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ABSTRACT
Understanding user behavior and predicting future behavior on the
web is critical for providing seamless user experiences as well as
increasing revenue of service providers. Recently, thanks to the re-
markable success of recurrent neural networks (RNNs), it has been
widely used for modeling sequences of user behaviors. However,
although sequential behaviors appear across multiple domains in
practice, existing RNN-based approaches still focus on the single-
domain scenario assuming that sequential behaviors come from
only a single domain. Hence, in order to analyze sequential behav-
iors across multiple domains, they require to separately train multi-
ple RNN models, which fails to jointly model the interplay among
sequential behaviors across multiple domains. Consequently, they
often suffer from lack of information within each domain. In this
paper, we first introduce a practical but overlooked phenomenon
in sequential behaviors across multiple domains, i.e., domain switch
where two successive behaviors belong to different domains. Then,
we propose a Domain Switch-Aware Holistic Recurrent Neural Net-
work (DS-HRNN) that effectively shares the knowledge extracted
from multiple domains by systematically handling domain switch
for the multi-domain scenario. DS-HRNN jointly models the multi-
domain sequential behaviors and accurately predicts the future
behaviors in each domain with only a single RNN model. Our ex-
tensive evaluations on two real-world datasets demonstrate that
DS-HRNN outperforms existing RNN-based approaches and non-
sequential baselines with significant improvements by up to 14.93%
in terms of recall of the future behavior prediction.

CCS CONCEPTS
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1 INTRODUCTION
With the diversity of web services, today’s users on the web fre-
quently switch from one service to another within short period of
time, which makes their sequential behavior patterns more complex
and diverse. For example, users access to Youtube to watch videos,
use then Google to search information related to the content of
videos and re-access to Youtube to browse videos depending on
their search results in Google even within a short amount of time.
Typically, such sequential behavior across multiple domains1 are
locally and globally correlated. In this paper, we introduce it as
domain switches2 where two successive behaviors belong to dif-
ferent domains, e.g., from Youtube to Google and from Google to
Youtube. Accordingly, from the marketer’s point of view, accurately
understanding domain switches from browsing web pages to click-
ing/buying items within each domain is an important key when
deciding marketing strategies for each domain.

Nowadays, RNNs have been actively used to analyze sequential
behaviors in the user behavior modeling [1, 12, 27] or recommenda-
tion [2–4, 16, 20] fields. They have demonstrated their superiority
to traditional approaches [17, 18] by effectively considering sequen-
tial relationships of user behaviors [15]. However, to the best of our
knowledge, existing RNN-based approaches havemostly focused on
only a singe domain scenario of sequential behaviors as illustrated
in Figure 1a. As a result, they require multiple independent RNN
models for domains in order to analyze and predict domain-wise
sequential behaviors for the multi-domain scenario. Unavoidably,

1In this paper, domains refer to service categories in a large-scale web service [24, 25].
2In our two real-world datasets. domain switches frequently occur with the average
ratios, 0.29 and 0.32, of the number of domain switches to the length of sequences.
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(a) The single-domain scenario
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(b) The multi-domain scenario

Figure 1: Two illustrations of (a) the single-domain scenario
with two behavior sequences for a user within Domain A or
B and (b) the multi-domain scenario with an aggregated be-
havior sequence for the user across two domains.

they cannot exploit global dynamics of sequential behaviors con-
tained across domains, which leads to an inferior performance of
RNN models.

In this paper, we present a single RNN-based framework that han-
dles the multi-domain scenario to accurately predict domain-wise
future behavior. Precisely, the framework aggregates sequential
behaviors of each user across multiple domains in chronological
order. For example, the two sequences came from a single user in
Figure 1a are merged into a sequence in chronological order as
in Figure 1b. It naturally reveals the user’s global behavior pat-
tern across domains via domain switches. Moreover, even if some
users have rarely behaved in a certain domain, we can expect that
knowledge from other domains will complement insufficient in-
formation in analyzing their future behavior within the domain,
which additionally mitigates the cold-start problem.

However, although the chronologically ordered aggregation pre-
serves the global dynamics of sequential behaviors, some direct
connections between two behaviors within each domain (i.e., local
dynamics) are lost owing to domain switches in the multi-domain
sequential behaviors of users. In Figure 1, when two sequences
are aggregated in chronological order for modeling multi-domain
sequential behaviors, pages B and C in Domain A are connected to
pages P and Q in Domain B, respectively. With the domain switches,
the direct interaction between B and C pages in Domain A are
eventually lost, which results in information loss within the Do-
main A. This information loss aggravates as the number of the
domain switches increases, which eventually hinders performance
improvements for next behavior prediction within each domain.

