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Abstract—The topology of a network (connectivity of au-
tonomous systems (ASes) or routers) has significant implications
on the design of protocols and applications, and on the placement
of services and data centers. Researchers and practitioners alike
are in constant need of realistic topologies for their simulation,
emulation, and testbed experiments. In this work, we propose
a multi-level framework for analyzing Internet topologies and
their evolution. This multi-level approach includes novel metrics,
evaluation strategies, and techniques for automatically learning
a representative set of graph metrics. We apply our framework
to analyze topologies from two recent topology generators, Orbis
and WIT, according to how well they match their advertised
objectives. The generated topologies are compared to a set of
benchmark datasets that approximate different views of the
Internet at the data (trace-route measurements), control (BGP),
and management (WHOIS) planes. Our results demonstrate key
limitations of popular generators, and show that the recent
Internet clustering coefficient and average distance are not time-
invariant as assumed by many models. Additionally, we propose
a taxonomy of topology generators, and identify challenges in
topology modeling.

I. INTRODUCTION

Accurate representation of network topologies plays a
critical role in designing protocols [28], predicting perfor-
mance [21], and understanding robustness and scalability of
the future Internet [22], [17], [29]. Many topology generators
are known to capture key static properties of the Internet, but
may not capture Internet evolution. The most recent Internet
topology generators [25], [35], [33], [24], [4] aim at generating
representative topologies of different sizes (number of nodes);
however, understanding and modeling the driving forces be-
hind Internet evolution remains a significant challenge.

Looking back on Internet topology modeling research over
the past 10 years, Roughan et al. [30] point out that the
majority of prior work makes simplifications that lead to
misleading findings and ill-conceived ideas about the Internet.
In this work, we examine this prior research on topology
modeling quantitatively. We propose a taxonomy for topology
generators, analyze the claims made by each, and introduce
a multi-level framework for evaluation. In doing this, we
seek to answer the following questions: (1) As the Internet
evolves over time, are its graph properties constant? (2) How
well do existing topology generators model the static and
evolutionary properties of the Internet? (3) What type of
topology generator is more appropriate for static topologies

versus evolving topologies?
Several previous topology generation studies examined the

average degree, average path length, and the clustering coef-
ficient and showed them to remain constant as the Internet
topology evolves, e.g., [34], [25]. These findings are based
on RouteViews datasets from the 1990s–2006 time frame.
We will show different evolutionary characteristics in more
recent RouteViews data (Fig. 1). Further, several generators
aim to maintain “any arbitrary metric” of a generated topology
constant as the number of nodes increase, e.g., [25], [26]. How-
ever, there is evidence of the Internet topology transitioning
from hierarchal to a flat topological structure [13], [12], [23].
These observations of a significant change in the evolutionary
characteristics of the Internet are consistent with our findings,
and explain why topology generators that assumed a prior
structure or process based on previous patterns fail to predict
recent evolution of the Internet topology.

We compare generated topologies to real and synthetic
datasets based on a multi-level approach that includes novel
metrics, evaluation strategies, and techniques for automatically
learning a representative set of graph metrics. In contrast to
prior work that assumed that a few metrics are sufficient
and necessary to evaluate generated topologies, we find that
the metrics previously studied are not enough to show the
superiority of a generator over another. There are often other
factors to consider. For instance, we found that under certain
conditions, Orbis generates topologies that are approximately
isomorphic to the initial topology used as input. Therefore,
any graph metric used to evaluate these topologies will match
almost exactly. As a result, it may be important to require some
variance between the graph used as input and the generated
graphs.

The contributions of this paper can be summarized as fol-
lows. First, we propose a multi-level framework for evaluating
topologies and their evolution. This multi-level framework
includes graph, node, and link metrics. Second, we study the
clustering coefficient and average distance in recent Internet
AS topology data, and demonstrate that they are not time-
invariant as assumed by earlier work. Third, we apply our
multi-level framework to evaluate two recent popular topology
generators, Orbis [25] and WIT [35], according to whether
they produce graphs that match their advertised objectives. The
topology generators are compared to a variety of datasets that



2

approximate different views of the Internet at the data (tracer-
oute measurements [8]), control (BGP [2]), and management
(WHOIS [1]) planes. We also give a few results using the
RocketFuel [31] and the HOT [24] router-level topologies.

We organize the paper as follows. Section II proposes a
taxonomy for topology generators. We also discuss in detail
two recent topology generators, Orbis and WIT. In section III,
we propose a framework for analyzing network properties
based on matrix factorization techniques that range across
three-levels of structural granularity. Section IV describes
the datasets and process used to compare real and synthetic
topologies. In section V, we evaluate the topology models
using our multi-level approach. We conclude with a summary
of our main findings.

