that

features are not evaluated when deriving the relational functions

directly. In contrast, representation learning in DeepGL scores the

features at each layer.

3 EXPERIMENTS
This section demonstrates the effectiveness of the proposed frame-

work.

3.1 Experimental settings
In these experiments, we use the following instantiation of DeepGL:

Features are transformed using logarithmic binning and evaluated

using a simple agreement score function whereK(xi , xj) = fraction
of graph elements that agree. More formally, agreement scoring is

defined as:

K(xi , xj) =

��{(xik ,x jk), ∀k = 1, . . . ,N | xik = x jk
}��

N
(9)

where xik and x jk are the k-th feature value of the N -dimensional

vectors xi and xj , respectively. Unless otherwise mentioned, we

set α = 0.5 (bin size of logarithmic binning) and perform a grid

search over λ ∈ {0.01, 0.05, 0.1, 0.2, 0.3} and Φ ∈
{
Φmean,Φsum,

Φ
prod
, {Φmean, Φsum}, {Φprod

, Φsum}, {Φprod
, Φmean}

}
. See Table 2.

Note Φ
prod

refers to the Hadamard relational operator defined for-

mally in Table 2. As an aside, DeepGL has fewer hyperparameters

than node2vec, DeepWalk, and LINE used in the comparison below.

The specific model defined by the above instantiation of DeepGL is

selected using 10-fold cross-validation on 10% of the labeled data.

Experiments are repeated for 10 random seed initializations. All

results are statistically significant with p-value < 0.01.

We evaluate the proposed framework against node2vec [13],

DeepWalk [23], and LINE [32]. For node2vec, we use the hyper-

parameters and grid search over p,q ∈ {0.25, 0.50, 1, 2, 4} as men-

tioned in [13]. The experimental setup mentioned in [13] is used for

DeepWalk and LINE. Unless otherwise mentioned, we use logistic

WWW ’18 Companion, April 23–27, 2018, Lyon, France R. A. Rossi et al.

regression with an L2 penalty and one-vs-rest for multiclass prob-

lems. Data has been made available at NetworkRepository [26].
8

Table 3: AUC scores forWithin-network Link Classification

escorts yahoo-msg

(
xi + xj

) /
2

DeepGL 0.6891 0.9410
mean node2vec 0.6426 0.9397

DeepWalk 0.6308 0.9317

LINE 0.6550 0.7967

xi ⊙ xj

DeepGL 0.6339 0.9324

product node2vec 0.5445 0.8633

DeepWalk 0.5366 0.8522

LINE 0.5735 0.7384

��xi − xj ��
DeepGL 0.6857 0.9247

weighted l1 node2vec 0.5050 0.7644

DeepWalk 0.5040 0.7609

LINE 0.6443 0.7492

(xi − xj)◦2

DeepGL 0.6817 0.9160

weighted l2 node2vec 0.4950 0.7623

DeepWalk 0.4936 0.7529

LINE 0.6466 0.5346

3.2 Within-Network Link Classification
We first evaluate the effectiveness of DeepGL for link classifica-

tion. To be able to compare DeepGL to node2vec and the other

methods, we focus in this section on within-network link classifica-
tion. For comparison, we use the same set of binary operators to

construct features for the edges indirectly using the learned node

representations: Given the feature vectors xi and xj for node i and j ,
(xi+xj)

/
2 is the mean; xi ⊙xj is the (Hadamard) product;

��xi − xj ��
and (xi − xj)◦2 is the weighted-l1 and weighted-l2 binary opera-

tors, respectively.
9
Note that these binary operators (used to create

edge features) are not to be confused with the relational feature

operators defined in Table 2. In Table 3, we observe that DeepGL

outperforms node2vec, DeepWalk, and LINE with an average gain

between 18.09% and 20.80% across all graphs and binary operators.

Notice that node2vec, DeepWalk, and LINE all require that the

training graph contain at least one edge among each node in G.
However, DeepGL overcomes this fundamental limitation and can

actually predict the class label of edges that are not in the training

graph as well as the class labels of edges in an entirely different

network.

3.3 Analysis of Space-Efficiency
Learning sparse space-efficient node and edge feature representa-

tions is of vital importance for large networks where storing even

a modest number of dense features is impractical (especially when

stored in-memory). Despite the importance of learning a sparse

space-efficient representation, existing work has been limited to

discovering completely dense (node) features [13, 23, 32]. To un-

derstand the effectiveness of the proposed framework for learning

sparse graph representations, we measure the density of each rep-

resentation learned from DeepGL and compare these against the

8
See http://networkrepository.com/ for data description and statistics

9
Note x◦2 is the element-wise Hadamard power; xi ⊙ xj is the element-wise product.

fb-MIT yahoo-msg enron fb-PU DD21
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

b
e

d
d

in
g

 D
e

n
s
it
y

 DeepGL-edge

 DeepGL-node

node2vec

Figure 3: DeepGL requires up to 6x less space than node2vec
and other methods that learn dense embeddings.

state-of-the-art methods [13, 23]. We focus first on node represen-

tations since existing methods are limited to only node features.