To tackle this issue, we proposeDomain Switch-Aware Holistic Re-
current Neural Network (DS-HRNN) that effectively addresses miss-
ing direct interactions in local dynamics on top of the RNN-based
framework. Specifically, we first recover missing direct interactions
caused by domain switches, and compute domain switch-aware sup-
plementary loss with respect to missing direct interactions. More-
over, we reflect correlations between global and local past behaviors
at the end of each domain switch by introducing domain switch-
aware behavior regularizer. It is worth noting that in Figure 1b the
past behaviors of page C are locally page B and globally page Q

, which means that it is likely that a correlation between pages B
and Q exists. These two techniques attentively take into account
local dynamics at every domain switches. Consequently, they en-
able DS-HRNN not only to effectively reflect global dynamics into
a single RNN model but also to preserve local dynamics without
compromising further improvement in analyzing future behavior
sequence within each domain. We conduct extensive experiments
on two real-world datasets, and our experimental results show the
effectiveness of DS-HRNN in terms of predicting next behavior
sequence in each domain compared with existing approaches.

The main contributions of this work are as follows:
• Weaddress the problem ofmodeling user sequential behavior
across multiple domains and propose a single RNN-based
framework to fully leverage multi-domain user behavior.
• We introduce the domain switch phenomena and proposeDS-
HRNN on top of the RNN-based framework by devising two
domain switch-aware techniques to boost its predictability.
• We show that DS-HRNN outperforms the state-of-the-arts,
especially under the cold-start evaluation much better. Also,
we investigate the impact of two proposed techniques to-
gether with a case study.

2 RELATEDWORK
2.1 RNN-based Sequential Behavior Modeling
In order to effectively model sequential behaviors, a RNN-based
recommeder system was firstly introduced for session-based recom-
mendation [6]. On top of that, a variety of RNN-based approaches
for the next behavior prediction have been developed by addition-
ally considering personalization [4, 16, 22], context-awareness [3,
19, 27], and different types of user behavior [1, 12, 21, 26].
Personalization. Donkers et al. [4] devised a user-based Gated
Recurrent Units (GRU) that attentively consider user embeddings
along with sequential item information for personalized next item
recommendations. Quadrana et al. [16] hierarchically exploited a
user-level and a session-level RNNs to reflect users’ inter-session
sequential dynamics into intra-session sequential dynamics for per-
sonalized session-based recommendations. Wu et al. [22] exploited
a user-level and an item-level RNNs in parallel based on the user-
level and the item-level history, respectively, to consider temporal
evaluation of users and items for the rating prediction.
Context-awareness information. Beutel et al. [3] and Smirnova
et al. [19] reflected contextual information into input, output and
RNN layers. Particularly, they parametrized hidden state transitions
in RNNs with an element-wise multiplicative function of context
embeddings for better next item recommendations and compared
their approach with baselines without contexts. Zhu et al. [27]
claimed the importance of taking into account time intervals in
order to effectively capture the relations of user behaviors, and
thus, they devised a new LSTM variant to equip LSTM [7] with
newly introduced time gates to model time intervals between two
successive user behaviors for the next-basket recommendations.
Different types of user behavior. Zhou et al. [26] introduced
micro-behaviors such as click source, browsing modules, and cart
and order based on users’ sequential behavior in the e-commerce.
They simultaneously exploited user behavior as well as the corre-
sponding micro-behavior as an input of RNN, and used attention
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mechanism [14] on top of outputs of RNN for better next item
recommendation. Similar to Zhou et al. [26], Twardowski [21] ex-
ploited event types of behaviors (e.g., search, view and watch/cart)
together with users’ behavior history for enhancing session-based
recommendation without the attention mechanism. Liu et al. [12]
integrated the log-bilinear model [14] into RNN so that hidden
sates can capture short-term and long-term contexts in user be-
havior sequences for predicting what a user will choose next. In
addition to that, they tried to model multiple types of behaviors
with behavior-specific transition matrices in their model.

However, none of existing RNN-based approaches have tried to
consider the multi-domain scenario as in Figure 1b. Specifically,
even if different types of behavior that are used as additional in-
formation of inputs are assumed to be domains, their approaches
inevitably fall into the single-domain scenario since their objectives
are modeled to predict next behaviors of users regardless of types
of behaviors. Moreover, in existing approaches, one behavior can be
concurrently assigned to multiple types such as click, add-to-cart
and purchase, however, the multi-domain scenario has the distinc-
tive property where one behavior is exactly assigned to only one
domain. Therefore, how to consider the multi-domain scenario in
users’ sequential behaviors still remains a challenging problem.

2.2 Multi-Domain User Behavior Modeling
As one of cross-domain approaches, multi-domain user behavior
modeling approaches have been explored mainly based on non-
sequential methods such as matrix factorization [8, 23–25] and feed
forward neural network [5]. It is worth noting that these approaches
seamlessly learn shared knowledge across all domains so that the
shared knowledge can be effectively used for better domain-wise
user behavior prediction. Particularly, Li et al. [8] and Zhang et
al. [25] utilized a cluster-level rating matrix from multiple rating
matrices in order to share the knowledge collected frommultiple do-
mains. Zhang et al. [24] simultaneously dealt with multiple matrix
factorization tasks in different domains while modeling the correla-
tions between domains through covariance matrix obtained from
multiple user latent models for domains. Elkahky et al. [5] proposed
a single multi-view deep neural network model that jointly learns
dense features of items from different domains such as News, Apps
and Movie/TV via common users. Yang et al. [23] observed that
users have cross-site as well as site-specific preferences in multiple
video websites, and thus they proposed a matrix factorization based
model that infers site-specific user variables based on cross-site
user variables. In their model, these site-specific user variables are
used to predict ratings with video variables.