II. TAXONOMY AND CHALLENGES

We introduce a taxonomy of prominent topology generators
in Table I. This taxonomy is based on the main principle used
in generating topologies (random-walk, optimization, prefer-
ential attachment, geometry), the type (parametric, nonpara-
metric), and the topology (AS, router-level (RL)) constructed
by each.

Parametric generators assume a particular functional form
or mechanism, whereas nonparametric models are data-driven
and make fewer assumptions about the functional form. A
generator may estimate parameters from data or simply assume
an underlying mechanism. If an underlying mechanism or
principle is used in a topology generator (e.g., WIT), the
generator is tailored to a specific type of topology such as
the Internet AS topology, whereas topology generators that
perform parameter estimation from data can typically generate
many types of networks (e.g., social networks, biological
networks).

Models based on preferential attachment [3], [5], [27],
[20], [7], [36] may be too restrictive to model the Internet
evolution, since the decision to link to another node is based
on degrees of nodes, giving high importance to highly con-
nected nodes. Generators based on random-walks can suffer
from similar problems. Optimization-based generators [10],

TABLE I
TAXONOMY OF TOPOLOGY GENERATORS

TECHNIQUE GENERATORS Model Type Topology

Random-walks WIT [35] Parametric AS
RSurfer [6] Parametric N/A

Optimization Orbis [25] Nonparametric AS & RL
HOT [24] Parametric RL
Mod. HOT [10] Parametric AS

Preferential
AB [3] Parametric N/A

Attachment
BRITE [27] Nonparametric AS & RL
Inet [20] Parametric AS
GLP [7] Parametric AS

Geometry SWT [21] Parametric AS & RL
GT-ITM [9] Parametric AS & RL

[14] consider solving the optimization problem between the
benefit and improved connectivity of the network. However,
economic considerations of the connectivity are not typically
considered in the optimization. GT-ITM [9] is one of the
earliest generators and is primarily based on the hierarchical
nature of the Internet, which appears to be changing [13], [12],
[23]. Tangmunarunkit et al. [32] find that degree-based models
match a set of metrics better than these early hierarchical
models. Though recent generators accurately match the power-
law distribution, they fail to capture certain network metrics
summarized in Table II.

Below, we formally describe two recent topology genera-
tors, Orbis and WIT, which claim to accurately model the
Internet and which are the primary focus of the remainder of
this paper.

A. Orbis: From Degree to Topology

Orbis uses a series of metrics based on degree correlations
that monotonically capture more global structures [25]. An
initial topology is given as input and randomly rewired such
that the dK-distribution of the input topology is preserved.
The topologies are rescaled by simply stretching the target
distribution and preserving it under random rewiring. The
chosen value of d must be small in practice due to the increase
in complexity and the shrinking of the graph space. Therefore,
Orbis is limited to preserving only local characteristics. As d
increases, the space of possible graphs that can be generated
exponentially shrinks, yielding topologies that are only slightly
different from the input training topology. Of course, if the
input graph varies only slightly from the generated graph,
then both topologies exhibit nearly identical characteristics,
and the generated graph is not too useful. As we will show,
constructing graphs with d = {1, 2, 3} captures a few related
local metrics, but fails to capture global characteristics. Fur-
thermore, as the generated graphs are rescaled, the accuracy of
capturing the local metrics depends on the rescaling technique,
and thus becomes increasingly inaccurate as the size of the
topology increases.

B. WIT: From Random Walks to Topology

The WIT model uses a simple multiplicative stochastic
process, ui(t) = λi(t) ui(t − 1), capturing the “wealth” of
ISPs over time [34], [35]. The wealth (or weight) for each ISP
is used to add or remove links based on a given threshold.

More formally, at each iteration (or time) a nodes wealth is
updated. If the updated node weight exceeds a given threshold
wi(t) − zi(t) > C + T then a link is added by randomly
walking l-steps until an arbitrary node z is reached and a link
is placed between the nodes. In the above threshold, the wi(t)
is the normalized wealth for node i and zi(t) = C · di(t)
(depends on the current degree of node i and the expected
link cost C = w0 · c where w0 and c are only some of the
input parameters). Furthermore, T must carefully be chosen
to avoid an oscillating (degenerate) case where a link is added
and at the next time deleted, indefinitely. Similarly, if the node
weight is below a threshold wi(t)−zi(t) > −T , then the node



3

randomly chooses one of its links to remove. A new node x
is added and a link is initially created by randomly selecting
a node y and linking to that node. Additionally, a second link
is added by randomly walking l-steps as described previously.