Results are shown in Figure 3. In all cases, the node representations

learned by DeepGL are extremely sparse and significantly more

space-efficient than node2vec [13] as observed in Figure 3. Deep-

Walk and LINE use nearly the same space as node2vec, and thus

are omitted for brevity. Strikingly, DeepGL uses only a fraction of

the space required by existing methods (Figure 3). Moreover, the

density of node and edge representations from DeepGL is between[
0.162, 0.334

]
for nodes and

[
0.164, 0.318

]
for edges and up to 6×

more space-efficient than existing methods.

Notably, recent node embedding methods not only output dense

node features, but are also real-valued and often negative (e.g., [13,
23, 32]). Thus, they require 8 bytes per feature-value, whereas

DeepGL requires only 2 bytes and can sometimes be reduced to

even 1 byte if needed by adjusting α (i.e., the bin size of the log

binning transformation). To understand the impact of this, assume

both approaches learn a node representation with 128 dimensions

(features) for a graph with 10,000,000 nodes. In this case, node2vec,

DeepWalk, and LINE require 10.2GB, whereas DeepGL uses only

0.768GB (assuming a modest 0.3 density) — a significant reduction

in space by a factor of 13.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

nodes

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

ti
m

e
 (

s
e
c
o
n
d
s
)

DeepGL

node2vec

Figure 4: Runtime comparison on Erdös-Rényi graphs with
an average degree of 10. The proposed approach is shown to
be orders of magnitude faster than node2vec [13].

http://networkrepository.com/

Deep Inductive Network Representation Learning WWW ’18 Companion, April 23–27, 2018, Lyon, France

Table 4: AUC scores for node classification

graph |C | DeepGL node2vec

DD242 20 0.730 0.673

DD497 20 0.696 0.660

DD68 20 0.730 0.713

ENZYMES118 2 0.779 0.610

ENZYMES295 2 0.872 0.588

ENZYMES296 2 0.823 0.610

3.4 Runtime & Scalability
To evaluate the performance and scalability of the proposed frame-

work, we learn node representations for Erdös-Rényi graphs of in-

creasing size (from 100 to 10,000,000 nodes) such that each graph has

an average degree of 10. We compare the performance of DeepGL

against node2vec [13] which is designed specifically to be scalable
for large graphs and shown to be faster than DeepWalk and LINE.

Default parameters are used for each method. In Figure 4, we ob-

serve that DeepGL is significantly faster and more scalable than

node2vec. In particular, node2vec takes 1.8 days (45.3 hours) for

10 million nodes, whereas DeepGL finishes in only 15 minutes; see

Figure 4. Strikingly, this is 182 times faster than node2vec.

1 4 8 12 16

Number of processing units

0

2

4

6

8

10

12

S
p
e
e
d
u
p

DeepGL-Node

DeepGL-Node+Attr

DeepGL-Edge

DeepGL-Edge+Attr

Figure 5: Parallel speedup of different variants from the
DeepGL framework. See text for discussion.

3.5 Parallel Scaling
This section investigates the parallel performance of DeepGL. To

evaluate the effectiveness of the parallel algorithm we measure

speedup defined as Sp =
T1

Tp whereT1 andTp are the execution time

of the sequential and parallel algorithms (w/ p processing units),

respectively. In Figure 5, we observe strong parallel scaling for all

DeepGL variants with the edge representation learning variants

performing slightly better than the node representation learning

methods from DeepGL. Results are reported for soc–gowalla on a

machine with 4 Intel Xeon E5-4627 v2 3.3GHz CPUs. Other graphs

and machines gave similar results.

3.6 Node Classification
For node classification, we use the i.i.d. variant of rsm [29] since it

is able to handle multiclass problems in a direct fashion (as opposed

to indirectly, e.g., one-vs-rest) and consistently outperformed other

indirect approaches such as LR and SVM. In particular, rsm assigns

a test vector xi to the class that is most similar w.r.t. the train-

ing vectors (i.e., feature vectors of the nodes with known labels);

see [29] for further details. Similarity is measured using the RBF

kernel and RBF’s hyperparameter σ is set using cross-validation

with a grid search over σ ∈ {0.001, 0.01, 0.1, 1}. Results are shown

in Table 4. In all cases, we observe that DeepGL significantly outper-

forms node2vec across all graphs and node classification problems

including both binary and multiclass problems. Further, DeepGL

achieves the best improvement in AUC on ENZYMES295 of 48%. As

an aside, results for DeepWalk and LINE were removed for brevity

since node2vec outperformed them in all cases.