However, these approaches do not seamlessly take into account
sequential dynamics of user behaviors. To the best of our knowl-
edge, our work is the first attempt to consider sequential dynamics
as well as the multi-domain scenario in order to effectively predict
future behaviors for each domain. Note that multi-task learning-
based RNNs [9–11, 13] in the natural language processing (NLP)
field might be regarded as our related work, but they differ from
ours with the following reasons. With respect to objectives, existing
approaches for NLP mainly try to simultaneously solve multiple
classification problems based on text whereas our approach try to

predict domain-wise next behavior based on previous behavior his-
tory across multi-domain. Moreover, inputs of existing approaches
come from only a single source (e.g., English) whereas those of our
approach come from multiple sources (e.g., domain A, B and C). For
example, two pairs of a sentence and a label from different tasks
can share English words, however, sequences of behaviors from
different domains never have common behaviors. Thus, the task
of modeling multi-domain user behavior is more challenging than
that of multi-task learning in NLP. For clarity of exposition, we
formally define our problem in the following section.

3 METHODOLOGY
3.1 Problem Statement
In this paper, we assume that multi-domain user behaviors are
browsing logs from different domains on a large-scale web ser-
vice. Let B(d ) denote a set of behaviors in domain d ∈ D where
D denotes a finite set of domains on the service. We assume that
behavior sets do not have intersection3, i.e.,

⋂
d B
(d ) = ∅ since

different service categories are highly likely not to share their en-
tries such as pages and products. With this setting, the task is
to accurately predict domain-wise next behavior sequences Si =
{S
(1)
i , S

(2)
i , · · · , S

(d )
i } with given behavior histories over all domains

Xi = {X
(1)
i ,X

(2)
i , · · · ,X

(d )
i }, where S

(d )
i = {yi,t |yi,t ∈B

(d ), t > T }
denotes a sequence of future behaviors for user i in domain d and
yi,t denotes a future behavior for user i in domain d at time t . Simi-
lar to S(d )i ,X (d )i = {xi,t |xi,t ∈B

(d ), 1≤t≤T } denotes a user behavior
history in a domain where xi,t denotes a past behavior for user i in
domain d at time t . Note that a user can be replaced with a session
since multi-domain behaviors can exist even within a session. In
this paper, a user and a session are interchangeable.

3.2 RNN-based Framework for Multi-Domain
According to the task, since we consider sequential dynamics of
behaviors, the training objective function of RNN-based approaches
for each user4 can be commonly represented as:

L(θ ) =
∑
d

∑
t=2

l(xt ,Fθ (x<t )), (1)

where l is a loss function such as cross entropy, and xt ∈ B
(d )

denotes a true behavior in a current target domain d at time t .
Fθ is the function based on RNNs, and x<t denotes sequential
behaviors before t time in chronological order. Typically, RNNs
have a recurrent form such that the hidden state ht−1 ∈ Rk at time
step t − 1 is computed recursively from the previous hidden state
and the current input:

ht−1 = f (xt−1,ht−2),

where f denotes a RNN cell such as the basic RNN, LSTM, and GRU
cell, and in our task, ht−1 is used to estimate xt . It is worth noting
that Fθ and x<t vary depending on how RNN-based approaches
consider sequential dynamics as well as multi-domain user behav-
iors. In this section, we firstly describe how existing approaches for

3This assumption is more challenging according to [8].
4We omit user indices since all users are handled in the same way.
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Figure 2: Illustrations about RNN-based approaches of (a)
the SM case, (b) the MM case and (c) the MS case.
single domain scenario [1, 3, 4, 6, 12, 16, 19, 21, 22, 26, 27] can be sim-
ply applied to formulate Fθ together with x<t for our multi-domain
scenario. Then, we present two naive RNN-based approaches to
formulate them for our multi-domain scenario.

Single-domain based approach with Multiple models (SM).
Related to existing RNN-based approaches, Figure 2a illustrates
how the single-domain based approach works for modeling multi-
domain user sequential behaviors. Intuitively, this approach nec-
essarily requires multiple RNN models for domains since it inde-
pendently handles sequences from different domains. To be precise,
Fθ and x<t in this approach are defined as:

Fθ = Fθ (d )

x<t = x(d )<t

}
if xt ∈ B

(d )

where Fθ (d ) ∈ {Fθ (1) ,Fθ (2) , ...} is a RNN model parameterized by
θ (d ) only for domain d , and x(d )<t consists of behaviors only within
domain d as a subset5 of the entire sequential behaviors X (d ) for a
user in domaind . With given user behavior history x(d )<t , each model
Fθ (d ) computes the probability distribution p(d )t of next behaviors
in the corresponding domain as following:

Fθ (d ) (x<t ) = p(d )t

=
1

Z (d )
[pθ (d ) (xt = b |x

(d )
<t )]∀b ∈B(d )

where pθ (d ) indicates the predicted probability for the next user
behavior b within domain d , and Z (d ) is a normalizing factor for
domain d . However, since this approach independently trains θ (d )

with x(d )<t based on an actual target xt for all domains, knowledge
from different domains cannot be shared to figure out global dynam-
ics of sequential behaviors. Furthermore, this isolated knowledge
without global dynamics cannot complement lack of information
each other.

