
Similarity-based Multi-label Learning
Ryan A. Rossi
Adobe Research

rrossi@adobe.com

Nesreen K. Ahmed
Intel Labs

nesreen.k.ahmed@intel.com

Hoda Eldardiry
Palo Alto Research Center

heldardiry@parc.com

Rong Zhou
Google

rongzhou@google.com

Abstract—Multi-label classification is an important learning
problem with many applications. In this work, we propose a
similarity-based approach for multi-label learning called SML.
We also introduce a similarity-based approach for predicting
the label set size. SML is amenable to streaming data and
online learning, naturally able to handle changes in the problem
domain, robust to training data with skewed class label sets,
accurate with low variance, and lends itself to an efficient
parallel implementation. The experimental results demonstrate
the effectiveness of SML for multi-label classification where it
is shown to compare favorably with a wide variety of existing
algorithms across a range of evaluation criterion.

I. INTRODUCTION

Multi-label classification is an important learning problem [1]
with applications in bioinformatics [2], image & video annota-
tion [3], [4] and query suggestions [5]. The goal of multi-label
classification is to predict a label vector y ∈ {0, 1}K for a
given unseen data point x ∈ RM . Previous work has mainly
focused on reducing the multi-label problem to a more standard
one such as multi-class [6], [7] and binary classification [8],
ranking [9] and regression [10], [11]. Standard multi-class
approaches can be used by mapping a multi-label problem
with K labels to a multi-class problem with 2K labels [6],
[7]. Binary classification methods can also be used by copying
each feature vector K times and for each copy k an additional
dimension is added with value k; and the training label is
set to 1 if label k is present and 0 otherwise [8]. Rank-based
approaches attempt to rank the relevant labels higher than
irreverent ones [9]. Regression methods map the label space
onto a vector space where standard regression methods can
be applied [10], [11]. Methods that explicitly model label
correlations have also been proposed [12], [13] as well as
methods for large-scale problems with priors [14] and missing
labels [15]. For further details, we refer the reader to a recent
survey by Zhang et al. [16].

In this work, we introduce a similarity-based approach for
multi-label learning called SML that gives rise to a new class of
methods for multi-label classification. SML has the following
important properties: it is accurate with low variance, amenable
to streaming data and online learning, naturally able to handle
changes in the problem domain, robust to training data with
skewed/unbalanced class label sets, and lends itself to an
efficient parallel implementation. Furthermore, we also present
a similarity-based set size prediction algorithm for predicting
the number of labels associated with an unknown test instance
x. Experiments on a number of data sets demonstrate the
effectiveness of SML as it compares favorably to existing

methods across a wide range of evaluation criterion. The
experimental results indicate the practical significance of SML.

In addition, SML is a direct approach for multi-label
learning. This is in contrast to existing methods that are mostly
indirect approaches that transform the multi-label problem to
a binary, multi-class, or regression problem and apply standard
algorithms (e.g., decision trees). Furthermore, other rank-based
approaches such as RANK-SVM [9] are also indirect extensions
of SVM [17], [18] to multi-label classification. Notably, SML
completely avoids such mappings (required by SVM) and is
based on the more general notion of similarity [19].

II. PRELIMINARIES

Let X = RM denote the input space and let Y =
{1, 2, . . . ,K} denote the set of possible class labels. Given a
multi-label training set D defined as:

D = {(x1, Y1), . . . , (xN , YN)} (1)

where xi ∈ X is a M -dimensional training vector representing
a single instance and Yi is the label set associated with xi.
Given D the goal of the multi-label learning problem is to
learn a function h : X → 2K which predicts a set of labels for
an unseen instance xj ∈ RM . A multi-label learning algorithm
typically outputs a real-valued function f : X ×Y → R where
fk(xi) is the confidence of label k ∈ Y for the unseen test
instance xi. Given an instance xi and its associated label set
Yi, a good multi-label learning algorithm will output larger
values for labels in Yi and smaller values for labels not in Yi.

We consider a variety of evaluation criterion for comparing
multi-label learning algorithms. The multi-label hamming loss
is the fraction of incorrectly classified instance-label pairs:

ED(f) =
1

N

N∑
i=1

1

K

∣∣∣h(xi) ∆Yi

∣∣∣ (2)

where ∆ is the symmetric difference between the predicted
label set Ŷi = h(xi) and the actual ground truth label set Yi.
A misclassified instance-label pair corresponds to either not
predicting an actual label of xi or incorrectly predicting an
irrelevant label for xi. One-error evaluates how many times
the top-ranked label is not in the set of ground truth (held-out)
labels:

ED(f) =
1

N

N∑
i=1

I

[[
arg max

k∈Y
fk(xi)

]
6∈ Yi

]
(3)

978-1-5090-6014-6/18/$31.00 ©2018 IEEE

where for any predicate p the indicator function I[p] = 1 iff p
holds and 0 otherwise. Perfect performance is achieved when
ED(f) = 0. Given a set of labels ordered from most likely to
least, coverage measures the max position in the ordered list
such that all proper labels are recovered:

ED(f) =
1

N

N∑
i=1

max
k∈Yi

π(xi, k)− 1 (4)

where π(xi, k) is the rank of label k ∈ Yi when the real-
valued function values f1(xi), f2(xi), . . . , fK(x) representing
label confidence scores are sorted in descending order (largest
to smallest). Ranking loss measures the fraction of reversely
ordered label pairs:

ED(f)=
1

N

N∑
i=1

1

|Yi||Ȳi|

∣∣∣{(k, k′)∈Yi×Ȳi

∣∣ fk(xi)≤fk′(xi)
}∣∣∣ (5)

Average precision measures the average fraction of relevant
labels ranked higher than a particular label k ∈ Yi:

ED(f) =
1

N

N∑
i=1

1

|Yi|
∑
k∈Yi

∣∣{k′∈Yi | π(xi, k
′)≤π(xi, k)

}∣∣
π(xi, k)

(6)

Multi-label algorithms should have high precision (Eq. 6) with
low hamming loss (Eq. 2), one-error (Eq. 3), coverage (Eq. 4),
and ranking loss (Eq. 5).

