
ar
X

iv
:s

ub
m

it/
06

61
86

7
 [

cs
.S

I]
 2

5
Fe

b
20

13

A Fast Parallel Maximum Clique Algorithm for
Large Sparse Graphs and Temporal Strong Components

Ryan A. Rossi, David F. Gleich,
Assefaw H. Gebremedhin

Purdue University
Computer Science

{rrossi,dgleich,agebreme}@purdue.edu

Md. Mostofa Ali Patwary
Northwestern University

Electrical Engineering and
Computer Science

mpatwary@eecs.northwestern.edu

ABSTRACT
We propose a fast, parallel, maximum clique algorithm for
large, sparse graphs that is designed to exploit characteris-
tics of social and information networks. We observe roughly
linear runtime scaling over graphs between 1000 vertices and
100M vertices. In a test with a 1.8 billion-edge social net-
work, the algorithm finds the largest clique in about 20 min-
utes. For social networks, in particular, we found that using
the core number of a vertex in combination with a good
heuristic clique finder efficiently removes the vast majority
of the search space. In addition, we parallelize the explo-
ration of the search tree. In the algorithm, processes imme-
diately communicate changes to upper and lower bounds on
the size of maximum clique, which occasionally results in a
super-linear speedup because vertices with especially large
search spaces can be pruned by other processes. We use this
clique finder to investigate the size of the largest temporal
strong components in dynamic networks, which requires find-
ing the largest clique in a particular temporal reachability
graph.

Categories and Subject Descriptors
G.2.2 [Graph theory]: Graph algorithms; [Theory of
computation]: Dynamic graph algorithms

General Terms
Algorithms, Experimentation

Keywords
maximum clique, parallel algorithms, temporal strong com-
ponents, social networks, information networks

1. INTRODUCTION
We began studying how to compute cliques quickly in or-

der to compute the largest temporal strong component of
a dynamic network [40, 5]. When each edge represents a

contact – a phone call, an email, or physical proximity – be-
tween two entities at a specific point in time, we have an
evolving network structure [26] where a temporal path rep-
resents a sequence of contacts that obeys time. A temporal
strong component is a set of vertices where all pairwise tem-
poral paths exist, just like a strong component in a graph is
a set of vertices where all pairwise paths exist. We present
a formal treatment and discuss properties of the temporal
strong components we find in Twitter and phone call net-
works towards the end of the manuscript (Section 6).

Surprisingly, checking if an evolving network has a tempo-
ral strong component of size k is NP-complete [40, 5]. For
some intuition, we present a “wrong” reduction from the
perspective of establishing NP-hardness. A temporal strong
component of size k corresponds to a clique of size k in
a temporal reachability graph where each edge represents
a temporal path between vertices. Finding the maximum
clique, then, reveals the largest temporal strong component.
At a first glance, this is no help as even approximating the
largest clique is hard [34]. Yet, many real-world problems do
not elicit worst-cast behavior from well-designed algorithms.

We propose a state-of-the-art exact maximum clique finder
and use it to investigate cliques in temporal reachability net-
works as well as social and information networks. We demon-
strate that finding the largest clique in big social and infor-
mation networks is fast (Table 1). By way of example, we
can find the maximum clique in social networks with nearly
two billion edges in about 20 minutes with a 16-processor
shared memory system. In fact, for most social networks,
the majority of time is spent doing serialized preprocess-
ing work. Empirically, our method is observed to have a
roughly linear runtime (Figure 1) for these networks. As
a point of comparison, our new solver significantly outper-
forms one of our prior clique finders [47] as well as an off
the shelf clique enumerator (Section 5). Consequently, we
expect our maximum clique algorithms to be useful for tasks
such as analyzing large networks, evaluation of graph gener-
ators, community detection, and anomaly detection.

Our algorithm is a branch and bound method with novel
and aggressive pruning strategies. Four key components
stand out as features contributing to its efficiency. First,
the algorithm begins by finding a large clique using a fast
heuristic; the obtained solution is checked for optimality, and
in fact, in many cases turns out to be optimal. Second, the
algorithm uses the heuristic solution, in combination with
bounds on the largest clique, in order to guide the pruning
strategy. Third, we use implicit graph edits and periodic full
graph updates in order to keep our implementation efficient.

1

http://arxiv.org/submit/0661867/pdf

Fourth, we parallelize the search procedure in a manner use-
ful for shared memory and distributed computing.

We make our implementation and further experiments
available in an online appendix.

http://www.cs.purdue.edu/~dgleich/codes/maxcliques

2. MAXIMUM CLIQUES IN SOCIAL AND
INFORMATION NETWORKS

We experiment with 32 networks in 8 broad classes of so-
cial and information data. Later, we also consider temporal
reachability networks (Section 6). In the online appendix,
we present a more extensive collection of around 80 networks.
Table 1 describes the properties of the data, shows the size
of the largest clique, and states the time taken to find it. We
plot the runtime pictorially in Figure 1, which demonstrates
linear scaling between 1000 vertices and 100M vertices. Be-
low, we briefly explain the source of the data, what cliques
in the data signify, and some interesting observations about
cliques in social and information networks.

For all of the following networks, we discard any edge
weights, self-loops, and only consider the largest strongly
connected component. In contrast to the temporal compo-
nents we describe later, in this section we mean the stan-
dard strong components. If the graph is directed, we then
remove non-reciprocated edges. This strategy will identify
fully-directed cliques.

1. Biological networks. We study a network where the
nodes are proteins and the edges represent protein-protein
interactions (dmela [52]) and another where the nodes are
substrates and the edges are metabolic reactions (celegans) [20].
Cliques in these networks are biologically relevant modules.

2. Collaboration networks. These are networks in
which nodes represent individuals and edges represent scien-
tific collaborations or movie production collaborations (math-
scinet [44], dblp, hollywood [7]). Large cliques in these net-
works are expected because they are formed when collabo-
rations have many participants.

3. Interaction networks. Here, nodes represent individ-
uals and edges represent interaction in the form of message
posts (wiki-talk [36]).