Multi-domain based approach with Multiple models (MM).
To address the issue of SM approach, Figure 2b shows our first RNN-
based naive approach. Particularly, we aggregate user behaviors
over all domains in chronological order, and consider them as inputs
of RNN models to reflect global dynamics of sequential behaviors
into RNN models. Accordingly, we redefine x<t as:

x<t =
⋃
d

x(d )<t

5If t is the length of a sequence plus one, x(d )<t becomes X (d ) .

Then, x<t stands for chronologically aggregated user behaviors
across multiple domains, and p(d )t with x<t has a new form of:

p(d )t =
1

Z (d )
[pθ (d ) (xt = b |x<t )]∀b ∈B(d )

From the above equation, in MM approach, behaviors from non-
target domains are additionally exploited to infer next behaviors for
a target domain. This enables not only to reflect global dynamics
of user sequential behaviors across multiple domains but also to
complement lack of behavioral information, especially for users
who rarely behave in the target domain. However, this approach
still requires as many training procedures as the number of RNN
models to train each θ (d ). Moreover, behaviors from non-target
domains do not fully help to tackle the issue of SM approach for
the target domain, because each RNN model is individually trained
by considering only the loss of its target domain while neglecting
the loss of non-target domains.

Multi-domain based approach with a Single model (MS). To
handle the issue of MM approach where each RNN model will be
solely optimized for the target domain, we additionally reflect loss
of non-target domains into each RNN model of the MM approach
which is previously trained for its target domain. Then, it enables
each RNN model to fully leverage behaviors across multi-domain,
and eventually all RNN models work exactly the same since the
loss of a non-target domain in a RNN model is regarded as the loss
of a target domain in other RNN model. Accordingly, ∀θ (d ) can be
replaced with a global model parameter θд for a single RNN model
across multi-domain. With θд , Fθ (d ) becomes Fθд , and p

(d )
t has the

final form of:

p(d )t =
1

Z (d )
[pθд (xt = b |x<t )]∀b ∈B(d )

Figure 2c illustrates the MS approach that exploits a single RNN
model to fully consider chronologically aggregated user behaviors
across multiple domains. Note that theMS approach is totally dif-
ferent from simple RNN-based approaches based on the assumption
where user behaviors do not belong to any domains, because the
MS approach computes the domain-wise loss and prediction. If the
loss and prediction are globally computed, predicting sequences of
the next user behaviors tends to be inaccurate, because all behaviors
are considered as candidates for the next behaviors regardless of
domains.

3.3 Domain Switch-Aware Holistic Recurrent
Neural Network (DS-HRNN)

The key idea of handling multi-domain user behavior are 1) aggre-
gating user behaviors from multiple domains into one sequence
in chronological order and 2) exploiting a single RNN model that
takes sequences of multi-domain user behaviors. However, in the
MS approach for the single RNN model, domain switches by the
chronologically ordered aggregation are highly likely to hinder
further improvements in multi-domain behavior prediction. The
reason is that considering the loss of all domains in the single
RNN model gives rise to the disconnection of direct interactions
between behaviors in the same domain (i.e., local dynamics). To
better understand the issue of theMS approach, Figure 3a shows
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Figure 3: Example of (a) domain switches and our proposed two strategies for DS-HRNN – Domain switch-aware (b) supple-
mentary loss and (c) behavior regularizer. Dotted orange line denotes domain switches.

the unfolded structure of the single RNN model with the cases of
domain switches. From the view point of Domain A, the second
domain switch causes the RNN model to be trained for predicting
different behaviors out of Domain A even though the current input
belongs toDomain A. ForDomain B, the first and last domain switch
impair the RNN model in a similar way in which the second does.
Eventually, the ill-trained single RNN model results in inaccurate
behavior prediction for each domain. Here, we attribute this issue
to the broken local dynamics, and we introduce our novel RNN-
based approach, Domain Change-Aware Holistic Recurrent Neural
Network (DC-HRNN) by proposing two types of domain switch-
aware techniques to alleviate the disconnection of local dynamics.
Then, we formulate the final objective function and briefly describe
the architecture of the single RNN model.

Domain switch-aware supplementary loss. The key idea for
alleviating the disconnection of local dynamics is to recover the
disconnection asmuch as possiblewhile preserving global dynamics
of sequential behaviors simultaneously. To this end, in terms of
outputs, we define a domain switch-aware supplementary loss that
is an explicit way of recovering the lost connection at domain
switches Ls as follows.

Ls (θ
д) =

∑
t=2
I[xt−1 ∈ B

(d ) ∧ xt < B
(d )]l(xt−1+n(d ) ,Fθд (x<t ))

where I[·] is the indicator function, and n(d ) is the distance from the
current input xt−1 ∈ B(d ) to the nearest next behavior in the same
domain d . Note that the indicator function lets the supplementary
loss valid only at domain switches since disconnection does not oc-
curs on other than domain change interactions. Figure 3b illustrates
how Ls works in the single RNN model. Precisely, Ls searches the
nearest next behavior which belong to the same domain, Domain
A, as the current input of the RNN model on the domain switch,
and Ls computes the correlation between these two behaviors.
Through Ls , we aim to explicitly inject local dynamics previously
lost in the M-S approach into the RNN model, which leads to more
accurate sequential behavior prediction for each domain.