C. Challenges in Topology Generation

Topology measurement and modeling remains challeng-
ing [30]. As discussed above, some models like WIT do not
estimate parameters using an input topology, but rather rely on
the accuracy of assumptions made about the underlying growth
mechanism and the ability of this mechanism to accurately
match the forces driving the evolution of the Internet topology.
Selecting the parameters for WIT requires detailed knowledge
of the model and the behavior of the Internet over time,
which is not very well-understood. The lack of parameter
estimation makes WIT difficult to use in simulations or other
practical applications. The initial evaluation of WIT in [35]
uses the optimal parameters for RouteViews, but provides
little intuition for selecting these parameters for a given AS
topology.

TABLE II
GRAPH METRICS AND RELATED NETWORK CHARACTERISTICS

Measure Importance in Computer Networks

L
O

C
A

L Degree Fault tolerance, local robustness
Assortativity
Clustering
coefficient

Path diversity, fault tolerance, local robust-
ness

Distance Scalability, performance, protocol design

G
L

O
B

A
L Betweenness Traffic engineering, potential congestion

points
Eigenvector Network robustness, performance, clus-

ters/hierarchy, traffic engineering

We can thus classify topology generators as those based on
preserving the properties of an input topology or those based
on a mechanism or knowledge of the underlying process being
modeled. Consider the space of all graphs that preserve a set
of metrics and suppose we select an arbitrary graph from this
space. This graph may preserve the set of metrics, but not
capture the qualitative characteristics of the system (i.e., AS
topology). Therefore, a graph that preserves a set of metrics is
not guaranteed to capture the important characteristics of the
system under investigation. From this perspective, the WIT
model attempts to model the evolution of the AS topology
directly, whereas Orbis generates topologies that preserve a
set of metrics. Thus, the WIT model would fail when the
underlying process used in the formation and growth of the
Internet changes or if the model fails to capture the underlying
process, whereas Orbis would fail if the set of characteristics
are incomplete with respect to the characteristics implied by
the actual AS topology.

III. A MULTI-LEVEL FRAMEWORK

At the heart of our topology and evolution analysis frame-
work are multi-level evaluation criteria based on three general

classes of metrics: graph, node, and link metrics. Graph
metrics (i.e., scalar metrics) compute a single value for the
entire network graph, whereas node and link metrics com-
pute a value for each individual node or link, respectively.
The three evaluation granularities form an explicit ordering,
link metrics ≥ node metrics ≥ graph metrics, according
to the difficulty of preserving a property from that level. A
topology generator that consistently preserves graph metrics
is said to be validated at this level (i.e., the least constrained
evaluation granularity). Most previous work uses only graph
metrics to evaluate the effectiveness of topology generators;
however, these measures can be misleading or trivially sat-
isfied. The node and link metrics capture intrinsic graph
structure and connectivity better than single point statistics.

The three classes of metrics can be further categorized
as macro metrics (graph) or micro metrics (node and link).
Evaluating topology generators at the micro-level is clearly
more accurate than evaluating them at the macro-level. Further,
within each class of metrics, topologies can be evaluated
at different topological granularities (e.g., global ≥ clus-
ters/communities ≥ local). Temporal granularity (e.g., days,
months, years) is also critical for studying evolution.

As a basis for our multi-level approach, we derive graph,
node, and link metrics using matrix factorizations includ-
ing singular-value decomposition, spectral decomposition
(singular-value decomposition and spectral decomposition are
equivalent for a square symmetric positive definite matrix), and
non-negative matrix factorization. The importance of these ma-
trix factorization techniques and their characteristics pertaining
to the AS-level and router-level topologies have only received
limited attention. The majority of previous work uses the
spectrum of the Laplacian matrix (which indicates connected
components and sparse cuts) and ignores the adjacency matrix
(which can indicate properties such as the number of paths).
Nevertheless, matrix factorization-based characteristics have
been described by some as critically important [26], [16], [11],
yielding tight bounds for (1) distance-related characteristics,
(2) clustering-related characteristics, and (3) graph resilience
under node/link removal. Most graphs with large eigenvalues
exhibit small diameters, expand faster, and are more robust
with respect to link or node removal. The eigenvectors also
cluster tightly connected or similar nodes, whereas the large
eigenvalues may imply more node and link-disjoint paths. In
addition to capturing a significant amount of global informa-
tion about the resulting topology, the eigenvectors identify
local characteristics such as degree-patterns and clustering of
various sizes. Thus, metrics based on matrix factorizations can
estimate the preservation of most important network character-
istics required by researchers investigating various networking
problems. Table II gives for a summary of the metrics and the
corresponding important network characteristics.

Further, previous work evaluates topologies by comparing
the values of individual metrics, whereas in this work we use
KL-divergence to compare topologies using the combined set
of metrics. This allows us to more accurately and systemat-
ically evaluate generators and their topologies using a single
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quantitative measure. In particular, we measure the divergence
of an entire set of graph metrics over time from each generator
where the distribution of graph metrics from the RouteViews
topologies is used as the true distribution (ground-truth). We
also use an approach that automatically learns a set of graph
features for each generator and evaluates them using the KL-
divergence.