4. Retweet networks. In retweet networks, nodes are
Twitter users and edges represent whether the users have
retweeted each other. We collected this network ourself.
Cliques are groups of users that have all mutually retweeted

3 4 5 6 7 8 9
−3

−2

−1

0

1

2

log |V| + |E|

lo
g

R
un

tim
e

3 4 5 6 7 8 9
−3

−2

−1

0

1

2

log |V| + |E|

lo
g

R
un

tim
e

Figure 1: The empirical runtime of our clique finder
in social and information networks scales almost lin-
early with the network dimension.

Table 1: For each of the social and information net-
works in this study we find the largest clique in less
than 21 minutes. The size of an initial heuristic
clique is ω̃ and the actual maximum clique is ω.

graph |V | |E| ω̃ ω Time (s.)

celegans 453 2.0k 9 9 <.01
dmela 7.4k 26k 7 7 0.06

mathsciet 333k 821k 25 25 0.08
dblp 317k 1.0M 114 114 0.05

hollywood 1.1M 56M 2209 2209 1.69

wiki-talk 92k 361k 14 15 0.09

retweet 1.1M 2.3M 13 13 0.58

whois 7.5k 57k 55 58 0.09
rl-caida 191k 608k 17 17 0.13

as-skitter 1.7M 11M 66 67 1.2

arabic-2005 164k 1.7M 102 102 0.03
wikipedia2 1.9M 4.5M 31 31 1.16

it-2004 509k 7.2M 432 432 0.12
uk-2005 130k 12M 500 500 0.06

cmu 6.6k 250k 45 45 0.09
mit 6.4k 251k 32 33 0.1

stanford 12k 568k 51 51 0.09
berkeley 23k 852k 42 42 0.16
uillinois 31k 1.3M 56 57 0.18

penn 42k 1.4M 43 44 0.24
texas 36k 1.6M 49 51 0.33
fb-a 3.1M 24M 23 25 6.3
fb-b 2.9M 21M 23 24 5.52

uci-uni 59M 92M 6 6 33.86

slashdot 70k 359k 25 26 0.06
gowalla 197k 950k 29 29 0.2
youtube 1.1M 3.0M 16 17 0.84

flickr 514k 3.2M 45 58 5.2
livejournal 4.0M 28M 214 214 2.98

orkut 3.0M 106M 44 47 48.49
twitter 21M 265M 174 323 598

friendster 66M 1.8B 129 129 1205

each other and may represent an interest cartel or anomaly.
5. Technological networks. The nodes in these net-

works are routers (as-skitter, rl-caida [10], whois [61]), and
edges are observed communications between the entities.

6. Web link networks. Here, nodes are web-pages and
edges are hyperlinks between pages (wikipedia [28], arabic-
2005, it-2004, uk-2005 [6]). The largest clique represents the
largest set of pages where full pairwise navigation is possible.

7. Facebook networks. The nodes are people and edges
represent“Facebook friendships”(CMU, MIT, Stanford, Berke-
ley, UIllinois, Penn, Texas [58], fb-a, fb-b [62], uci-uni [27]).

8. Social networks. Nodes are again people and edges
represent social relationships in terms of friendship or fol-
lower (orkut [38], LiveJournal [3], flickr [29], gowalla [13],
slashdot [37], youtube [39], twitter [35], friendster [Internet
Archive]).

In our investigation of these maximum cliques, we found:
• For the twitter network, the nodes in the largest clique

are a strange set of spam accounts and legitimate ac-
counts with thousands of followers and following thou-
sands. We believe that most members of this clique likely
reciprocate all follower relationships.

• Technological networks have surprisingly large cliques.
Given that a clique represents an overly redundant set
of edges, this would suggest that these cliques represent
over-built technology, or critical groups of nodes.

• In the online appendix we study the relationship between
the largest k-core and the largest clique. In collaboration

2

http://www.cs.purdue.edu/~dgleich/codes/maxcliques

networks we find that the largest k-core is a clique for ev-
ery graph. Social networks, in comparison, have a much
larger difference between the two, which suggests a fun-
damental difference in the types of networks formed via
collaboration relationships versus social relationships.

• Our heuristic (Section 4.1) found the largest clique in 17
of the 32 instances. In the larger set considered online,
it finds the largest in 52 of 72 networks. This property
helps the branch and bound algorithm terminate quickly.

3. BOUNDS ON THE CLIQUE SIZE
As a prelude to our algorithm, we review a few easy to

derive upper bounds on the size of the largest clique ω(G).
These bounds will allow us to terminate our algorithm once
we’ve found something that hits the upper-bound or stop a
local search early because there is no larger clique present.

A simple upper bound on the size of the largest clique
is the maximum degree in the graph. Usually, this is too
simple to be useful. A stronger bound on the size of the
largest clique comes from the k-cores of the network. A k-
core in a graph G is a vertex induced subgraph where all
vertices have degree at least k [51]. The core number of a
vertex v is the largest k such that v is in a k-core. Suppose
that G contains a clique of size k, then each vertex in the
clique has degree k − 1 and the entire graph must have a
k−1-core. Consequently, if K(G) is the largest core number
of any vertex in G, then K(G) + 1 is an upper bound on
the clique size. In contrast to cliques, the core numbers of
all vertices in a graph can be computed with a linear time
algorithm due to Batagelj et al. [4].

The value K(G) is also known as the degeneracy of the
graph. The quantity K(G) + 1 is an upper-bound on the
number of colors used by a greedy coloring algorithm that
processes vertices in order of decreasing core numbers – also
known as degeneracy order [25]. Note that the number of
colors used by any greedy coloring of G is also an upper-
bound on the size of the largest clique because a clique of
size k requires k colors. Let L(G) be the number of colors
used by a greedy coloring algorithm that uses the degeneracy
order. Then L(G) ≤ K(G) + 1 and we get a potentially
tighter bound on the size of the largest clique. The bound
L(G) can be computed in linear time with some care on the
implementation of the greedy coloring scheme. At this point,
we have the bounds:

ω(G) ≤ L(G) ≤ K(G) + 1.