Domain switch-aware behavior regularizer. Similarly, alleviat-
ing the disconnection of local dynamics can be also achieved in
an implicit way in terms of inputs. To be specific, Figure 3c shows
that the input on the domain switch is likely to be correlated with

the past nearest behavior who belongs to the same domain as the
output on the domain switch. The reason is that these two behav-
iors for inputs can share the same output as the next behavior.
Note that the past nearest behavior can be regarded as the past
behavior of the current output in terms of local dynamics of the
domain, Domain B. Eventually, local dynamics previously lost in the
M-S approach can be implicitly recovered via taking into account
these correlations for inputs. To reflect this, we introduce a domain
switch-aware behavior regularizer Lr that minimizes the distance
between correlated inputs from different domains:

Lr (θ
д) =

∑
t=2
I[xt−1 < B

(d )∧xt ∈ B
(d )]∥Fθдin

(xt−m(d ) )−Fθдin
(xt−1)∥2

where Fθдin (x) ∈ R
k denotes the k-dimensional embedding vector

for input behavior x , and m(d ) is the distance from the current
input xt−1 to the nearest past behavior which belongs to the same
domain d as the output xt . This regularizer might seem to play the
same role as the supplementary loss, however, the regularization
focuses on building correlated input embeddings for different do-
mains of behaviors, which is not explicitly taken into account in
the supplementary loss technique.

Final objective &Architecture.Given our two techniques on top
of theM-S approach, our final objective J(θд) for all users to be
minimized is formulated as follows:

J(θд) =
∑
user
(L(θд) + λs · Ls (θ

д) + λr · Lr (θ
д))

where λs and λr are loss coefficients for the domain switch-aware
supplementary loss and the domain switch-aware behavior regu-
larizer, respectively. For L and Ls , we use the cross entropy loss
to deal with the probability distribution of next behaviors. Our
architecture for Fθд consists of three parts: 1) Input module, which
projects raw sparse input of each behavior (e.g., one-hot vector)
into low dimensional embedding space, 2) Recurrent module, which
recursively updates the hidden state from the previous hidden state
and the current input in order to reflect sequential information, 3)
Output module, which computes the probability distribution of next
behaviors for each domain. Specifically, the process of Fθд with a
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Table 1: Data statistics of two datasets: uniq. and avg. denote
unique behaviors and the average length of sequences.

Dataset Dom. # Behav. (# uniq.) # Seq. (avg.)
CorWeb All 4,858,663 (15,309) 85,048 (57.13)

Domain A 1,577,354 (1,309) -
Domain B 686,226 (5,664) -
Domain C 2,595,083 (8,336) -

Yoochoose All 1,560,414 (20,197) 50,698 (30.78)
Normal 783,722 (17,287) -
Special 776,692 (2,910) -

given sequence x<t and xt ∈ B(d ) is as follows:

et−1 = Fθдin
(xt−1) = E·xt−1 (Input)

ht−1 = Fθдr ec (et−1,ht−2) = f (et−1,ht−2) (Recurrent)

p(d )t = Fθдout
(ht−1) = Softmax(W (d )o ht−1 + b

(d )
o ) (Output)

where θд = {θдin ,θ
д
r ec ,θ

д
out } and et−1 ∈ Rk denotes the embed-

ding vector for the user behavior at time t − 1. xt−1 ∈ R |B | is the
one-hot vector for the user behavior in the sequence at time t − 1,
and E ∈ Rk×|B | is a behavior embedding matrix for inputs of all
the user behaviors. As mentioned in Section 3.2, f (·) denotes a
RNN cell, which can be easily replaced with more complex RNN
cells [3, 7, 12, 19, 27] for further improvements. In the output mod-
ule,W (d )o ∈ R |B

(d ) |×(k ) and b(d )o denote the transformation matrix
and bias, respectively in order to compute probability distribution
of next behaviors for each domain. From the final objective and this
architecture, we compute the gradient for parameters in θд , and
update them by using mini-batch stocastic gradient descent (SGD)
with learning rate η as follows:

θд ← θд − η ×
∂J(θд)

∂θд

After training, the next behavior prediction is conducted with Fθд
and the last behavior xT for a user in the training set:

pT+1 = Fθд (xT ,x<T )

yT+1 = argmax
b
[p(d )T+1]1≤b≤ |B(d ) |

This prediction process is repeated via previous prediction results
to generate a sequence S(d ) = {yt |yt ∈ B

(d ), t > T } of future
behaviors in the domain d for a user.

4 EXPERIMENTS
In this section, we evaluate the empirical performance of DS-HRNN
on real-world datasets, and thus we design experiments to verify
the following research questions (RQs):

RQ 1 Does DS-HRNN outperform other competitors?
RQ 2 By considering multi-domain user bahavior, does DS-HRNN

indeed mitigate to the cold-start problem?
RQ 3 How do the supplementary loss and behavior regularizer

affect the model performance?