III. SIMILARITY-BASED MULTI-LABEL LEARNING

This section describes the class of similarity-based multi-label
learning methods called SML.

A. Estimation

Given a multi-label training set D = {(x1, Y1), . . . ,
(xj , Yj), . . . , (xN , YN)} where xj ∈ RM is a M -dimensional
training vector representing a single instance and Yj is the label
set associated with xj , the goal of multi-label classification is to
predict the label set Yi of an unseen instance xi ∈ RM . In this
work, we normalize xi as ‖xi‖ =

√
〈xi,xi〉 where 〈xi,xi〉 is

the inner product and ‖xi‖ is simply the magnitude of xi, thus
the normalized vector is simply xi/‖xi‖. However, SML works
well for other norms which can be selected depending on the
application. Given the subset Dk ⊆ D of training instances
with label k ∈ {1, 2, . . . ,K} defined as

Dk =
{

(xi, Yi) ∈ D | k ∈ Yi
}

(7)

we estimate the weight fk(xi) of label k for an unseen test
instance xi ∈ RM as:

fk(xi) =
∑

xj∈Dk

Φ 〈xi,xj〉 (8)

where Φ denotes an arbitrary similarity function. Notably,
the proposed family of similarity-based multi-label learning
algorithms can leverage any arbitrary similarity function Φ.
Furthermore, our approach does not require mappings in high-
dimensional Hilbert spaces [20], [21] as required by RANK-
SVM [9]. We define a few parameterized similarity functions

Algorithm 1 Similarity-based Multi-label Learning (SML)

1 procedure SML(a set of training instances D =

{(x1, Y1), . . . , (xN , YN)}, an unseen test instance xi, a similarity
function Φ with hyperparameter γ)

2 Normalize the unseen test instance xi ← g(xi)

3 p =
[

0 · · · 0
]
∈ RK . also denoted by f(xi)

4 parallel for each (xj , Yj) ∈ D do
5 Sij = Φ 〈xi,xj〉
6 for each k ∈ Yj do
7 pk = pk + Sij

8 end for
9 end parallel

10 Predict label set Ŷi using Eq. 13 (or by solving Eq. 16 and using t
to predict Ŷi)

11 return label confidences p ∈ RK and label set Ŷi

below. Given M -dimensional vectors xi and xj , the RBF
similarity function is:

Φ(xi,xj) = exp
[
−γ ‖xi − xj‖2

]
(9)

A common class of similarity measures for vectors of uniform
length are polynomial functions:

Φ(xi,xj) =
[
〈xi,xj〉+ c

]d
(10)

where 〈·, ·〉 is the inner product of two vectors, d is the degree
of the polynomial, and c is a regularization term trading off
higher-order terms for lower-order ones in the polynomial.
Linear-SML and quadratic-SML are special cases of Eq. (10)
where d = 1 and d = 2, respectively. Polynomial kernels are
important for NLP and other applications [22]. Furthermore,
all label weights denoted by f(xi) for test instance xi are
estimated as:

f(xi) =


f1(xi)

...

fK(xi)

 =


∑

xj∈D1

Φ 〈xi,xj〉

...∑
xj∈DK

Φ 〈xi,xj〉

 (11)

The approach is summarized in Algorithm 1.

After estimating f(xi) =
[
f1(xi) · · · fK(xi)

]T ∈ RK via
Eq. 11, we predict the label set Yi of xi; see Section III-B for
further details. As an aside, binary and multi-class problems
are special cases of the proposed family of similarity-based
multi-label learning algorithms. Furthermore, the binary and
multi-class algorithms are recovered as special cases of SML
when |Yi| = 1, for 1 ≤ i ≤ N . Indeed, the proposed
similarity-based multi-label learning approach expresses a
family of algorithms as many components are interchangeable
such as the similarity function Φ, normalization, and the
sampling or sketching approach to reduce the training data. The
expressiveness and flexibility of SML enables it to be easily

2018 International Joint Conference on Neural Networks (IJCNN)

adapted for application-specific tasks and domains. In addition,
SML lends itself to an efficient and straightforward parallel
implementation.

B. Similarity-based Label Set Prediction

We present a similarity-based approach for predicting the
label set size. For each label set Yi corresponding to a
training instance xi in the training set D, we set its label
to |Yi|, i.e., the number of labels associated with xi. Let
y = [y1 y2 · · · yN] ∈ RN denote an N -dimensional label
vector where each yi = |Yi| is the new transformed cardinality
label of xi in D. The new label vector y ∈ RN is used
to predict the label set size. In particular, the new training
data is: D′ = {(xi, yi)}, for i = 1, 2, . . . , N where the label
set Yi of each instance is replaced by its transformed label
yi that encodes the label set size |Yi| of xi. Furthermore,
let Y ′ = {|Yi|}Ni=1 denote the label space given by the
transformation and K ′ = |Y ′| denote the number of unique
labels (i.e., label set cardinalities). It is straightforward to see
that the above transforms the original multi-label classification
problem into a general multi-class problem for predicting the
label set size.