We can further improve these bounds by using one ad-
ditional fact about the largest clique. Any neighborhood
graph of a vertex within the largest clique has a clique of
the same size within the neighborhood graph as well. The
way our algorithm proceeds is by iteratively removing ver-
tices from the graph that cannot be in the largest clique. Let
NR(v) be the vertex-induced subgraph of G corresponding
to v and all neighbors of v that haven’t been removed from
the graph yet. All the bounds above apply to finding the
largest clique in each of these neighborhood subgraphs. We
then have:

ω(G) ≤ max
v

L(NR(v)) ≤ max
v

K(NR(v)) + 1.

Computing these bounds requires slightly more than linear
work. For each vertex, we must form the neighborhood
graph. If we look at the union of all of these neighbor-

hood graphs, there is a vertex in some neighborhood graph
for each edge in G. Thus, there are a total of O(|E|) ver-
tices in all neighborhoods. By the same argument, there are
O(|E|+ |T |) edges where |T | is the total number of triangles
in the graph. Consequently, the total work in computing
these bounds is O(|E|+ |T |).

4. OUR MAXIMUM CLIQUE FINDER
The method we employ is a branch and bound strategy. It

begins by finding a large clique using a fast heuristic method
(Section 4.1). Using the lower bound from the heuristic, we
conduct an initial pruning of the graph by utilizing bounds
on the largest clique possible at each vertex (Section 4.2).
Next, we run the main search loop, which we describe in
Section 4.3. We focus our description on how we use the
neighborhood information to further prune the search space
based on core numbers and coloring. We also mention the
order of vertices explored in the search – others found this to
be particularly important in clique finders [24]. Finally, we
discuss how to parallelize the procedure in Section 4.4 and
its performance characteristics in Section 5. For reference
throughout this discussion, we give a pseudocode for the
method in Figures 2 and 3.

4.1 A fast heuristic
The goal of our heuristic is to find a large clique in the

graph quickly. It is similar to previous clique heuristics [47]
that explore a neighborhood and pick a clique among high
degree vertices. Our heuristic search differs as we use the
core numbers of each vertex to guide the search instead.
Starting at each vertex in the graph, the algorithm greed-
ily builds a clique by testing vertices in order of their core
numbers. Because the core numbers are also a lower-bound
on the size of the largest clique a vertex participates in, we
can efficiently prune the greedy exploration. As mentioned
in the previous section, this heuristic finds the largest clique
in the graph in over half of the social networks we consider.

4.2 Initial pruning
After our algorithm finds a heuristic clique H using the

core numbers of the vertices, it puts those numbers to an-
other strategic use. Suppose we find a clique in G of size
ω̃ = |H |. Then we can elminate all vertices with core num-
bers strictly less than ω̃ from our search. This pruning op-
eration works because a clique of size ω̃ + 1 or larger must
have vertices with core numbers at least ω̃. In a few cases,
this step suffices to certify that H is the maximum clique as
we remove all of the graph. This happens, for instance, with
LiveJournal. Moreover, this pruning procedure reduces the
memory requirements quite significantly for most networks.

Note that in this initial pruning, vertices are explicitly re-
moved from the graph. However, vertices removed in future
pruning steps are simply marked as deleted in an index ar-
ray. Future graph operations, such as neighborhood queries,
check this array before returning their contents.

4.3 Searching
After we reduce the size of the graph via the initial prun-

ing, we then run a search strategy over all the remaining
vertex neighborhoods in the graph. The algorithm we run
is similar to a standard branch and bound scheme for maxi-
mal clique enumeration [9]. However, we unroll the first two

3

Figure 2: Our greedy heuristic to find a large clique.

1 Heuristic(G): returns H , a large clique in G

2 H = {}, max = 0
3 for each vertex v in decreasing core number order
4 Return if v’s core number is less than max
5 Let S be the neighs. of v with core numbers > max
6 Set C = {}
7 for each vertex u in S by decreasing core numbers
8 if C ∪ u is a clique, add u to C

9 if |C| > max, H = C and max = |H|

levels of branching and apply our clique bounds in order to
find only the largest clique.

At this point, we wish to introduce a bit of terminology.
Let NR(v) (recall this from Section 3) and dR(v) be the
reduced neighborhood graph of v and the reduced degree of
v. These sets do not contain any vertices that have been
removed from the graph due to changes in the lower-bound
on the clique size due to k-cores and any vertices whose local
searches have terminated. With a risk of being overly formal,
let ω̃ be the current best lower-bound on the clique size, and
let X be a set of vertices removed via searching. Then:

NR(v) = G({v} ∪ {u : (u, v) ∈ E,K(u) >= ω̃, u 6∈ X}).

We explore the remaining vertices in order of the smallest
to largest reduced degree (see Figure 3, Clique, main loop).
For each vertex, we explore it’s neighborhood using the func-
tion InitialBranch. After initial branch returns, we have
found the largest clique involving that vertex, and so we can
remove it from the graph. Again, this is done by marking
it as removed in an array. We did, however, find it advan-
tageous to periodically recreate the graph data structure in
light of all the edits and recompute k-cores. This reduces the
cost of the intersection operations. In addition, we believe
that this step aggregates memory access to a more compact
region thereby improving caching on the processor. We do
this every four seconds of wall clock time.

The first step of InitialBranch is a test to check if any
of our bounds rule out finding a bigger clique in the neigh-
borhood of u. To do so, we compute the core numbers for
each vertex in the neighborhood subgraph. If the largest
core number in the neighborhood graph is no better than
the current lower bound, we immediately return and add
the vertex to the list of searched vertices. If it isn’t, then
we compute a greedy coloring of the subgraph using the de-
generacy order. Using the coloring bound from Section 3,
we can immediately return if there is no large clique present.
If none of these checks pass, then we enter into a recursive
search procedure that examines all subsets of the neighbor-
hood in a search for cliques via the Branch function.