A. Graph Metrics

In addition to the traditional macro metrics (e.g., average
degree k, assortativity coefficient r, average clustering c̄,
average distance d̄), we propose using the largest singular
value (λ1), network conductance (λ1 − λ2), rank (ρ), and
trace (τ ). The rank of a matrix is the number of linearly
independent rows or columns and the trace is the sum of
its eigenvalues, which is invariant with respect to a change
of basis. The difference between the two largest eigenvalues
denotes the network conductance which is also known by
some as the performance of a network [26]. Each of these
scalar values are derived from the eigenvectors and eigenvalues
(or, if appropriate, the singular-vectors or singular-values) of
the graphs adjacency matrix. Additionally, we use the decay
centrality η̄ which seeks to more accurately capture average
distance based measures [19].

B. Node Metrics

To analyze the local and global node-level properties of
networks, we primarily use measures derived from matrix
factorizations, including:
Network Values. Plot of the eigenvector components (indica-
tors of network value) corresponding to the largest eigenvalue.
Scree Plot. Plot of the k largest eigenvalues (or singular-
values) versus their normalized rank using the log-scale.
K-walks: A Class of Local and Global Measures. We
propose using a simple class of metrics, denoted as k-walks,
capable of measuring both local and global properties of
graphs by adjusting a single parameter. A k-walk of a vertex
u is the number of walks of length k rooted at u.

The number of walks from node u to node v in a graph
G with length k is (Ak)uv . The k-walk measure of a graph
adjacency matrix is given by, σk(A) = Akx, where x is the
unit vector. If k →∞ then we have the principal eigenvector
and the other extreme where k = 1 results in the degree
distribution. Intermediate values 1 ≤ k ≤ ∞ give other
properties of the graphs going from the most local property of
degree to the most global property of the principal eigenvector.
This metric provides a formal way to bound the similarity of
two graphs with respect to k.

C. Link Metrics and Topology Visualizations

Link metrics lie at the finest evaluation granularity. First,
we apply a technique to order the nodes with respect to the
magnitude of their coordinates along the principal direction.
This procedure reveals significant link structures, connectivity
patterns, and block structures/clustering. Second, we analyze
the network characteristics more accurately by computing

the closest k-approximation of the topology resulting in the
weighting, suppression, or creation of links. Similar techniques
have been used in information retrieval and various fields
that require a low-dimensional representation that preserves
the most significant information with minimum loss. Both
methods allow us to identify the most significant properties
preserved in the resulting topology.

D. Learning Graph Features over Time

In contrast to only selecting a set of graph metrics, we
automatically learn a representative set of graph features. For
this, we use ReFex [18]. The technique generates simple
degree and “egonet” features, and then recursively discovers
additional features by applying aggregation. The set of graph
measures are pruned by examining correlations. The resulting
graph features are shown to be representative of the topology
and minimal. We use this technique for analyzing and eval-
uating graphs over time. For a time series of topologies, the
technique usually learns 25–40 graph features, depending on
the evolution and structure of the topologies.

The set of discovered graph features provides an additional
basis for evaluating graphs and their generators. In particular,
we measure the KL-divergence of the generators using the set
of learned features over time. We also use these features to
model behavior (i.e., cluster the features into groups) and use
this information to distinguish among generators.

IV. METHODOLOGY

A. Datasets

We compare graphs from topology generators to AS topolo-
gies based on the Skitter traceroute [8], RouteViews’ BGP
tables [2], and RIPE’s WHOIS [1] datasets. These are the
same datasets used by Mahadevan et al. in [25] and all except
RouteViews data were obtained from the authors’ web site.
In addition to these AS-level topologies, we compare to the
HOT [24] and RocketFuel [31] router-level topologies. The
HOT topologies were also obtained from the web site of
Mahadevan et al. The RocketFuel topologies were obtained
from RocketFuel project site.

To study the most recent evolutionary characteristics of
the Internet, we obtained time series of BGP routing tables
(in Cisco and Zebra format) from the Oregon RouteViews
project [2]. We estimated the AS-level topology by taking
the union of all AS-paths in the routing tables as performed
by Gao [15]. We extracted AS-level subgraphs for the years
2004 to 2011 from the last 25 BGP tables of March, June,
September, and December of the corresponding year (except
for 2011 when we consider all tables from January 1 to
April 24, 2011). Unlike [12], we do not distinguish customer-
provider and peering links, and simply follow the approach
taken in WIT evaluation [34], [35].