Given D′ = {(x1, y1), . . . , (xN , yN)}, the label set size
of an unseen instance xi is predicted as follows. First, the
similarity of xi with respect to each training instance (xj , yj) ∈
D′ is derived as Φ(xi,xj), 1 ≤ j ≤ N and the similarities
from training instances with the same set size (label) k ∈ Y ′
are combined via addition. More formally, the similarity of
instances in D′ of the same set size (class label) k ∈ Y ′ with
respect to xi is:

fk(xi) =
∑

xj∈D′
k

Φ 〈xi,xj〉 (12)

where D′k ⊆ D′ is the subset of training instances with label
k ∈ Y ′. Therefore, we predict the set size of xi using the
following decision function:

ξ(xi) = arg max
k∈Y′

∑
xj∈D′

k

Φ 〈xi,xj〉 (13)

where ξ(·) is the predicted label set size for xi. It is straight-
forward to see that ξ(xi) is the label set size with maximum
similarity. Given the label set size ξ(xi), we predict the label
set Ŷi of xi by ordering the labels from largest to smallest
weight based on f1(xi), f2(xi), . . . , fK(xi) and setting Ŷi to
the top ξ(xi) labels with the largest weight. We also define a
stronger decision function that requires a test instance xi be
more similar to class k than it is to the combined weight of
all other classes:

ξ(xi) = arg max
k∈Y′

fk(xi) >
∑
c6=k

fc(xi) (14)

Notice that Eq. 13 and Eq. 14 essentially solve regression
problems using a multi-class variant of the proposed similarity-
based approach.

Alternatively, we can infer the label set of xi by learning a
threshold function t : X → R such that:

h(x) =
{
k | fk(x) > t(x), k ∈ Y

}
(15)

where fk(x) is the confidence of label k ∈ Y for the unseen
test instance x. To learn the threshold function t(·), we assume
a linear model t(x) = 〈w, f(x)〉+ b. More formally, we solve
the following problem based on the training set D:

minimize
w,b

N∑
i=1

[
〈w, f(xi)〉+ b− s(xi)

]2
(16)

In Eq. 16, we set s(xi) as:

s(xi) = arg min
τ∈R

∣∣{k ∈ Yi s.t. fk(xi) ≤ τ}
∣∣ (17)

+
∣∣{q ∈ Ȳi s.t. fq(xi) ≥ τ}

∣∣
where Ȳi is the complement of Yi. After learning the threshold
function t(·), we use it to predict the label set Yi for the unseen
instance xi. Nevertheless, any approach that predicts the label
set Yi from the learned weights f1(xi), . . . , fK(xi) can be
used by SML; see [1], [16] for other possibilities.

C. Complexity Analysis

SML is both time and space-efficient for large data and naturally
amenable to streaming data and online learning [25], [26], [27].
Given a single test instance x, the runtime of SML isO(NMK̄)
where N is the number of training instances, M is the number
of attributes, and K̄ = 1

N

∑N
i=1 |Yi| is the average number of

labels per training instance. This is straightforward to see as
SML derives the similarity between each training instance’s M -
dimensional attribute vector. The space complexity of SML for a
single test instance x is O(K) where K is the number of labels.
This obviously is not taking into account the space required
by SML and other methods to store the training instances
and the associated label sets. For the similarity-based set size
prediction approach, the time complexity is only O(NM) since
the label set size with maximum similarity can be maintained
in o(1) time. However, the approach uses O(K ′) space where
K ′ ≤ K.

As an aside, if the M -dimensional feature vectors
{x1,x2, . . . ,xi, . . .} are sparse (i.e., |Ω(xi)| � M
where Ω(xi) denotes the nonzero indices of xi) then
Φ(xi, zj), for 1 ≤ i ≤ N is solved efficiently by hashing the
values of the unseen test instance xj via a perfect hash function
and then using this to efficiently test the similarity between only
the nonzero elements of xi. Thus, it takes O(|Ω(xj)|) time to
create the hash table for the unseen test instance xj which is
only performed once (in the outer loop) and then for each of the
nonzero values in the training instance xi we obtain from xj
the corresponding test instance feature value in only o(1) time.
This gives a total time complexity of O(|Ω(xj)| + |Ω(xi)|).
However, since the hash table is only computed once (in the
outer loop) for all N training instances this cost becomes
neglible. Therefore, evaluating Φ(xi, zj), for 1 ≤ i ≤ N
takes only O(|Ω(xj)|+N |Ω(xi)|) = O(N |Ω(xi)|). In terms

2018 International Joint Conference on Neural Networks (IJCNN)

TABLE I
EXPERIMENTAL RESULTS FOR EACH MULTI-LABEL LEARNING ALGORITHM ON THE YEAST DATA (MEAN+−STD).