The Branch function maintains a subgraph P and a clique
C. The invariant shared by these sets is that we can add
any vertex from P to C and get a clique one vertex larger.
We pick a vertex and do this. (To be precise, we pick the
vertex with the largest color but we do not believe this choice
is critical.) We then check if the clique C′ is maximal by
testing if there is any set P ′ that exists that satisfies our
invariant. If it’s a maximal clique, then we check against
our current best clique H , and update it if we found a larger
clique. If it is not, then we test if it’s possible that C′

and P ′ have a big clique. The biggest clique possible is
|C′| + ω(P ′) ≤ |C′| + L(P ′), and so the function Recolor

computes a new greedy coloring to get the upper bound

Figure 3: Our maximum clique algorithm. See Sec-
tion 4.4 for details about how to parallelize it.

1 Clique(G): returns the largest clique in G
2 K = CoreNumbers(G)
3 H = Heuristic (G, K)
4 Remove vertices with K(v) < |H| Explicitly

5 while |G| > 0
6 Let u be the vertex with smallest reduced degree
7 InitialBranch(u,G)
8 Remove u from G

9 Periodically , explicitly remove vertices from G.

1 InitialBranch(u, G): Check bounds and start at u
2 Set P = NR(u) and return if |P | ≤ |H|.
3 KN = CoreNumbers(P) set K(P) = maxv∈P KN (v)
4 If K(P) + 1 ≤ |H|, return

5 Remove any vertex with KN (v) ≤ |H| from P

6 L = GreedyColoring(P , KN)
7 if L ≤ |H|, return

8 Branch({}, P)

1 Branch(C, P): Explore cliques with C and P
2 while |P | > 0 and |P | + |C| > |H|
3 Select a vertex u from P and remove u from P

4 C
′ = C ∪ {u}

5 P
′ = P ∩ {NR(u)}

6 if |P ′| > 0

7 Recolor(P ′) and set L to the coloring number

8 if |C′| + L > |H|, Branch(C′,P ′)

9 else if |C′| > |H| C’ is maximal

10 Set H to C
′

new max clique!

11 Remove any v with K(v) < |H| from G. Implicitly

L(P ′). Unlike the greedy coloring above, we do not use the
degeneracy ordering as it was not worth the extra work in
our investigations. If C′ and P ′ pass these tests, we recurse
on C′ and P ′.

We stress that it becomes tedious to detail every relevant
performance enhancement inside our implementation and re-
fer interested readers to the code itself. To give a small
example, we use an adjacency matrix structure for small
graphs in order to facilitate O(1) edge checks. We use a
fast O(d) neighborhood set intersection procedure, and have
many other optimizations throughout the code.

In the overall procedure, we believe the following steps are
most important:
· finding a good initial clique via our heuristic,
· using the smallest to largest ordering in the main loop; this
helps ensure that neighborhoods of high degree vertices are
as small as possible,

· using efficient data structures for all the operations and
graph updates, and

· aggressively using k-core bounds and coloring bounds to
remove vertices early.

4.4 Parallelization
As mentioned before, we have parallelized the clique search

procedure. Our own implementation uses shared memory,
but we’ll describe the parallelization procedure such that it
could be used with a distributed memory architecture as
well. The parallel constructs we utilize are a worker task-
queue and a global broadcast channel. In fact, the basic
algorithm remains the same. We compute the majority of
the preprocessing work in serial with the exception of a par-
allel search for the heuristic clique. Here, we assume that
each worker has a copy of the graph and distribute vertices

4

to workers to find the best heuristic clique in the neighbor-
hood. In serial, we reduce the graph in light of the bounds,
and then re-distribute a copy of the graph to all workers. At
this point, we view the main while loop as a task genera-
tor and farm the current vertex out to a worker to find the
largest clique in that neighborhood. Workers cooperate by
communicating improved bounds between each other when-
ever they find a clique and whenever they remove a vertex
from the graph using the shared broadcast channel. When a
worker receives an updated bound, we have found that it’s
often possible for that worker to terminate its own search
at once. In this manner, the speedup from our parallel algo-
rithm can be super linear since we are less dependent on the
precise order of vertices explored – something that is known
to affect clique finders greatly. In our own shared memory
implementation, we avoid some of the communications by
using global arrays and locked updates.

5. PERFORMANCE RESULTS
As we illustrated in Table 1 and Figure 1, the runtime

of our clique finder on social and information networks is
fast, and it exhibits roughly linear scaling as we increase
the problem size. We used a two processor, Intel E5-2760
system with 16 cores and 256 GB of memory for those tests
and the remaining tests. None of the experiments came close
to using all the memory.

In this section, we will be concerned with three ques-
tions. Does our parallelization scheme work? How does
our method compare to other clique finders on social and in-
formation networks? And finally, is the tighter upper bound
that results from using neighborhood cores worth the addi-
tional expense? In the following, we call our own algorithm
from Figures 2 and 3 “pmc.” The version without neighbor-
hood cores uses the same strategy, but eliminates lines 3–6
of the InitialBranch function. Instead of using the degen-
eracy ordering to compute the GreedyColoring, we use a
largest degree-first ordering.

For these results, we will use problems from the 20 year
old DIMACS clique challenge [59] to study the performance
of our clique finder on an established benchmark of diffi-
cult problems. In the interest of space, we do not present
individual data on them. These graphs are all small: 45—
1500 vertices. However, they contain an enormous number
of edges and triangles compared with social networks. The
number of triangles ranges between 34,000 and 520 million.
Of the 57 graphs our method was able to solve, we divide
them into an easy set of 26 graphs, where our algorithm ter-
minates in less than a second and a hard set of 32 graphs
which take between one second and an hour.

Parallel Speedup. In Figure 4 we show the speedup as
we add processes to our pmc method for three social net-
works. In Figure 5 we show speedup results of pmc for 7
of the DIMACS networks. The runtime for both includes
all the serialized preprocessing work, such as computing the
core numbers initially. The figures illustrate two different
behaviors. For social networks, we only get mild speedups
on 16-cores for the largest problem (soc-orkut). For the DI-
MACS graphs, we observe roughly linear and, occasionally,
super-linear performance increases as we increase the num-
ber of processes. These results indicate our parallelization
works well and helps reduce the runtime for difficult prob-
lems.