B. Evaluating Topology Generators

Let P denote the process (e.g., Orbis, WIT, or the actual
Internet) used to generate a set of graphs G of any size.
Further, let Gn be a generated graph of size n nodes from
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Fig. 1. Evolutionary characteristics of the AS topology as observed from RouteViews (2004 to 2011). The majority of previous models assume the Internet
topology (and metrics applied to it) are time-invariant. However, as shown above, we find evidence of a recent transition in the topological structure, most
notably seen from 2007-present (28K and beyond) which is consistent with [23]. The x-axis is the # of nodes (see Table III for the corresponding years).

the distribution of graphs from a generator denoted P (G|P).
The set of graph metrics (degree, clustering coefficient,...)
computed over that graph is denoted as a function M(·).
The evaluation objectives of topology generators are formally
defined as,

1) Given a graph G?
n of size n, generate a graph of the

same size Gn such that M(Gn) ≈M(G?
n)

2) Given a graph G?
n of size n, generate a graph Gm of

size m where m ≥ n such that M(Gm) ≈M(G?
n)

3) Given an ordered sequence of graphs G?
t for t =

1, 2, ...,m, generate a corresponding sequence of graphs
Gt for t = 1, 2, ...,m such that each Gt is the same size
as G?

t and M(Gt) ≈M(G?
t )

where M(Gn) ≈ M(G?
n) represents the fact that the set of

metrics applied to each graph (and the corresponding distri-
butions) are approximately equal. The evaluation objectives 1
and 2 are for Orbis [25] while 3 is for WIT [35]. 1 is a relaxed
version of WIT’s objective since it considers a graph at a single
time point. Further, the second evaluation objective assumes
properties of the graph at a smaller size remain unchanged
(time-invariant) as the graph grows larger.

WIT does not estimate the parameters of a dataset and
thus can be evaluated directly with any AS topology such
as RouteViews, Skitter, and WHOIS. For Orbis, we estimate
the parameters of each dataset and generate the corresponding
topology. To evaluate Orbis over time (rescaling), we use
the first snapshot (of RouteViews) and apply the rescaling
algorithm to generate a sequence of evolved topologies. This
evaluation strategy allows us to evaluate the objectives of each
generator separately using the benchmark topologies. We use
the optimal parameters for WIT given in [35]; for Orbis,
we follow the methodology described in [25] and use the

implementation provided by the authors.

V. EVALUATION

As a case study, we apply our multi-level framework to
evaluate each generator according to whether they produce
graphs that match their advertised claims and objectives. The
topology generators are evaluated using the three classes of
measures: graph (scalar), node, and link metrics. The link
metrics have rarely been used to evaluate topology generators,
but are shown to provide a more detailed and accurate analysis
of the graph characteristics than traditionally used graph
metrics.

A. Graph Metrics

Topology generators and their evolutionary properties have
primarily been evaluated using only graph (scalar) metrics.
However, graph metrics are the weakest since the space of
graphs preserving a metric is considerably larger than node
or link metrics (i.e., graphs that have intrinsically different
connectivity patterns will appear similar using this family of

TABLE III
CHARACTERISTICS OF RECENT ROUTEVIEWS BGP TOPOLOGIES

YEAR |V| |E| k r c̄ d̄ η̄

2004 19075 41646 4.36 -0.200 0.268 3.744 0.023

2005 21564 45459 4.21 -0.196 0.255 3.799 0.018

2006 24553 53897 4.39 -0.194 0.250 3.817 0.014

2007 27378 57428 4.19 -0.193 0.222 3.836 0.011

2008 30635 64113 4.18 -0.200 0.234 3.862 0.009

2009 33649 73330 4.35 -0.205 0.223 3.877 0.007

2010 36754 78429 4.26 -0.186 0.209 3.917 0.006

2011 38772 91470 4.71 -0.183 0.265 3.845 0.006
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metrics). Hence, the graph metrics only provide basic insights
into the graph structure which can sometimes be misleading.
Nevertheless, we apply a few of these metrics to analyze
the objectives of topology generators and the evolutionary
characteristics of the Internet.

Table III lists the topology characteristics from the Route-
Views dataset. We find that the average distance slightly
increases and the average clustering decreases in the last few
years as shown in Fig. 1, which is in contrast to previous
observations of median distance [34], [35]. One possible
explanation is that the tier 1-2 ISPs are merging leading
to a dense network core, while tier 3-4 ISPs (e.g., content
providers) are expanding [13]. These recent changes in the
Internet since 2007–2008 [23] impact models such as WIT
that directly rely on preserving the distance and clustering
coefficient over time. We further investigate these results by
considering other distance variants such as the normalized
decay centrality. This measure (δ = 0.5) experiences a drop
from the year 2004 to 2007, but stabilizes towards the more
recent past (2008 − 2011). The decay centrality measure is
highly sensitive to the changes in path length, and again we
see a change occurring around 2007–2008.