Evaluation criterion SML ML-KNN [23] BOOSTEXTER [8] ADTBOOST.MH [24] RANK-SVM [9]

Hamming loss (↓) 0.193 +− 0.013 0.194 +− 0.010 0.220 +− 0.011 0.207 +− 0.010 0.207 +− 0.013
One-error (↓) 0.220 +− 0.021 0.230 +− 0.030 0.278 +− 0.034 0.244 +− 0.035 0.243 +− 0.039
Coverage (↓) 6.082 +− 0.184 6.275 +− 0.240 6.550 +− 0.243 6.390 +− 0.203 7.090 +− 0.503

Ranking loss (↓) 0.155 +− 0.011 0.167 +− 0.016 0.186 +− 0.015 N/A 0.195 +− 0.021
Average precision (↑) 0.783 +− 0.016 0.765 +− 0.021 0.737 +− 0.022 0.744 +− 0.025 0.749 +− 0.026

TABLE II
RELATIVE PERFORMANCE COMPARISON OF THE MULTI-LABEL LEARNING ALGORITHMS ON THE YEAST DATA.

Evaluation criterion A1=SML A2=ML-KNN A3=BOOSTEXTER A4=ADTBOOST.MH A5=RANK-SVM

Hamming loss (↓) A1�A3, A1�A4, A1�A5, A2�A3, A2�A4, A2�A5, A4�A3, A5�A3

One-error (↓) A1�A3, A1�A4, A1�A5, A2�A3, A4�A3, A5�A3

Coverage (↓) A1�A2, A1�A3, A1�A4, A1�A5

A2�A3, A2�A4, A2�A5, A3�A5, A4�A3, A4�A5

Ranking loss (↓) A1�A2, A1�A3, A1�A5, A2�A3, A2�A5

Average precision (↑) A1�A2, A1�A3, A1�A4, A1�A5, A2�A3, A2�A4

Total order (Eq. 20) SML(17) > ML-KNN(8) > ADTBOOST.MH(-3) > RANK-SVM(-8) > BOOSTEXTER(-14)

of space, it takes O(M) space to store the hash table, O(K) to
store the estimated similarity weights for the test instance xj
and O(2|Ω(xj)|+ 2|Ω(xi)|) to store the sparse test and train
instance. As an aside, the labels of each instance are stored as
sets with no additional data structures required.

D. Group-based Centroid Sketch

Now we describe a group-based centroid sketching approach
for multi-label learning algorithms. The goal of the approach
is to reduce the computational complexity of a multi-label clas-
sification algorithm while maintaining a similar classification
performance (high accuracy, low error). As an aside, obviously
the sketching algorithm must take significantly less time than
solving the multi-label learning problem directly using all
available training data. Therefore, in general, a sketching
algorithm must be fast taking sub-linear or linear time at most.

There are two general approaches. The first general approach
to computing a sketch is based on a sampling mechanism (or
distribution) F (i.e., the distribution F may be a weighted or
uniform distribution). These sampling-based methods compute
a sketch Ds ⊆ D of the training data where Ds is a small but
representative sample of the original training set D such that
N � Ns where N = |D| and Ns = |Ds|. For instance, in the
case of a uniform distribution we have the following:

Ds = {(xi, Yi) ∈ D | i ∼ UniformDiscrete{1, 2, . . . , N}}Ns
j=1

The second type of approach is based on generating novel train-
ing instances from the initial training data. These generative-
based methods compute a sketch that represents a novel training
set Ds 6⊆ D where (x∗i , Yi) 6∈ D, for 1 ≤ i ≤ Ns such that
Ns � N . The goal is to derive or learn (in an unsupervised
fashion) new training instances that summarize the original
training data while improving the power of generalization. As
an aside, it is possible for a multi-label learning approach using

the set of new training vectors to outperform the same approach
using the original training data, e.g., if the new training vectors
generalize better. In this work, we focus primarily on the
second type and propose a generative-based sketching method
for multi-label problems. We describe the group-based centroid
sketching approach below:

The first step is to derive Y ∗ = {Y ∗1 , Y ∗2 , . . . , Y ∗L} consisting
of all the unique label sets from the training data D. In addition,
let X∗ = {X∗1,X

∗
2, . . . ,X

∗
L} denote the sets of training vectors

associated with the L label sets in Y ∗ where X∗k ∈ X∗ is a
matrix containing the training vectors associated with the label
set Y ∗k ∈ Y ∗. For each X∗k ∈ X∗ where X∗k is an Nk ×M
matrix:

X∗k =
[
· · · xi · · ·

]T
(18)

we derive a C ×M matrix Ck = [· · · ci · · ·] of “iterative
centroids” where C ≤ Nk by solving:

arg min
S

C∑
i=1

∑
x∈Sj

‖x− ci‖2 (19)

where the Nk training vectors in X∗k associated with the label
set Y ∗k are partitioned into C ≤ Nk sets S = {S1, . . . , SC}.
Notice that k-means is used to derive C “iterative centroids”
(Equation 19). However, any approach that derives a compact
summarization of the data can be used. Next, each iterative
centroid vector ci in Ck is assigned the label set Y ∗k (which
can also be defined as a binary vector y∗k ∈ {0, 1}K). Finally,
we use the centroids C1,C2, . . . ,CL along with the associated
label sets Y ∗1 , Y

∗
2 , . . . , Y

∗
L as input into a multi-label learning

algorithm such as SML (Algorithm 1). It is straightforward to
see that if C = Nk then we recover the actual training vectors
[· · · xi · · ·] as the centroids. Furthermore, if C = 1 then the
new training vector is simply the centroid (mean vector) of the

2018 International Joint Conference on Neural Networks (IJCNN)

TABLE III
RESULTS OF THE MULTI-LABEL LEARNING ALGORITHMS FOR NATURAL SCENE CLASSIFICATION (MEAN+−STD).