Performance Profile Plots. For the two remaining

0 1 4 8 12 16
0

1

2

3

4

5

6

7

8

Processors

S
pe

ed
up

soc−orkut (290)
soc−flickr (22)
socfb−Texas (2.3)

0 1 4 8 12 16
0

1

2

3

4

5

6

7

8

Processors

S
pe

ed
up

Figure 4: Speedup of our parallel maximum clique
algorithm on social and information networks. We
only see mild speedup because the majority can be
solvedwithin seconds using the sequential algorithm.
Single process runtime in parentheses.

questions, we use a performance profile plot to compare al-
gorithms [17]. These plots compare the performance of mul-
tiple algorithm on a range of problems. They are similar
to ROC curves in that the best results are curves that lie
towards the upper left. Suppose we have N total problem
and that an algorithm solves M of them within 4 times the
speed of the best solver for each problem. Then we would
have a point (τ, p) = (log2 4,M/N). Note that the horizon-
tal axes reflects a speed difference factor of 2τ . The fraction
of problems that an algorithm cannot solve is given by the
right-most point on the curve. In Figure 6(a), for instance,
the Bron-Kerbosch (BK) algorithm only solves around 80%
of the problems in the test set.

Figure 6(a), social and information network. We
compare pmc, with and without neighborhood cores, to an
implementation of the Bron-Kerbosch (BK) algorithm in the
igraph network analysis package [16] and to one of our prior
algorithms (fmc) [47]. Based on the interpretation of the per-
formance profile plot, we find little difference between using
the neighborhood cores and eliminating them – although it
is a bit faster without them. However, we find a big differ-
ence between our clique finder and the alternatives. Com-
pared to the BK algorithm, we are over 1000 times faster for
some problems, and we solve all of the instances. Compared
to the fmc algorithm, we are about 50 times faster. This
illustrates that our algorithm uses properties of the social
and information networks to hone in on the largest clique
quickly.

Figures 6(b) and 6(c), DIMACS networks. On the
32 hard instances of DIMACS problems, in the serial case,
the neighborhood cores greatly help reduce the work in the
majority of cases. In a few cases, they resulted in a large
increase in work (the point furthest to the right in the serial
figure). All of the work involved in computing these cores
is parallelized, and we observe that, in parallel, using them
is never any worse than about 20.5 ≈ 144% the speed of the
fastest method.
Summary of results.
· our parallelization strategy is effective,

5

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
P

(r
 ≤

 τ
)

τ

pmc (no neigh cores)
pmc
BK
FMC

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
P

(r
 ≤

 τ
)

τ

(a) Social (Serial)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
(r

 ≤
 τ

)

τ

pmc (no neigh cores)
pmc

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
(r

 ≤
 τ

)

τ

(b) DIMACS-Hard (Serial)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

P
(r

 ≤
 τ

)

τ

pmc (no neigh cores)
pmc

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

P
(r

 ≤
 τ

)

τ

(c) DIMACS-Hard (16 Threads)

Figure 6: Performance Profiles. Comparing PMC to a version without the neighborhood core pruning and
ordering.

0 1 4 8 12 16
0

5

10

15

20

Processors

S
pe

ed
up

brock400−4 (331)
san200−0−9−2 (1)
san400−0−7−1 (0.2)
brock800−4 (3604)
brock400−3 (619)
p−hat1500−1 (4)
san1000 (1)

0 1 4 8 12 16
0

5

10

15

20

Processors

S
pe

ed
up

Figure 5: Speedup of our parallel maximum clique
finder compared to a sequential version. Notably, su-
perlinear performance arises in some cases. For ex-
ample, the maximum clique of san200-0-9-2 is com-
puted 82x faster using our parallel algorithm. The
superlinear performance arises in our parallel maxi-
mum clique algorithm by reducing the dependence
on the ordering of vertices by exploring multiple ver-
tices simultaneously while cooperating by updating
bounds and sharing other information. Single pro-
cess runtime in parentheses.

· our algorithm outperforms the competition dramatically,
· neighborhood core bounds help with challenging problems.
We recommend using neighborhood cores as they help the
algorithm terminate faster with challenging problems and
almost never take more than twice the time.

6. TEMPORAL STRONG COMPONENTS
In this section, we use the maximum clique method as

a subroutine to compute temporal strong components [40].
Since this area is somewhat new, we review some of the ba-
sic definitions in order to motivate the relationship between
cliques and temporal strong components.

Definition 6.1 (temporal network). Let V be a set
of vertices, and ET ⊆ V × V × R

+ be the set of temporal

edges between vertices in V . Each edge (u, v, t) has a unique
time t ∈ R

+.

For such a temporal network, a path represents a sequence
of edges that must be traversed in increasing order of edge
times. That is, if each edge represents a contact between
two entities, then a path is a feasible route for information.

Definition 6.2 (temporal paths). A temporal path from
u to w in G = (V,ET) is a sequence of edges e1, . . . , ek such
that the e1 =(u, v1, t1), . . . , ek =(uk, w, tk) where vj = uj+1

and tj < tj+1 for all j = 1 to k. We say that u is temporally
connected to w if there is such a temporal path.

This definition echoes the standard definition of a path, but
adds the additional constraint that paths must follow the
directionality of time. Temporal paths are inherently asym-
metric because of the directionality of time.

Definition 6.3 (temporal strong component).
Two vertices (u,w) are strongly connected if there exists a
temporal path P from u to w and from w to u. A temporal
strongly connected component (tSCC) is defined as a maxi-
mal set of vertices C ⊆ V such that any pair of vertices in
C are strongly connected.

While the vertices of a strong component in a graph define
an equivalency class, and hence, we can partition a network
into components, the same fact is not true of temporal strong
components. The vertices in a temporal strong component
can overlap with those in another temporal strong compo-
nent.

Note that a temporal weak component is always equal
to the connected component in the static graph [54]. We
conclude by mentioning that stronger definitions of temporal
components exist. For example, the temporal paths used to
define a strong component can be further restricted to only
use vertices from the component C itself.