4.1 Experimental Setup
Dataset. In order to validate our approaches, we employ two real-
world datasets of user browsing logs on the web: a Corporate Web-
site (CorWeb) and Yoochoose6. The CorWeb dataset consists of
web browsing logs of users on a corporate website, which contains
tuples of a hashed user id, page URL, and timestamp. We regard
visited URLs as user behaviors, and annotate them with the domain
tags based on their base domain so that each behavior belongs to
only one domain among the Domain A, B, and C. The Yoochoose
dataset consists of item browsing logs of users on the e-commerce
site, Youchoose, which contains tuples of session id, item id, times-
tamp and category. We regard clicked items as user behaviors, and
annotate them with the domain tags so that they are categorized
into two disjoint domains; Normal and Special based on category
information whose items belong to the ‘special offer’ category at
least one or not. For both datasets, each sequence is comprised of
multi-domain behaviors in chronological order through common
user ids and session ids, respectively. We preprocess data so that
the length of each sequence is at least 10, and Table 1 shows the
statistics of both datasets.
Competitors.We evaluate DS-HRNN with baselines categorized
into single domain-based approaches (e.g., SM) andmultiple domain-
based approaches (e.g.,MM, MS) as follows.

Single domain-based approaches.
• BoB: A latent model-based approach, which considers cur-
rent behaviors as well as all previous behaviors as a bag of
behaviors.
• Covi: A latent model-based approach, which considers the
interaction of co-browsing two behaviors.
• RNNSM: The RNN-based approach for a single domain as
discussed in Section 3.2. Since RNNs have already surpassed
other single domain-based approaches such as KNN [18] and
MF [17], we omit them for brevity.

Multiple domain-based approaches.
• MPF: The state-of-the-art collective matrix factorization ap-
proach for multi-domain scenario, which considers domain-
specific user latent models as well as shared user latent mod-
els across domains [23].
• RNNMM: Our RNN-based approach with multiple models
as in Section 3.2
• RNNMS: Our RNN-based approach with a single model as
in Section 3.2.

For fair comparisons among RNN-based approaches, we commonly
uses the GRU cell for all the RNN-based approaches. Note that
DS-HRNN can also exploit variants of RNN cells developed re-
cently as mentioned in Section 3.3 and BoB and Covi were used as
competitors of the single-domain based RNN approach [19].
Evaluation protocol. Since our task is to predict domain-wise
next sequential behaviors from a certain time for user or session i ,
we used last five sequential behaviors Si in each global sequence
across multi-domain for testing, and the restXi are used for training.
Note that Si composes domain-wise true behavior sequences S(d )i
as many as the number of domains at most, and ∀dS(d )i are never
used as the inputs during testing. For tuning hyper-parameters and
6This dataset is publicly available at http://2015.recsyschallenge.com/challenge.html

http://2015.recsyschallenge.com/challenge.html
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Table 2: Overall performance for domain-wise next behavior predictions of various approaches. * denotes the second best. All
the improvements of DS-HRNN over the second best (vs.Best) are statistically significant (All p values « .01)

.

Single domain-based Mutiple domain-based Improvements

Dataset Domain Measure BoB Covi RNNSM MPF RNNMM RNNMS DS-HRNN vs.RNNSM vs.Best

CorWeb

Domain A

Recall@5 0.6212 0.5687 0.7508 0.4687 0.7873* 0.7832 0.8010 6.68% 1.73%
Recall@10 0.7555 0.6393 0.8249 0.5746 0.8519* 0.8457 0.8735 5.88% 2.53%
Recall@20 0.8486 0.7012 0.8795 0.6915 0.9087* 0.9046 0.9257 5.25% 1.87%

MRR 0.4218 0.4009 0.5872 0.3850 0.6422* 0.6356 0.6460 10.02% 0.59%

Domain B

Recall@5 0.2010 0.2317 0.2732 0.1114 0.2972* 0.2955 0.3126 14.43% 5.21%
Recall@10 0.2850 0.3104 0.3599 0.1732 0.3925* 0.3919 0.4136 14.93% 5.37%
Recall@20 0.3767 0.3969 0.4536 0.2390 0.4976* 0.4976 0.5201 14.68% 4.54%

MRR 0.1431 0.1690 0.2017 0.0692 0.2177* 0.2166 0.2272 12.61% 4.36%

Domain C

Recall@5 0.2943 0.3514 0.4161 0.1931 0.4204* 0.4137 0.4386 5.39% 4.33%
Recall@10 0.4190 0.4572 0.5407* 0.2873 0.5279 0.5238 0.5587 3.33% 3.33%
Recall@20 0.5571 0.5775 0.6584* 0.4166 0.6324 0.6363 0.6727 2.18% 2.18%