4 RELATEDWORK
Related research is categorized below.

Node embedding methods: There has been a lot of interest re-

cently in learning a set of useful node features from large-scale

networks automatically [13, 22, 23, 32]. In particular, recent meth-

ods that apply the popular word2vec framework to learn node

embeddings [13, 23, 32]. The proposed DeepGL framework differs

from these methods in six fundamental ways: (1) DeepGL learns

complex relational functions that generalize for across-network

transfer learning. Features learned from DeepGL on one graph can

be extracted from another graph for transfer learning tasks such

as network alignment, graph similarity, role discovery, temporal

graph modeling, among others. (2) DeepGL learns sparse features

and thus is extremely space-efficient for large networks. (3) DeepGL

learns important and useful edge and node representations whereas

existing work is limited to node features [13, 23, 32]. (4) DeepGL nat-

urally supports attributed graphs. (5) DeepGL is fast and efficient

with a runtime that is linear in the number of edges. (6) DeepGL is

also completely parallel and shown in Section 3 to scale strongly.

There is also another related body of work focused on attributed

graphs. Recently, Huang et al. [14] proposed a label informed em-

bedding method for attributed networks. This approach assumes

the graph is labeled and uses this information to improve predictive

performance. However, this work is significantly different. First

and foremost, while DeepGL is able to naturally support attrib-

uted graphs, this work does not focus on such graphs. Moreover,

DeepGL does not require attributes or class labels on the nodes.

Another important fundamental difference is that DeepGL learns

features representing relational functions that generalize for ex-

traction on any other arbitrary graph. The relational functions

naturally represent higher-order structures when based on lower-

order subgraph features (Figure 2). DeepGL also learns features that

are sparse and therefore space-efficient for large graphs. Moreover,

it is fast with a runtime that is linear in the number of edges and is

completely parallel with strong scaling. There has also been some

recent work on heterogeneous network embeddings [10, 11, 37],

semi-supervised network embeddings [15, 38], and methods for

improving the learned representations [31, 35, 36]. This work in-

vestigates entirely different problems than the one discussed in this

paper.

We can also use the inferred embeddings for graph-based transfer
learning. This is possible since DeepGL learns relational functions

that generalize across-networks and therefore are easily extracted

WWW ’18 Companion, April 23–27, 2018, Lyon, France R. A. Rossi et al.

on another arbitrary graph. Other key differences were summarized

previously in Section 1.

Higher-order network analysis: Other methods use high-order

network properties (such as graphlet frequencies) as features for

graph classification [34]. Graphlets (network motifs) are small in-

duced subgraphs and have been used for graph classification [34],

role discovery [2], and visualization and exploratory analysis [1].

However, our work focuses on using graphlet frequencies as base

features for learning node and edge representations from large

networks. To the best of our knowledge, this paper is the first to

use network motifs (including all motifs of size 3, 4, and 5 vertices)

as base features for graph representation learning.

Sparse graph feature learning: This work proposes the first prac-
tical space-efficient approach that learns sparse node/edge feature

vectors. Notably, DeepGL requires significantly less space than

existing node embedding methods [13, 23, 32] (see Section 3). In

contrast, existing embedding methods store completely dense fea-

ture vectors which is impractical for any relatively large network,

e.g., they require more than 3TB of memory for a 750 million node

graph with 1K features.

5 CONCLUSION
We proposed DeepGL, a general, flexible, and highly expressive

framework for learning deep node and edge features that general-

ize for across-network transfer learning tasks. Each feature learned

by DeepGL corresponds to a composition of relational feature oper-

ators applied over a base feature. Thus, features learned by DeepGL

are interpretable and naturally generalize for across-network trans-

fer learning tasks as they can be derived on any arbitrary graph. The

framework is flexible with many interchangeable components, ex-

pressive, interpretable, parallel, and is both space- and time-efficient

for large graphs with runtime that is linear in the number of edges.

DeepGL has all the following desired properties:

• Effective for learning functions (features) that generalize for
graph-based transfer learning and large (attributed) graphs

• Space-efficient requiring up to 6× less memory

• Fast with up to 182× speedup in runtime performance

• Accurate with a mean improvement in AUC of 20% or more

on many applications

• Expressive and flexible with many interchangeable com-

ponents making it useful for a range of applications, graph

types, and learning scenarios.

• Parallel with strong scaling results.

REFERENCES
[1] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. 2015.

Efficient Graphlet Counting for Large Networks. In ICDM. 10.