As previously mentioned, checking if a graph has a k-node
temporal SCC is NP-complete [5, 40]. Nonetheless, we can
compute the largest such strong component using a maxi-
mum clique algorithm. Let us briefly explain how.

The first step is to transform the temporal graph into
what is called a strong-reachability graph. For each pair of
vertices in V , we place an edge in the strong reachability
graph if there is a temporal path between them. In Algo-
rithm 1, this corresponds to the reach subroutine. That

6

method uses the temporal ordering proposed by [45] and
builds up temporal paths backwards in time. With this
reachability graph, the second step of the computation is
to remove any non-reciprocated edges and then find a max-
imum clique. That maximum clique is the largest set of
nodes where all pairwise temporal paths exist, and hence, is
the largest temporal strong component [40].

Algorithm 1 Largest Temporal Strong Component

1: procedure max-tscc(G = (V, ET))
2: ER = reach(G)
3: Remove non-reciprocal edges from ER

4: Compute the max-clique in the graph (V,ER)
5: Return the subgraph of G induced by C

6: procedure reach(G = (V,ET))
7: Sort edges to be in reverse time order
8: Set ER to be the set of all self-loops
9: for (i, j, t) ∈ ET do
10: Add (i, k) to ER for all k where (j, k) ∈ ER

11: return ER

6.1 Temporal Graph Data.
We use three types of temporal graph data. For all net-

works, we discard self-loops and any edge weights. In all
cases, the nodes represent people. And in all cases, the
largest temporal strong components reflect groups of people
that meet, interact, or retweet with each other sufficiently
often to transmit any message or meme.

Contact networks. The edges are face-to-face contacts
(infect-dublin, infect-hyper[32]). See ref. [53] for more details
about these data.

Interaction networks. The edges are observed interac-
tions such as forum posts (fb-forum [41]), private messages
(fb-messages [42]), or emails (enron [14]). We also investi-
gate a cellular telephone call network where the edges are
calls (reality [21]).

Retweet networks. Here, the edges are retweets. We
analyzed a network of political retweets centered around the
November 2010 election in the US (retweet [15]). A similar
dataset is a retweet and mentions network from the UN con-
ference held in Copenhagen. The data was collected over a
two week period (twitter-copen [1]).

Hashtab networks. Again the edges are retweets associ-
ated with a hashtag. We collected these from Truthy [60] on
September 20th, 2012. Of these, only a few had non-trivial
temporal strong components which we discuss below.

6.2 Results and analysis
Figure 7 shows the reachability and largest temporal strong

component from the retweet network about politics. It took
the maximum clique finder less than a second to identify this
clique. We summarize the remaining experiments on the
temporal strong components in Table 2. For all of these net-
works, we were able to identify the largest temporal strong
component in less than a second after we computed the
reachability network. There are two reasons for this per-
formance. First, in all of the networks except for the inter-
action networks, the largest clique is the set of vertices with
highest core numbers. Second, our heuristic computes the

(a) Reachability (retweet) (b) Temporal SCC (retweet)

Figure 7: In order to compute the largest tempo-
ral strong component, we first compute the strong
reachability network (a). These networks are rather
dense and often reveal clear community structure.
Here we see a clear communities for the political left
and right. We find that the largest temporal strong
component in the retweet network (b) consists of 166
twitter users classified as politically “right” accord-
ing to the original data with only a single exception.

Table 2: For each temporal network, we list the num-
ber of temporal edges, number of vertices and edges
in the reachability graph, the size of the temporal
strong component, and the compute time for the
max clique.

graph |ET | |VR| |ER| ω Time (s.)

infect-dublin 415k 11k 176k 84 <.01
infect-hyper 20k 113 6.2k 106 <.01

enron 50k 151 9.8k 120 <.01
fb-forum 33k 897 71k 266 0.02

fb-messages 61k 1.9k 532k 707 0.05
reality 52k 6.8k 4.7M 1236 0.19

retweet 61k 18k 66k 166 0.02
twitter-cop 45k 8.6k 474k 581 0.22

mittromney 8.5k 7.8k 108 5 <.01
bahrain 8k 4.7k 129 8 <.01

barackobam 9.8k 9.6k 226 10 <.01
alwefaq 7.1k 4.2k 355 16 <.01

justinbieb 9.6k 9.4k 442 17 <.01
occupywall 3.9k 3.6k 931 18 <.01

gmanews 8.8k 8.3k 1.1k 22 <.01
lolgop 10k 9.7k 4.5k 42 <.01

largest clique in all of these networks, and we are quickly
able to reduce the remaining search space when it isn’t the
largest k-core as well.

There are a few interesting properties of these temporal
strong components. In the contact networks (infect-hyper
and infect-dublin), both of the largest strong components
had about 100 vertices, despite the drastically different sizes
of the initial dataset. We suspect this is a property of
the data collection methodology because the infect-dublin
data were collected over months, instead of days for the
infect-hyper. In the interaction networks, the temporal com-
ponents contain a significant fraction of the total vertices,
roughly 20-30%. In the retweet networks, these temporal
strong components are a much smaller fraction of the total
vertices in the graph. Given the strong communication pat-

7

tern between these groups, they are good candidates for the
centers communities in these networks. Finally, the hashtag
networks have small temporal strong components. Only a
tiny fraction of the total users participate in them.

Together, these results show that temporal strong com-
ponents are a strict requirement on a group of nodes in a
network. For instance, there is a considerable difference in
the size of temporal strong components between networks
with asymmetry in the relations (retweets and hashtags)
compared with networks with symmetric relationships (fb-
forum, fb-messages, and reality). This finding may be im-
portant for those interesting in designing seeded viral cam-
paigns on these networks.

7. RELATED WORK
A related problem to maximum clique is maximal clique

enumeration: identifying all the maximal cliques in G. This
problem tends to get more attention in data mining litera-
ture [63, 12]. For instance maximal cliques in social networks
are distributed according to a power-law [18]. There is a con-
siderable body of work of recent work on this problem [57,
24, 23, 50, 11]. In particular, Du et al. takes advantage of
the properties of social and information networks in order to
enumerate all maximal cliques faster [19]. In comparison, we
wish to highlight how fast we can solve the maximum clique
problem for these networks and temporal strong components
by appropriately applying pruning steps and bounds. Many
of our bounds take advantage of egonet properties [2, 30].