MRR 0.1979 0.2485 0.2930 0.1429 0.3060* 0.3019 0.3162 7.93% 3.32%

Yoochoose

Normal

Recall@5 0.1177 0.1532 0.1717 0.0181 0.1802 0.1829* 0.1888 10.00% 3.27%
Recall@10 0.1782 0.2200 0.2403 0.0311 0.2529 0.2562* 0.2632 9.54% 2.76%
Recall@20 0.2488 0.2965 0.3158 0.0520 0.3324 0.3361* 0.3425 8.45% 1.90%

MRR 0.0811 0.1077 0.1227 0.0160 0.1295 0.1312* 0.1350 10.02% 2.89%

Special

Recall@5 0.1501 0.1942 0.2598 0.1310 0.2683* 0.2679 0.2758 6.15% 2.79%
Recall@10 0.2288 0.2713 0.3434 0.2032 0.3525 0.3526* 0.3623 5.52% 2.76%
Recall@20 0.3261 0.3544 0.4334 0.2905 0.4449* 0.4436 0.4525 4.40% 1.71%

MRR 0.1052 0.1354 0.1925 0.0892 0.1988* 0.1984 0.2037 5.82% 2.46%
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Figure 4: Statistics of the number of occurrences with dis-
tances between disconnected behaviors in the same domain

Table 3: Cold-start evaluation in terms of Recall@10. * de-
notes the second best.

Dataset Domain RNNSM RNNMM RNNMS DC-HRNN

CorWeb
Domain A 0.8060 0.8416* 0.8233 0.8542
Domain B 0.3093 0.3662 0.3695* 0.4001
Domain C 0.5052* 0.5027 0.4988 0.5392

Yoochoose
Normal 0.2242 0.2469 0.2561* 0.2629
Special 0.3011 0.3214 0.3524* 0.3631

early stopping to avoid over-fitting, we user-wisely divide ∀iSi in
half so that the first and second half are used for validating and
testing, respectively. Based on the validation set, we tune all of the
hyper-parameters by grid search with the dimension size of hidden
states or latent models k ∈ {100, 300, 500} and the loss coefficients
λs , λr ∈ {0.0, 0.01, 0.1}. We commonly set the L2 regularization
coefficient to 1e-5, however, the coefficient for MPF is exceptionally
set to 0.1, which gives better performance. We set the size of mini-
batch to 256 and use Adam optimizer with an initial learning rate η
of 0.001.

Evaluation metrics.We select two widely used metrics in RNN-
based user behavior modeling approaches [4, 6, 16, 19, 26].

• Recall@K : The proportion of cases where a true behavior
exist in top-K predicted behaviors at each future timestamp
with K ∈ {5, 10, 20}.
• MRR: The average of the reciprocal ranks of a true behavior
among all predicted behaviors at each future timestamp. We
use this metric as a criterion during validation since this
metric takes into account all behaviors. In the case of single
model-based approaches, the average of MRRs across multi-
domain is regarded as the criterion.

For reliability of our results, we conduct this evaluation for each
domain five times with different initialization of trainable variables
and different validation set, and we report the mean values in terms
of our metrics.

4.2 Experimental Results
Overall performance evaluation (RQ 1). Table 2 shows the test
performance on predicting next user behaviors within each do-
main in terms of Recall@K and MRR. For single domain-based
approaches, we observe that the empirical performance is generally
enhanced in the order of BoB, Covi and RNNSM. As previously well
known, this tendency shows that understanding sequential dynam-
ics is significantly important for the next user behavior prediction.
Even in multiple domain-based approaches, RNN-based approaches
outperform MPF since MPF cannot consider sequential dynamics
although MPF takes into account user latent models as well as
multi-domain user behaviors. With respect to comparisons among
RNN-based approaches, multi-domain based RNN significantly out-
performs RNNSM, which shows that understanding multi-domain
user behaviors enables to enhance the next user behavior prediction
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Table 4: Effects of loss coefficients for two proposed techniques on the CorWeb dataset (Recall@10)

λs
λr Domain A Domain B Domain C

0.0 0.01 0.1 0.0 0.01 0.1 0.0 0.01 0.1

0.0 0.8457 0.8455 0.8529 0.3919 0.3921 0.3965 0.5238 0.5243 0.5295
0.01 0.8575 0.8580 0.8642 0.3950 0.3964 0.4004 0.5345 0.5354 0.5394
0.1 0.8697 0.8699 0.8735 0.4100 0.4106 0.4136 0.5552 0.5560 0.5587

Table 5: Case study on two anonymized url sequences in the CorWeb – Left: Last is the last behavior of an aggregated user
sequence in the training set. Future are the next true behaviors in the different domain and in the same domain as Last,
respectively from the test set. Right: rel.sim. = cos (hl ,wsame )/cos (hl ,wdif f ) where hl is the hidden state with Last and w is
from the trained output embedding for the next true behavior. cos(A,B) denotes a cosine similarity between A and B. rank is
the position of the next true one in the ranked list of predicted ones.