Orbis. We evaluate the two main objectives of Orbis
using graph metrics. The Orbis topology generator attempts
to preserve “any arbitrary” set of metrics as the size of the
graph increases [25]. However, we find that as the number
of nodes increases, the metrics from the generated topologies
become increasingly uncorrelated (graph metrics deviate from
the expected). This is most striking when applying Orbis on the
HOT, WHOIS, and Skitter topologies (removed for brevity).
Further, we find that almost all scalar metrics are increasingly
inaccurate as we extrapolate further into the future. However,
for generating topologies of the same size, we find that Orbis
is able to preserve many of the graph metrics with reasonable
accuracy.

We observe Orbis to have two intrinsic problems. First, the
rescaling algorithm produces topologies of larger sizes that do
not reflect the actual Internet evolution. Second, the rescaling
algorithm based on interpolating the distribution introduces
errors and noise. Therefore, Orbis is more appropriate for
modeling static topologies, as opposed to the evolution of the
AS topology or prediction of future topologies.

(a) Scree plot (b) Network values

Fig. 2. The WIT topology is compared to three different AS topologies
(RouteViews, Skitter, and WHOIS) using two node metrics (Scree and top 100
network values). In all cases, WIT is very different. The topologies analyzed
above were from March 2004, but similar results are obtained using topologies
at different times.

(a) Scree plot (HOT) (b) Scree plot (Skitter)

(c) Network value (HOT) (d) Network value (Skitter)

Fig. 3. Scree plot and network values of the rescaled topologies generated
using Orbis are compared to the initial HOT and Skitter (2004) topologies. As
the number of nodes increases, the generated topologies (and metrics) become
increasingly uncorrelated.

WIT. The WIT model was designed and evaluated under
the assumption that the clustering coefficient and distance
related measures are time-invariant [35], although the Internet
is changing [23], [13]. We find that WIT does not accurately
preserve the scalar metrics over time. The individual plots are
omitted for brevity, but this point is clearly shown later in
Fig. 8.

B. Node Metrics

While the evolutionary characteristics of the topology gen-
erators were previously shown to differ from the most recent
evolution, we are interested in knowing why these generators
fail (i.e., use the metrics for forensic analysis), and understand-
ing what important network characteristics are preserved, to
what level, and at what evaluation granularity (graph/scalar,
node, or link metrics). Following the multi-level framework,
we analyze the topologies and generators in more detail using
node metrics.

WIT. Fig. 2 plots the largest network values and singular-
values of WIT and compares these with the corresponding
benchmark topologies. Both significantly deviate from the
others (the values are shifted and are of a different shape), even
compared to RouteViews (used in the design and validation of
WIT).

However, the metrics indicate several interesting insights
into the topological features of the generators. First, the
eigenvalues of the WIT topology in Fig. 2(a) are shifted
downward, rotated, and are of a different shape than those
found in the Internet.

Besides WIT’s network core represented by the first few
large eigenvalues, the node clusters (approx. set of eigenvec-
tors) and their corresponding weights given by the eigenvalues
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are more evenly distributed (or more linear) than the bench-
mark topologies. This indicates that topologies produced using
WIT form more clusters than what is found in the Internet,
and each of the clusters represents significantly different
patterns of connectivity. The Internet AS topologies are more
compressed (less unique patterns of connectivity), whereas the
WIT topology appears more random.

Fig. 2(b) indicates a “phase transition” (backwards S shape)
in the WIT topology that is not present in the Internet topolo-
gies. The network values found in WIT indicate two distinct
clusters (or communities) of nodes which have very different
structural properties. This could indicate structural charac-
teristics of the network core. Nevertheless, these differences
indicate the inaccuracy of one of the key assumptions used
in the WIT model, when compared to the true connectivity,
structure, and clusters found in the Internet.

Orbis. We compare Orbis with only two benchmark topolo-
gies for brevity. We find that at the static-level Orbis preserves
the HOT topology scree plot shown in Fig. 3(a). However, as
we model the evolution of the HOT topology using Orbis, the
topologies become increasingly different. Similar conclusions
were drawn from other benchmark topologies. The above
interpretation for WIT can be applied in a similar fashion to
Orbis.

Finally, we analyze Orbis using k-walks. The motivation for
the k-walks class of metrics arises from its intuitive definition
with respect to local and global characteristics. For instance,
k = 1 gives the degree of a node whereas k = ∞ gives the
principal eigenvector.

We measured the ratio of walks using k = {1, 2, ..., 10}
for each topology. Fig. 4 illustrates the difference between the
number of k-walks of various lengths. The measure of k-walks
from the HOT topology depicted in Fig. 4(a) are k-separated
(the number of structures is explicitly ordered according to k).
In the case of Orbis shown in Fig. 4(b), the expected ordering
clearly does not hold. This indicates a key problem with the
Orbis-generated topology: several nodes are disconnected. The
k-walk metric is useful not only for measuring and bounding
the similarity of two graphs with respect to k, but also for
forensic analysis of expected characteristics of generators.
Results with other topologies and generators have been omitted
for brevity.