In terms of other maximum clique algorithm, Pardalos and
Xue [46] provide a good review of exact algorithms prior to
1994. Notable methods proposed later include: among oth-
ers, the works of Bomze et al. [8], Österg̊ard [43], Tomita et
al. [56], and San Segundo et al. [49]. In a very recent work,
Prosser [48] provides a computational study comparing var-
ious exact algorithms for maximum clique.

Finding a maximum clique in G is equivalent to finding
maximum independent set in the complement of G [55, 33].
Thus, known approximation results on the independent set
problem [31] can be related to the maximum clique problem.
Greedy strategies – similar in spirit to the fast heuristic we
use here – are also effective on those problems too. However,
the complement graph for the majority of these networks will
be incredibly dense as the original graphs are very sparse.

8. CONCLUSIONS
We propose a new fast algorithm that finds the maximum

clique on billion-edge social networks in minutes. It exhibits
linear runtime scaling over graphs from 1000 vertices to 100
million vertices and has good parallelization potential. We
created it in order to compute the largest temporal strong
components of a dynamic network, which involves finding
the largest clique in a static reachability graph. Our hope
is that that maximum clique will now become a standard
network analysis measure. Towards that end, we make our
software package available for others to use:

http://www.cs.purdue.edu/~dgleich/codes/maxcliques

We are also investigating a modification of our code to
enumerate maximum cliques (not maximal!). This problem
has only recently been studied [22]. We find that this can
be done almost as efficiently as finding the largest maximum
clique and believe that the set of maximum cliques should
prove useful for community detection and anomaly detection

on networks.

9. REFERENCES
[1] N. Ahmed, F. Berchmans, J. Neville, and R. Kompella.

Time-based sampling of social network activity graphs.
In SIGKDD MLG, pages 1–9, 2010.

[2] L. Akoglu, M. McGlohon, and C. Faloutsos. oddball:
Spotting anomalies in weighted graphs. In Advances in
Knowledge Discovery and Data Mining, volume 6119,
pages 410–421. Springer, 2010.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. In SIGKDD,
pages 44–54, 2006.

[4] V. Batagelj and M. Zaversnik. An o (m) algorithm for
cores decomposition of networks. arXiv preprint
cs/0310049, 2003.

[5] S. Bhadra and A. Ferreira. Complexity of connected
components in evolving graphs and the computation of
multicast trees in dynamic networks. ADHOC-NOW,
pages 259–270, 2003.

[6] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
UbiCrawler: A scalable fully distributed web crawler.
Software: Practice & Experience, 34(8):711–726, 2004.

[7] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered
label propagation: A multiresolution coordinate-free
ordering for compressing social networks. In WWW,
pages 587–596, 2011.

[8] I. Bomze, M. Budinich, P. Pardalos, M. Pelillo, et al.
The maximum clique problem. Handbook of
combinatorial optimization, 4(1):1–74, 1999.

[9] C. Bron and J. Kerbosch. Algorithm 457: finding all
cliques of an undirected graph. Comm. ACM,
16(9):575–577, 1973.

[10] CAIDA. Skitter.
http://caida.org/tools/measurement/skitter/.

[11] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu.
Finding maximal cliques in massive networks. ACM
Transactions on Database Systems, 36(4), 2011.

[12] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms
for maximal clique enumeration with limited memory.
In SIGKDD, pages 1240–1248, 2012.

[13] E. Cho, S. Myers, and J. Leskovec. Friendship and
mobility: user movement in location-based social
networks. In SIGKDD, pages 1082–1090, 2011.

[14] W. Cohen. Enron email dataset.
http://www.cs.cmu.edu/~enron/. Accessed in 2009.

[15] M. Conover, J. Ratkiewicz, M. Francisco, B. Gonçalves,
A. Flammini, and F. Menczer. Political polarization on
twitter. In ICWSM, 2011.

[16] G. Csardi and T. Nepusz. The igraph software package
for complex network research. InterJournal, Complex
Systems:1695, 2006.

[17] E. D. Dolan and J. J. Moré. Benchmarking
optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, 2002.

[18] N. Du, C. Faloutsos, B. Wang, and L. Akoglu. Large
human communication networks: patterns and a
utility-driven generator. In SIGKDD, pages 269–278,
2009.

[19] N. Du, B. Wu, L. Xu, B. Wang, and P. Xin. Parallel
algorithm for enumerating maximal cliques in complex
network. In Mining Complex Data, volume 165, pages
207–221. Springer, 2009.

[20] J. Duch and A. Arenas. Community identification using
extremal optimization phys. Rev. E, 72:027104, 2005.

[21] N. Eagle and A. Pentland. Reality mining: sensing
complex social systems. Personal and Ubiquitous
Computing, 10(4):255–268, 2006.

8

http://www.cs.purdue.edu/~dgleich/codes/maxcliques
http://caida.org/tools/measurement/skitter/
http://www.cs.cmu.edu/~enron/

[22] J. D. Eblen, C. A. Phillips, G. L. Rogers, and M. A.
Langston. The maximum clique enumeration problem:
algorithms, applications and implementations. In
ISBRA, pages 306–319, 2011.

[23] D. Eppstein, M. Löffler, and D. Strash. Listing all
maximal cliques in sparse graphs in near-optimal time.
Algorithms and Computation, pages 403–414, 2010.

[24] D. Eppstein and D. Strash. Listing all maximal cliques
in large sparse real-world graphs. Experimental
Algorithms, pages 364–375, 2011.

[25] P. Erdös and A. Hajnal. On chromatic number of
graphs and set-systems. Acta Mathematica Academiae
Scientiarum Hungarica, 17:61–99, 1966.

[26] A. Ferreira. On models and algorithms for dynamic
communication networks: The case for evolving graphs.
In ALGOTEL, 2002.