Evaluation criterion SML ML-KNN [23] BOOSTEXTER [8] ADTBOOST.MH [24] RANK-SVM [9]

Hamming loss (↓) 0.140 +− 0.009 0.169 +− 0.016 0.179 +− 0.015 0.193 +− 0.014 0.253 +− 0.055
One-error (↓) 0.252 +− 0.026 0.300 +− 0.046 0.311 +− 0.041 0.375 +− 0.049 0.491 +− 0.135
Coverage (↓) 0.984 +− 0.112 0.939 +− 0.100 0.939 +− 0.092 1.102 +− 0.111 1.382 +− 0.381

Ranking loss (↓) 0.164 +− 0.020 0.168 +− 0.024 0.168 +− 0.020 N/A 0.278 +− 0.096
Average precision (↑) 0.852 +− 0.016 0.803 +− 0.027 0.798 +− 0.024 0.755 +− 0.027 0.682 +− 0.093

TABLE IV
PERFORMANCE COMPARISON OF THE MULTI-LABEL LEARNING ALGORITHMS FOR SCENE CLASSIFICATION.

Evaluation criterion A1=SML A2=ML-KNN A3=BOOSTEXTER A4=ADTBOOST.MH A5=RANK-SVM

Hamming loss (↓) A1�A2, A1�A3, A1�A4, A1�A5, A2�A3, A2�A4, A2�A5,
A3�A4, A3�A5, A4�A5

One-error (↓) A1�A2, A1�A3, A1�A4, A1�A5, A2�A4, A2�A5, A3�A4, A3�A5, A4�A5

Coverage (↓) A1�A4, A1�A5, A2�A4, A2�A5, A3�A4, A3�A5, A4�A5

Ranking loss (↓) A1�A5, A2�A5, A3�A5

Average precision (↑) A1�A2, A1�A3, A1�A4, A1�A5, A2�A4, A2�A5, A3�A4, A3�A5, A4�A5

Total order (Eq. 20) SML(15) > ML-KNN(7) > BOOSTEXTER(5) > ADTBOOST.MH(-8) > RANK-SVM(-19)

Nk ×M matrix X∗k.

IV. EXPERIMENTS

In this section, we investigate SML for multi-label classification
on a number of multi-label problems from different domains
using a range of evaluation criterion. We compare the per-
formance of SML against a variety of multi-label algorithms
including:

• ML-KNN [23]: A kNN-based multi-label approach that
uses Euclidean distance to find the top-k instances that are
closest in the N -dimensional euclidean space. ML-KNN
was shown to perform well for a variety of multi-label
problems.

• BOOSTEXTER [8]: A boosting-based multi-label algorithm
called BOOSTEXTER.

• ADTBOOST.MH [24]: An indirect multi-label approach
that uses decision trees.

• RANK-SVM [9]: An indirect multi-label SVM approach
based on ranking.

For BOOSTEXTER and ADTBOOST.MH we use 500 and 50
boosting rounds respectively since performance did not change
with more rounds (which is consistent with [23]). For RANK-
SVM we use polynomial kernels with degree 8 which performs
best as shown in [9], [23]. Unless otherwise mentioned, our
approach uses the RBF similarity function in Eq. (9); the
RBF hyperparameter is learned automatically via k-fold cross-
validation on 10% of the labeled data. All multi-label learning
algorithms are evaluated using a wide variety of evaluation
criterion including hamming loss, one error, coverage, ranking
loss, and average precision. Multi-label algorithms should have
high precision with low hamming loss, one-error, coverage,
ranking loss.

Gene functional classification: The first multi-label learning
task we evaluate is based on predicting the functions of
genes from Yeast Saccharomyces cerevisiae - a widely studied
organism in bioinformatics [2]. Each gene may take on multiple
functional classes. Each gene consists of a concatenation of
micro-array expression data and phylogenetic profile data.
Following Elisseeff et al. [9], we preprocess the data such
that only the known structure of the functional classes are used.
This corresponds to using only the functional classes in the
top hierarchy as done by [9], [23]. The resulting multi-label
yeast data consists of N = 2417 genes where each gene is
represented by a (M = 103)-dimensional feature vector. There
are K = 14 functional classes (labels).

We use 10-fold cross-validation and show the mean and
standard deviation. Experimental results for SML and other
multi-label learning algorithms are reported in Table I. Notably,
all multi-label algorithms are compared across a wide range of
evaluation metrics. The best result for each evaluation criterion
is shown in bold. In all cases, our approach outperforms all
other multi-label learning algorithms across all 5 evaluation
criterion. Furthermore, the variance of SML is also smaller than
the variance of other multi-label learning algorithms in most
cases. This holds across all multi-label learning algorithms for
coverage, average precision, and ranking loss.1

To better understand the relative predictive performance
between the multi-label classification algorithms, we define
a partial order � between the algorithms for each evaluation
metric where A1 � A2 implies that algorithm A1 is better
than A2 for a given evaluation criterion (e.g., ranking loss).
Table II summarizes the partial order between all the multi-label
learning algorithms in terms of each evaluation metric.