Case 1 Case 2

Last support/productX/error_update (Domain B) support/productX/help/libraries (Domain B)

Future others/productX/update (Domain C) productX/authenticated (Domain A)
support/productX_sub/tutorial (Domain B) support/productX/help/libraries (Domain B)

Case 1 Case 2

Model rel.sim. rank rel.sim. rank

RNNMS 1.1002 22 0.8688 10
DS-HRNN 1.4301 13 1.0601 2

for each domain. We also observe that RNNMM tends to slightly per-
forms better than RNNMS on the CorWeb dataset. This observation
well demonstrates that the explicit disconnection of local dynamics
in theMS approach caused by chronologically ordered aggregation
hinder improvements in multi-domain user behavior prediction as
mentioned in Section 3.3. However, in the Yoochoose dataset, we
found that the performance of RNNMM is comparable or worse than
that of RNNMS. To figure out this phenomenon, we investigate sta-
tistics of two datasets about the number of occurrences of distances
between disconnected behaviors within the same domain as shown
in Figure 4. Interestingly, most pairs of disconnected behaviors are
closer in the Yoochoose dataset than in the CorWeb dataset. Based
on this observation, we discover that the negative effects of the
chronologically ordered aggregation in RNNMS are highly related to
distances between disconnected behaviors. Lastly, it is noteworthy
that our final proposed approach, DS-HRNN, considerably beats all
the competitors over all the cases, which demonstrates that multi-
domain behaviors are beneficial and our proposed techniques are
indeed effective. Particularly, compared with RNNSM, DS-HRNN
achieves significant improvements up to almost 15%. Note that
Domain B has the smallest number of behaviors as in Table 1, and
thus we regard that multi-domain behaviors well complement the
lack of information in Domain B. This is also highly related to the
cold-start problem, and we give more explanation in the following.
In addition to that, we will describe the impact of two proposed
techniques in detail.

Impact ofmitigating the cold-start problem (RQ 2). To investi-
gate whether DS-HRNN well alleviates the cold-start problem with
effectively considering multi-domain user behaviors, we conduct an
additional experiment for top 20% of users who inactively behave
within each domain. Table 3 shows that DS-HRNN significantly
outperforms the type of existing RNN-based approaches, RNNSM,
by upto 29.36% in Domain B of the CorWeb dataset and 20.59% in
the Special domain of the Yoochoose dataset in terms of Recall@10.
Note that as previously mentioned, Domain B suffers from lack
of information. These improvements for inactive users are much

larger than those for all users, which boils down to that DS-HRNN
is able to effectively predict domain-wise next user behaviors, espe-
cially for cold-start users while mitigating the cold-start problem
better than others.

Impact of the domain switch-aware supplementary loss and
domain switch-aware behavior regularizer (RQ 3). In order to
inspect the impact of two techniques in detail, Table 4 shows the per-
formance changes on the CorWeb dataset according to the values
of loss coefficients λs and λr . Note that λs and λr can be regarded
as the strength to explicitly recover missing direct interactions by
supplementary losses and to implicitly recover them by behavior
regularizer, respectively. Thus, when two coefficients are set to zero,
DS-HRNN eventually becomes RNNMS. According to the values
of λs and λr , we have the two following observations: 1) Two pro-
posed techniques are indeed beneficial to preserve local dynamics
that disappeared, which enable DS-HRNN to boost the prediction
accuracy. 2) Although two proposed techniques are helpful, domain
change-aware supplementary loss is more beneficial than domain
change-aware behavior regularizer. We attribute this difference to
that the supplementary loss technique follows the explicit manner
to recover missing interactions whereas the other technique does
not.
Case Study – Table 5 shows our case study on two user behavior
sequences in the CorWeb in order to support the necessity of two
techniques. In our case study, from the urls, we observe that the
last behavior is correlated with two future behaviors in both cases,
especially in Case 2 where the future behavior in Domain B is the
same as the last behavior. Note that users often revisit the web page
in practice. Compared with RNNMS, DS-HRNN shows better scores
in terms of rel.sim. and higher ranks for the next true behaviors in
Domain B. Note that rel.sim. enables to fairly compare the degree
to which the hidden state with the last behavior is correlated with
the next true behavior for the same domain. From this case study,
we verify that our two proposed techniques indeed recover discon-
nection of local dynamics by attentively reflecting local dynamics
into the recurrent and output modules of DS-HRNN.
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5 CONCLUSION
User behaviors on the web become more complex since users natu-
rally switches between various web services. To effectively model
user behaviors for multiple domains, we firstly present a frame-
work that enables a single RNN model to fully exploit sequential
behavior across multiple domains. However, user behaviors across
multiple domains inevitably contain practical but overlooked do-
main switches which hinder the performace of next user behavior
prediction for each domain. To mitigate the negative impact from
domain switches, we propose DS-HRNN that employs two novel
domain switch-aware techniques: domain switch-aware supple-
mentary loss and domain switch-aware behavior regularizer. In
order to demonstrate the superiority of DS-HRNN, we conduct
thorough experiments using two real-world datasets, and verify
that DS-HRNN outperforms the state-of-the-art approaches to-
gether with the interesting case study. Moreover, DS-HRNN shows
the considerable effectiveness with respect to the cold-start prob-
lem. For future work, since the proposed framework is able to take
advantage of any RNNs, we also plan to leverage the content of
behaviors such as text in the web pages, descriptions and images of
products to more effectively model correlations among behaviors
from different domains based on our proposed approach.
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