[27] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou.
Walking in facebook: A case study of unbiased
sampling of osns. In INFOCOM, pages 1 –9, 2010.

[28] D. Gleich, P. Constantine, A. Flaxman, and
A. Gunawardana. Tracking the random surfer:
empirically measured teleportation parameters in
PageRank. In WWW, pages 381–390, 2010.

[29] D. F. Gleich. Graph of flickr photo-sharing social
network crawled in may 2006. In DOI:
10.4231/D39P2W550, 2012.

[30] D. F. Gleich and C. Seshadhri. Vertex neighborhoods,
low conductance cuts, and good seeds for local
community methods. In SIGKDD, pages 597–605,
2012.

[31] M. Halldórsson and J. Radhakrishnan. Greed is good:
Approximating independent sets in sparse and
bounded-degree graphs. Algorithmica, 18:145–163,
1997.

[32] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J. Pinton,
and W. Van den Broeck. What’s in a crowd? analysis
of face-to-face behavioral networks. Journal of
theoretical biology, 271(1):166–180, 2011.

[33] R. Karp and A. Wigderson. A fast parallel algorithm
for the maximal independent set problem. JACM,
32(4):762–773, 1985.

[34] S. Khot. Improved inapproximability results for
maxclique, chromatic number and approximate graph
coloring. In FOCS, pages 600–, 2001.

[35] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW,
pages 591–600, 2010.

[36] J. Leskovec, D. Huttenlocher, and J. Kleinberg.
Predicting positive and negative links in online social
networks. In WWW, pages 641–650, 2010.

[37] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural
cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

[38] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online
social networks. In SIGCOMM, pages 29–42, 2007.

[39] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and Analysis of
Online Social Networks. In IMC, 2007.

[40] V. Nicosia, J. Tang, M. Musolesi, G. Russo,
C. Mascolo, and V. Latora. Components in
time-varying graphs. Chaos, 22(2):023101, 2012.

[41] T. Opsahl. Triadic closure in two-mode networks:
Redefining the global and local clustering coefficients.
Social Networks, 2011.

[42] T. Opsahl and P. Panzarasa. Clustering in weighted
networks. Social networks, 31(2):155–163, 2009.

[43] P. R. J. Österg̊ard. A fast algorithm for the maximum

clique problem. Discrete Appl. Math., 120:197–207,
2002.

[44] G. Palla, I. Farkas, P. Pollner, I. Derényi, and
T. Vicsek. Fundamental statistical features and
self-similar properties of tagged networks. New Journal
of Physics, 10(12):123026, 2008.

[45] R. K. Pan and J. Saramäki. Path lengths, correlations,
and centrality in temporal networks. arXiv, page
1101.5913v2, 2011.

[46] P. M. Pardalos and J. Xue. The maximum clique
problem. Journal of Global Optimization, 4(3):301–328,
1994.

[47] B. Pattabiraman, M. M. A. Patwary, A. H.
Gebremedhin, W. keng Liao, and A. Choudhary. Fast
algorithms for the maximum clique problem on massive
sparse graphs. arXiv:1209.5818v2, 2012.

[48] P. Prosser. Exact algorithms for maximum clique: A
computational study. arXiv:1207.4616v1, 2012.

[49] P. San Segundo, D. Rodŕıguez-Losada, and A. Jiménez.
An exact bit-parallel algorithm for the maximum clique
problem. Comput. Oper. Res., 38:571–581, 2011.

[50] M. Schmidt, N. Samatova, K. Thomas, and B. Park. A
scalable, parallel algorithm for maximal clique
enumeration. Journal of Parallel and Distributed
Computing, 69(4):417–428, 2009.

[51] S. Seidman. Network structure and minimum degree.
Social networks, 5(3):269–287, 1983.

[52] R. Singh, J. Xu, and B. Berger. Global alignment of
multiple protein interaction networks with application
to functional orthology detection. PNAS,
105(35):12763–12768, 2008.

[53] SocioPatterns. Infectious contact networks.
http://www.sociopatterns.org/datasets/. Accessed
09/12/12.

[54] J. Tang, M. Musolesi, C. Mascolo, and V. Latora.
Characterising temporal distance and reachability in
mobile and online social networks. SIGCOMM
Computer Communication Review, 40(1):118–124,
2010.

[55] R. Tarjan and A. Trojanowski. Finding a maximum
independent set. SIAM Journal on Computing,
6(3):537–546, 1977.

[56] E. Tomita and T. Kameda. An efficient
branch-and-bound algorithm for finding a maximum
clique with computational experiments. J. of Global
Optimization, 37(1):95–111, 2007.

[57] E. Tomita, A. Tanaka, and H. Takahashi. The
worst-case time complexity for generating all maximal
cliques and computational experiments. Theoretical
Computer Science, 363(1):28–42, 2006.

[58] A. Traud, P. Mucha, and M. Porter. Social structure of
facebook networks. Physica A: Statistical Mechanics
and its Applications, 2011.

[59] M. A. Trick and D. S. Johnson, editors. Cliques,
Coloring, and Satisfiability: Second DIMACS
Implementation Challenge. AMS, 1996.

[60] Truthy. Information diffusion research at indiana
university. http://truthy.indiana.edu/. Accessed
10/20/12.

[61] WHOIS. Internet routing registries. http://www.irr.net/.
[62] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and

B. Y. Zhao. User interactions in social networks and
their implications. In EuroSys, pages 205–218, 2009.

[63] Y. Xie and P. S. Yu. Max-clique: A top-down
graph-based approach to frequent pattern mining. In
ICDM, pages 1139–1144, 2010.

9

http://www.sociopatterns.org/datasets/
http://truthy.indiana.edu/
http://www.irr.net/

	1 Introduction
	2 Maximum cliques in social and information networks
	3 Bounds on the clique size
	4 Our maximum clique finder
	4.1 A fast heuristic
	4.2 Initial pruning
	4.3 Searching
	4.4 Parallelization

	5 Performance Results
	6 Temporal Strong Components
	6.1 Temporal Graph Data.
	6.2 Results and analysis

	7 Related work
	8 Conclusions
	9 References