The partial order � measures the relative performance

1Note the ADTBOOST.MH [24] program does not provide ranking loss.

2018 International Joint Conference on Neural Networks (IJCNN)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fraction of train instances

0.72

0.73

0.74

0.75

0.76

0.77

A
vg
. P

re
ci
si
on

Yeast

Group-based Centroid Sketch
Uniform Random Sketch

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fraction of train instances

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

C
ov
er
ag

e

Yeast

Group-based Centroid Sketch
Uniform Random Sketch

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fraction of train instances

0.16

0.17

0.18

0.19

0.20

R
an

ki
ng

 L
os

s

Yeast

Fig. 1. Experimental results comparing the various sketch approaches as the fraction of train instances varies. Note the number of centroids learned by our
approach depends on the number of training vectors associated with a given set of labels.

between two algorithms for a specific evaluation criterion,
but does not measure the overall superiority of an algorithm
over all algorithms and evaluation criterion (Equation 2-6).
Therefore, we derive a score for each algorithm which allows
us to compare the overall superiority of an algorithm over
another across all evaluation criterion. For this we use the
scoring scheme from [23]. Given an algorithm Ai, we measure
the overall superiority of Ai over all the other algorithms
Aj ∈ A and across all evaluation criterion E = {E1, . . . ,Ep}
as follows:

Γ(Ai) =
∑
Ek∈E

∑
Aj∈A
i6=j

∆
(
Ai,Aj ‖ Ek

)
(20)

where

∆
(
Ai,Aj ‖ Ek

)
=


1 if Ai � Aj holds
−1 if Aj � Ai holds

0 otherwise
(21)

From Equation 20 it is straightforward to derive a total order
on the set of all multi-label algorithms A. The total order along
with the score Γ(Ai) of each algorithm Ai ∈ A are provided
in the last row of Table II.

Overall, SML significantly outperforms all other multi-
label learning algorithms across all evaluation criterion as
summarized by the total order (and scores derived from
Equation 20) reported in Table II. The scores shown in
parentheses summarize the number of times an algorithm
outperforms another or vice-versa. Strikingly, the difference
in score between SML and the next best multi-label algorithm
ML-KNN is large.

Scene classification: The second multi-label learning task we
evaluate SML for is natural scene classification using image
data. In scene classification each image may be assigned
multiple labels representing different natural scenes such as
an image labeled as a mountain and sunset scene. Therefore,
given an unseen image the task is to predict the set of scenes
(labels) present in it. The scene data consists of 2000 images
where each image contains a set of manually assigned labels.
There are K = 5 labels, namely, desert, mountains, sea, sunset,

and trees. Each image is represented by a 294-dimensional
feature vector derived using the approach in [7].

We use 10-fold cross-validation and show the mean and
standard deviation. The experimental results of SML and the
other multi-label algorithms using the natural scene classifi-
cation data are reported in Table III. The best result for each
evaluation criterion is in bold. From Table III, it is obvious that
SML outperforms all other multi-label algorithms on all but one
evaluation criterion, namely, coverage. In terms of coverage
ML-KNN and BOOSTEXTER are tied and have slightly lower
coverage than SML.

The relative performance between the algorithms for scene
classification is shown in Table IV and is similar to the relative
performance observed using the yeast data for gene functional
classification. The main difference is that BOOSTEXTER
outperforms ADTBOOST.MH and RANK-SVM. In particular,
the total order given by Eq. 20 is SML(15) > ML-KNN(7) >
BOOSTEXTER(5) > ADTBOOST.MH(-8) > RANK-SVM(-19).
However, it is straightforward to derive the partial order “�”
and total order “>” from Table III using Equation 20. Overall,
it is clear from Table IV that SML is superior to all multi-label
learning algorithms in terms of all evaluation criterion.

Web page categorization: We also investigate the effectiveness
of SML for text categorization using a variety of web page
categorization data sets collected from the Yahoo directory
where each data set represents a top-level web page category
from the Yahoo directory such as Business & Economy and
the web pages under this category are categorized further into
sub-categories. Following the same experimental setup in [23],
we reduce the dimensionality of the feature vectors by selecting
only the top 2% most frequent words used among the collection
of web pages (documents). After selecting the terms, each web
page (document) is represented by an M -dimensional feature
vector where each feature value represents the frequency of a
given word on a particular page.

Experimental results are reported in Table V-VI. The best
result for each evaluation criterion is in bold. SML outperforms
the other algorithms over all web category data sets in terms
of one-error, coverage, ranking loss, and average precision.
In terms of hamming loss, there are a few web categories

2018 International Joint Conference on Neural Networks (IJCNN)

TABLE V
EXPERIMENTAL RESULTS WEB CATEGORIZATION.

S
M

L

M
L

-K
N

N
[2

3]

B
O

O
S
T

E
X

T
E

R
[8

]

A
D

T
B

O
O

S
T.