(a) HOT (b) Orbis

Fig. 4. The ratios of k-walks from the HOT and the corresponding Orbis
topology are analyzed using walks of length {1, ..., 10}. The behavior of the
estimated topology (from Orbis) at various walk lengths deviates from the
benchmark topology.

(a) WHOIS (b) HOT (c) RocketFuel

(d) Orbis (WHOIS) (e) Orbis (HOT) (f) Orbis (RocketFuel)

Fig. 5. Evaluating the connectivity and clustering of the generated
topologies. The x-axis and y-axis of the above plots represent nodes of
the adjacency matrices which are ordered by the principal singular-vector.
(a)-(c) visualize the adjacency matrices for the benchmark topologies. The
adjacency matrices for the corresponding generated topologies from Orbis
are shown in (d)-(f). The clustering properties (block structures) are found
to be different in all topologies. For instance, (c) clearly shows signs of
clusters (blocks/perpendicular lines), but the corresponding Orbis topology
in (f) has no signs of the clusters previously observed and is much smoother.
The main reason is that Orbis randomly rewires the links without considering
the community structure.

C. Link Metrics: Structural Evaluation and Visualizations

We first compare the link structures by ordering the nodes
(and weighting links) using the principal singular-vector. This
vector corresponds to the largest singular-value. We chose
the singular-vector since it pertains to the most significant
link structures and connectivity patterns of the topology. Most
often, this represents the network core and its connectivity
patterns. Ordering the nodes by their distance from the main
direction (how well they fit with the most significant connec-
tivity patterns and link structures) shown in Fig. 5 and 6 pro-
vides evidence of the formation of clusters or groups (shown
as block structures). Additionally, the visualization shows
important properties such as the shape of connectivity, density
of the border region, and the density of the clusters/block
structures. These indicate the connectivity and expansion of
the network core, and can provide intuition about distance-
related properties. Most importantly, the resulting visualiza-
tions provide signatures of the topology and the corresponding
generator to which that topology belongs (i.e., they clearly
distinguish generators from one another).

Traditionally, two topologies using an arbitrary link measure
are compared by aggregating over link weights or attempting
to match weighted link structures between the topologies.
However, we provide a potentially more accurate and complete
comparison by visualizing the adjacency matrix, allowing for
an easy and simple assessment of similarity. A topology
is similar at the global, community, and local levels if we
observe similar clusters (most evidently the network core),
shape, density of the shapes in the border region, and other
unique connectivity patterns. If we find these properties to be
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(a) RouteViews 2011 (b) WIT 2011 (c) Orbis 2011

Fig. 6. Evaluating the connectivity and clustering of the generated topologies
using the most recent Internet AS topology (see (a)). (b) The WIT topology
exhibits very different characteristics from the other topologies and contains
an obvious signature that distinguishes WIT topologies from the other Internet
AS topologies or generators. The tightly-knit cluster formed at the top of the
WIT visualizations barely connects to the rest of the network, which indicates
an intrinsic problem with the generator. (c) The topologies generated from
Orbis preserve the characteristics (clustering, link structure, and connectivity
patterns) more accurately than WIT (closer to that of the RouteViews).

significantly different, then this implies the principal singular-
vector – denoting the main direction and hence connectivity –
must be different.

Fig. 5(a)-5(c) visualize the benchmark topologies. The cor-
responding Orbis visualizations are shown in Fig. 5(d)-5(f).
The clustering properties (block structures) are found to be
significantly different in all topologies. For instance, Fig. 5(c)
clearly shows signs of clusters, but the corresponding Orbis
topology in Fig. 5(f) has no signs of the clusters previously
observed and is much smoother. The links are randomly
rewired without considering the community structure. Similar
observations are seen with the other topologies. Additionally,
the link structure and connectivity patterns are significantly
different for all topologies as clearly seen from the shape of
the connectivity and border formed from the implicit ordering.

The topologies generated using WIT and Orbis over time
and their visualizations are depicted in Fig. 6. The WIT
topology exhibits significantly different characteristics from
any of the topologies (shown in Fig. 5) and contains an obvious
signature that distinguishes WIT topologies from Internet AS
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(b) Learned metrics

Fig. 8. Topology generators are evaluated over time (2004-2011) by
computing the KL-divergence of their combined set of metrics and the
RouteViews data (used as ground-truth). We find that Orbis preserves the
properties of the static topology with reasonable accuracy (used the 2004
RouteViews topology as input), but as this topology is rescaled to a larger
size, the properties diverge more from the true distributions (shown by the
increasing trend in (a) and (b)). The combined set of metrics from the WIT
topologies over time do not match the Internet AS (if WIT tracked the
properties perfectly, then the WIT curve would be an horizontal line on zero).
In all cases, the Orbis topologies are shown to be more similar (diverge less)
to RouteViews.

topologies or other generators. The tightly-knit cluster formed
at the top of the WIT visualizations barely connects to the rest
of the network, which indicates an intrinsic problem with the
generator. We can also directly compare WIT with the Skitter
and WHOIS topologies from Fig. 5.