[2] Nesreen K. Ahmed, Ryan A. Rossi, Theodore L. Willke, and Rong Zhou. 2017.

Edge Role Discovery via Higher-order Structures. In PAKDD. Springer.
[3] Nesreen K. Ahmed, Theodore L. Willke, and Ryan A. Rossi. 2016. Estimation of

Local Subgraph Counts. In IEEE BigData. 586–595.
[4] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. 2010. Oddball: Spotting

anomalies in weighted graphs. PAKDD (2010), 410–421.

[5] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly

detection and description: a survey. DMKD 29, 3 (2015), 626–688.

[6] Mohammad Al Hasan and Mohammed J Zaki. 2011. A survey of link prediction

in social networks. In Social Network Data Analytics. Springer, 243–275.
[7] Yoshua Bengio. 2009. Learning deep architectures for AI. Foundations and Trends

in Machine Learning 2, 1 (2009), 1–127.

[8] Yoshua Bengio. 2013. Deep learning of representations: Looking forward. In SLSP.
Springer, 1–37.

[9] Adrien Bibal and Benoît Frénay. 2016. Interpretability of machine learning models

and representations: an introduction. In Proc. ESANN. 77–82.
[10] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and

Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-

tectures. In SIGKDD. 119–128.
[11] Ting Chen and Yizhou Sun. 2017. Task-Guided and Path-Augmented Heteroge-

neous Network Embedding for Author Identification. In WSDM. 295–304.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT

Press.

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD. 855–864.
[14] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network

embedding. In WSDM. 731–739.

[15] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[16] Mehmet Koyutürk, Yohan Kim, Umut Topkara, Shankar Subramaniam, Wojciech

Szpankowski, and Ananth Grama. 2006. Pairwise alignment of protein interaction

networks. JCB 13, 2 (2006), 182–199.

[17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. In ICLR Workshop.
[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

NIPS.
[20] Jennifer Neville and David Jensen. 2000. Iterative classification in relational data.

In AAAI Workshop on Learning Statistical Models from Relational Data. 13–20.
[21] Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo,

and Vito Latora. 2013. Graph metrics for temporal networks. In Temporal
Networks. Springer, 15–40.

[22] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

Convolutional Neural Networks for Graphs. In arXiv:1605.05273.
[23] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD. 701–710.
[24] Robert Pienta, James Abello, Minsuk Kahng, andDuenHorng Chau. 2015. Scalable

graph exploration and visualization: Sensemaking challenges and opportunities.

In BigComp.
[25] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. 2004. Defining and

identifying communities in networks. PNAS 101, 9 (2004), 2658–2663.
[26] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive GraphAnalytics and Visualization. InAAAI. http://networkrepository.
com

[27] Ryan A. Rossi and Nesreen K. Ahmed. 2015. Role Discovery in Networks. TKDE
27, 4 (2015), 1112–1131.

[28] Ryan A. Rossi, Luke K. McDowell, David W. Aha, and Jennifer Neville. 2012.

Transforming graph data for statistical relational learning. JAIR 45, 1 (2012),

363–441.

[29] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2016. Relational Similarity

Machines. In KDD MLG. 1–8.
[30] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2017. Deep Feature Learning

for Graphs. In arXiv:1704.08829. 11.
[31] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2009. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2009), 61–80.

[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale Information Network Embedding.. In WWW.

[33] Alfredo Vellido, José David Martín-Guerrero, and Paulo JG Lisboa. 2012. Making

machine learning models interpretable.. In ESANN, Vol. 12. 163–172.
[34] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M

Borgwardt. 2010. Graph kernels. JMLR 11 (2010), 1201–1242.

[35] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-

ding. In SIGKDD. 1225–1234.
[36] Jason Weston, Frédéric Ratle, and Ronan Collobert. 2008. Deep learning via

semi-supervised embedding. In ICML. 1168–1175.
[37] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S Yu. 2017. Embedding of

Embedding (EOE): Joint Embedding for Coupled Heterogeneous Networks. In

WSDM. ACM, 741–749.

[38] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting semi-

supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861
(2016).

http://networkrepository.com
http://networkrepository.com

	Abstract
	1 Introduction
	1.1 Summary of Contributions

	2 Framework
	2.1 Base Graph Features
	2.2 Relational Function Space & Expressivity
	2.3 Searching the Relational Function Space
	2.4 Feature Diffusion
	2.5 Computational Complexity

	3 Experiments
	3.1 Experimental settings
	3.2 Within-Network Link Classification
	3.3 Analysis of Space-Efficiency
	3.4 Runtime & Scalability
	3.5 Parallel Scaling
	3.6 Node Classification

	4 Related Work
	5 Conclusion
	References