M
H

[2
4]

R
A

N
K

-S
V

M
[9

]

Ham. loss (Eq. 2) ↓
Arts & Humanities 0.0610 0.0612 0.0652 0.0585 0.0615

Business & Economy 0.0267 0.0269 0.0293 0.0279 0.0275
Computers & Internet 0.0382 0.0412 0.0408 0.0396 0.0392

Education 0.0393 0.0387 0.0457 0.0423 0.0398
Entertainment 0.0572 0.0604 0.0626 0.0578 0.0630

Health 0.0369 0.0458 0.0397 0.0397 0.0423
Recreation & Sports 0.0602 0.0620 0.0657 0.0584 0.0605

Reference 0.0294 0.0314 0.0304 0.0293 0.0300
Science 0.0322 0.0325 0.0379 0.0344 0.0340

Social & Science 0.0228 0.0218 0.0243 0.0234 0.0242
Society & culture 0.0537 0.0537 0.0628 0.0575 0.0555

One-error (Eq. 3) ↓
Arts & Humanities 0.4988 0.6330 0.5550 0.5617 0.6653

Business & Economy 0.1001 0.1213 0.1307 0.1337 0.1237
Computers & Internet 0.3694 0.4357 0.4287 0.4613 0.4037

Education 0.4642 0.5207 0.5587 0.5753 0.4937
Entertainment 0.4180 0.5300 0.4750 0.4940 0.4933

Health 0.3090 0.4190 0.3210 0.3470 0.3323
Recreation & Sports 0.4501 0.7057 0.5557 0.5547 0.5627

Reference 0.3957 0.4730 0.4427 0.4840 0.4323
Science 0.4951 0.5810 0.6100 0.6170 0.5523

Social & Science 0.3260 0.3270 0.3437 0.3600 0.3550
Society & culture 0.4040 0.4357 0.4877 0.4845 0.4270

Coverage (Eq. 4) ↓
Arts & Humanities 4.5893 5.4313 5.2973 5.1900 9.2723

Business & Economy 1.8047 2.1840 2.4123 2.4730 3.3637
Computers & Internet 3.2183 4.4117 4.4887 4.4747 8.7910

Education 3.1180 3.4973 4.0673 3.9663 8.9560
Entertainment 2.5320 3.1467 3.0883 3.0877 6.5210

Health 2.4831 3.3043 3.0780 3.0843 5.5400
Recreation & Sports 3.3320 5.1010 4.4737 4.3380 5.6680

Reference 2.3660 3.5420 3.2100 3.2643 6.9683
Science 4.7420 6.0470 6.6907 6.6027 12.401

Social & Science 2.5242 3.0340 3.6870 3.4820 8.2177
Society & culture 4.6080 5.3653 5.8463 4.9545 6.8837

where other methods perform better than SML. The total
order (indicating the superiority of a multi-label learning
algorithm over another) is SML > {ML-KNN, BOOSTEXTER}
> ADTBOOST.MH > RANK-SVM. Overall, SML is clearly
superior to the other multi-label learning algorithms in terms
of all evaluation criterion. This data differs fundamentally
from the others in two main ways. First, the features are
extremely sparse. Second, there are thousands of features
as opposed to tens or hundreds of features. Therefore, we
implemented a variant of SML that leverages specialized sparse
data structures. This provided a significant improvement in
performance (between 6-14 times faster) for such sparse data
with the above characteristics.

Group-based Centroid Sketch: Now we evaluate the group-

TABLE VI
(CONT.) EXPERIMENTAL RESULTS FOR WEB CATEGORIZATION.

S
M

L

M
L

-K
N

N
[2

3]

B
O

O
S
T

E
X

T
E

R
[8

]

A
D

T
B

O
O

S
T.

M
H

[2
4]

R
A

N
K

-S
V

M
[9

]

Ranking loss (Eq. 5) ↓
Arts & Humanities 0.1220 0.1514 0.1458 N/A 0.2826

Business & Economy 0.0274 0.0373 0.0416 N/A 0.0662
Computers & Internet 0.0640 0.0921 0.0950 N/A 0.2091

Education 0.0680 0.0800 0.0938 N/A 0.2080
Entertainment 0.0883 0.1151 0.1132 N/A 0.2617

Health 0.0420 0.0605 0.0521 N/A 0.1096
Recreation & Sports 0.1150 0.1913 0.1599 N/A 0.2094

Reference 0.0583 0.0919 0.0811 N/A 0.1818
Science 0.0882 0.1167 0.1312 N/A 0.2570

Social & Science 0.0470 0.0561 0.0684 N/A 0.1661
Society & culture 0.1087 0.1338 0.1483 N/A 0.1716

Avg. prec. (Eq. 6) ↑
Arts & Humanities 0.5970 0.5097 0.5448 0.5526 0.4170

Business & Economy 0.9015 0.8798 0.8697 0.8702 0.8694
Computers & Internet 0.7040 0.6338 0.6449 0.6235 0.6123

Education 0.6430 0.5993 0.5654 0.5619 0.5702
Entertainment 0.6885 0.6013 0.6368 0.6221 0.5637

Health 0.7632 0.6817 0.7408 0.7257 0.6839
Recreation & Sports 0.6490 0.4552 0.5572 0.5639 0.5315

Reference 0.7021 0.6194 0.6578 0.6264 0.6176
Science 0.6043 0.5324 0.5006 0.4940 0.5007

Social & Science 0.7535 0.7481 0.7262 0.7217 0.6788
Society & culture 0.6502 0.6128 0.5717 0.5881 0.5717

based centroid sketch approach. For comparison, we evaluate
the approach against a uniform random sketch that samples
training instances uniformly at random. Results are provided
in Figure 1. Overall, the group-based centroid approach
outperforms the other approach across all fractions of training
instances and evaluation criterion. Furthermore, the group-
based centroid sketch has a speedup of 11x compared to SML
(using the full data). For the scene classification data, we find a
runtime improvement of 90x when using only C = 1 centroid
per unique label set. The improvement in runtime is largely
determined by the number of unique label sets L relative
to the total number of training instances. Notice that each
unique label set is represented by at least one training example
(centroid). Therefore, data sets with relatively few unique label
sets (relative to the total number of training instances) will
lead to a better runtime improvement than a data set with a
relatively large number of unique label sets.