The evolutionary characteristics of WIT and Orbis are now
compared to the Internet AS at the link-metrics level, the finest
evaluation granularity. We find that the topologies generated
from Orbis over time preserve the evolutionary characteristics
(clustering, link structure, and connectivity patterns) more
accurately than WIT as shown in Fig. 6.

Perhaps the most striking visualization is that shown in
Fig. 7. This approximates the topologies using only the most
significant singular-vector determined by the largest singular-
value. Other k-approximations can be generated using the first
k singular-vectors. If k = |V |, then the result is the original
topology, whereas different choices of k capture other network
characteristics.

The visualization in Fig. 7 is of the network core and its
weighted connectivity – links are created, suppressed, and
assigned weights. The core of the Internet is larger and the
connectivity is more highly weighted compared to Orbis and
WIT. The link metrics allow for direct comparison of the
complete topology using orderings and approximations that
reveal the most significant local and global properties.

D. A Single Measure of Evaluation

We have demonstrated that Orbis and WIT fail to capture
certain metrics from each of the three classes (graph, node, and
link metrics). We now evaluate the generators by measuring
the KL-divergence of their set of metrics over time, using
the RouteViews data as ground-truth (true distribution). The
KL-divergence of both the selected set of metrics and the
learned set (using ReFex [18]) are computed across time.
The results are shown in Fig. 8. The Orbis topologies are
found to fit more closely with the RouteViews topologies
(lower divergence from the true distribution). This is true
for both the selected and learned set of metrics. The KL-
divergence provides a single measure for evaluating topologies
based on the combined set of metrics. Learning a set of
metrics automatically based on a distribution of graphs allows
generators to be evaluated systematically using graph features
that are representative of the true distribution.

The learned graph metrics for RouteViews and the gener-
ators are visualized in Fig. 9 by considering the normalized
weight of each across time. Interestingly, the 15th-19th fea-
tures transition from having low weight to very high weight
in the more recent Internet structure (captured better by Orbis
than WIT). Nevertheless, the learned features from Orbis
seemingly match the Internet AS better than WIT as shown
more clearly in Fig. 8(b).

VI. CONCLUSIONS

In this paper, we have proposed a multi-level framework
for understanding Internet topologies, their evolution, and
for comparing topology generators. We used the framework
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(a) RouteViews (b) Orbis (c) WIT

Fig. 7. RouteViews AS topology (2011) compared to the corresponding Orbis and WIT topologies. The ASes in each topology are first ranked according to
their coordinate value on the principal singular-vector then the connectivity patterns (and the latent link weights/strengths) of the network core are estimated
using the closest rank-k approximation (given by SVD). The resulting visualization is of the network core and the corresponding cluster properties.

(a) RouteViews (b) Orbis (c) WIT

Fig. 9. Comparison of the learned graph metrics across time (2004-2011)
for each topology generator. The Orbis generator is shown to be more similar
to the Internet while WIT appears more random. Interestingly, there is a
significant evolutionary transition in the Internet captured by the 15-19th graph
metrics.

to evaluate whether the recent generators Orbis and WIT
preserved a wide-range of important network properties and
compared their ability to preserve these characteristics as the
network evolves. We identified a number of shortcomings
of both generators. We also observed that recent Internet
evolutionary characteristics significantly differ from trends
assumed by many Internet topology generators.

Traditionally, topology generators have evaluated evolution-
ary properties using a few macro metrics which often lead
to misleading conclusions. For this reason, we used a multi-
level approach that leverages both macro metrics (graph) and
micro metrics (node and link metrics) to more accurately
compare topologies while capturing the important network
characteristics warranted by researchers. Our results suggest
that existing topology generators fail to accurately model the
evolution of the Internet AS topology. More unexpectedly, we
found that many generators fail to capture important static
characteristics.

In general, we found the data-driven generators, e.g., Orbis,
to be more accurate than the generators based on a mechanism
with no estimation (such as WIT). Data-driven generators
preserve the properties of an input topology, but generate static
topologies with low or no variance. However, for modeling
the evolution of the Internet, the properties become signif-
icantly uncorrelated as the size increases. Conversely, the
parametric generators fail to model the Internet evolution if
any key assumption is violated or the assumed characteristics
change [23]. Moreover, if their models lack parameter estima-
tion, then selecting a set of reasonable parameters becomes
extremely difficult in practice.
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