V. CONCLUSION

This work described a general class of similarity-based multi-
label learning methods called SML. Furthermore, we also
presented a similarity-based approach for predicting the label
set size. Experiments on a number of data sets demonstrate the
effectiveness of SML as it compares favorably to a variety of
existing methods across a wide range of evaluation criterion and

2018 International Joint Conference on Neural Networks (IJCNN)

multi-label problems. We also described a group-based centroid
sketch for speeding up SML and other multi-label methods.
Overall, the predictive performance of the group-based sketch
approach was shown to be similar to that of SML using the
full training data across a range of evaluation criterion, while
improving the runtime performance by an order of magnitude.

ACKNOWLEDGMENTS

We thank all the reviewers for many helpful suggestions and
feedback.

REFERENCES

[1] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
IJDWM, vol. 3, no. 3, 2006.

[2] P. Pavlidis and W. N. Grundy, “Combining microarray expression data
and phylogenetic profiles to learn gene functional categories using support
vector machines,” in ICCBB, 2000, yeast data.

[3] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos, “Supervised
learning of semantic classes for image annotation and retrieval,” TPAMI,
vol. 29, no. 3, pp. 394–410, 2007.

[4] C. Wang, S. Yan, L. Zhang, and H.-J. Zhang, “Multi-label sparse coding
for automatic image annotation,” in CVPR, 2009, pp. 1643–1650.

[5] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma, “Multi-label learning
with millions of labels: Recommending advertiser bid phrases for web
pages,” in WWW, 2013, pp. 13–24.

[6] A. McCallum, “Multi-label text classification with a mixture model
trained by em,” in AAAI workshop on Text Learning, 1999, pp. 1–7.

[7] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” Pattern recognition, vol. 37, no. 9, pp. 1757–1771,
2004.

[8] R. E. Schapire and Y. Singer, “Boostexter: A boosting-based system for
text categorization,” Machine learning, vol. 39, no. 2-3, pp. 135–168,
2000.

[9] A. Elisseeff and J. Weston, “A kernel method for multi-labelled
classification,” in NIPS, 2002, pp. 681–687.

[10] S. Ji, L. Sun, R. Jin, and J. Ye, “Multi-label multiple kernel learning,”
in NIPS, 2009, pp. 777–784.

[11] D. J. Hsu, S. M. Kakade, J. Langford, and T. Zhang, “Multi-label
prediction via compressed sensing,” in NIPS, 2009, pp. 772–780.

[12] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Incremental algorithms
for hierarchical classification,” JMLR, vol. 7, no. Jan, pp. 31–54, 2006.

[13] L. Cai and T. Hofmann, “Exploiting known taxonomies in learning
overlapping concepts.” in IJCAI, vol. 7, 2007, pp. 708–713.

[14] B. Hariharan, L. Zelnik-Manor, M. Varma, and S. Vishwanathan, “Large
scale max-margin multi-label classification with priors,” in ICML, 2010,
pp. 423–430.

[15] H.-F. Yu, P. Jain, P. Kar, and I. Dhillon, “Large-scale multi-label learning
with missing labels,” in ICML, 2014, pp. 593–601.

[16] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning
algorithms,” TKDE, vol. 26, no. 8, pp. 1819–1837, 2014.

[17] V. N. Vladimir, “The nature of statistical learning theory,” 1995.
[18] P. Wolfe, “A duality theorem for non-linear programming,” Quarterly of

applied mathematics, pp. 239–244, 1961.
[19] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Relational similarity machines,”

in Proceedings of the 12th International Workshop on Mining and
Learning with Graphs (MLG), 2016, pp. 1–8.

[20] J. Weston, C. Watkins et al., “Support vector machines for multi-class
pattern recognition.” ESANN, vol. 99, pp. 219–224, 1999.

[21] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” Transactions on Neural Networks, vol. 13,
no. 2, pp. 415–425, 2002.

[22] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin,
“Training and testing low-degree polynomial data mappings via linear
svm,” JMLR, vol. 11, no. Apr, pp. 1471–1490, 2010.

[23] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning,” Pattern recognition, vol. 40, no. 7, pp. 2038–2048,
2007.

[24] F. De Comité, R. Gilleron, and M. Tommasi, “Learning multi-label
alternating decision trees from texts and data,” in MLDM, vol. 2734.
Springer, 2003, p. 35.

[25] I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning
with drifting streaming data,” TNNLS, vol. 25, no. 1, pp. 27–39, 2014.

[26] N. K. Ahmed, N. Duffield, T. L. Willke, and R. A. Rossi, “On sampling
from massive graph streams,” in VLDB, 2017, pp. 1430–1441.

[27] L. O’callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani,
“Streaming-data algorithms for high-quality clustering,” in ICDE. IEEE,
2002, pp. 685–694.

2018 International Joint Conference on Neural Networks (IJCNN)

		2018-09-24T01:01:40-0400
	Certified PDF 2 Signature

