
iMarker: Instant and True-to-scale AR with Invisible Markers
Chang Xiao
Adobe Research
United States

Ryan A. Rossi
Adobe Research
United States

Eunyee Koh
Adobe Research
United States

See

Capture Detect

Estimate Camera Pose

AR Rendering

Figure 1: AR rendering via iMarker. Regular website content is delivered through screen-to-eye channel and iMarkers are
delivered through screen-to-camera channel simultaneously. The iMarkers are visible through regular smartphone camera.
Our system can easily detect the markers, track the camera pose, and lastly, render AR content.

ABSTRACT
Augmented Reality (AR) has been widely used in modern mobile
devices for various applications. To achieve a stable and precise
AR experience, mobile devices are equipped with various sensors
(e.g., dual camera, LiDAR) to increase the robustness of camera
tracking. Those sensors largely increased the cost of mobile devices
and are usually not available on low-cost devices. We propose a
novel AR system that leverage the advance of marker-based camera
tracking to produce fast and true-to-scale AR rendering on any
device with a single camera. Our method enables the computer
monitor to be the host of AR markers, without taking up valuable
screen space nor impacting the user experience. Unlike traditional
marker-based methods, we utilize the difference between human
vision and camera system, making AR markers to be invisible to
human vision. We propose an efficient algorithm that allows the
mobile device to detect those markers accurately and later recover
the camera pose for AR rendering. Since the markers are invisible
to human vision, we can embed them on any website and the user
will not notice the existence of these markers. We also conduct
extensive experiments that evaluate the efficacy of our method.
The experimental results show that our method is faster and has a
more accurate scale of the virtual objects compared to the state-of-
the-art AR solution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’22, October 29, 2022, Bend, OR
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Human-centered computing→ Interaction devices.

KEYWORDS
ARMarkers, Hidden Screen-to-camera Communication, Augmented
Reality

ACM Reference Format:
Chang Xiao, Ryan A. Rossi, and Eunyee Koh. 2022. iMarker: Instant and
True-to-scale AR with Invisible Markers. In UIST ’22: The 35th Annual ACM
Symposium on User Interface Software and Technology, October 29, 2022, Bend,
OR. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Online shopping experiences have been largely enhanced by Aug-
mented Reality (AR) techniques. Many shopping websites or Apps
(e.g., IKEA) support AR view of their products onmobile devices. AR
can help the customer to understand how the products fit into the
desired environment before buying one, thus reducing the return
rate. However, current AR solutions are usually based onmarkerless
scene reconstruction, which requires the user to use their mobile
device to scan the environment for a few seconds. The quality of
scene reconstruction will determine the quality of virtual objects
rendered in AR. In addition, the size of the rendered AR object may
not be accurate due to lack of physical scale reference.

In this work, we propose a new marker-based AR technique
that allows mobile devices to render true-to-scale virtual objects
instantly near the computer monitor. An intuitive illustration of
the proposed concept is provided in Fig. 1. In our framework, com-
posite contents are produced for the display by multiplexing the
webpage content frames (intended for human viewers) and the AR
markers frames (intended for devices). These composite frames can

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

UIST ’22, October 29, 2022, Bend, OR Chang Xiao, Ryan A. Rossi, and Eunyee Koh

be rendered to human eyes without affecting the viewing experi-
ence. Therefore, the user can browse the website as usual without
ever noticing the embedded AR markers. In the meantime, the AR
markers carried by the composite frames can be captured and de-
coded by a mobile phone camera to estimate the camera position
and later on to render AR content. To enable the above functions,
our method leverages the capability discrepancy and distinctive
features of the human vision system and devices (display and cam-
era). Most computer monitors have a refresh rate higher than 60Hz,
while our human eyes have only a limited recognition capability
lower than 60Hz [6, 8]. On the other hand, most modern mobile
devices support high frame rate video capturing up to 240fps. Thus,
if the monitor displays regular website content while overlaying
flickering AR markers, the human eyes can only observe the origi-
nal web content. At the same time, the mobile device can recognize
the AR markers and use those as references for the 3D environment.
Rendering virtual objects based on the detected AR markers then
can be achieved through standard algorithms.

2 APPROACH
2.1 Overview
Our method consists of an encoding step and a decoding step. In
the encoding step, we take a normal webpage as input, e.g., an
online shopping webpage, and generate two webpages with AR
markers array overlaid on the original content. These two images
will later be alternatively displayed on the computer screen at a
high frame rate (usually at 60Hz, depending on the monitor type).
Since a normal human vision system can only recognize changes
lower than 60fps [6, 8], the alternatively displayed AR markers will
be invisible to humans. The idea of encode information in invisible
markers has also been explored by many works in HCI field with
different modalities [1, 5, 12]. On the other hand, most modern
smartphones support recording video at a higher frame rate (e.g.,
120fps, some models like iPhone 6 or later support 240fps). Thus,
the change in AR markers is observable for smartphones. Using
our computer vision algorithms, the centers of the embedded AR
markers can be easily located. The detected centers will be later
used for recovering camera poses by following the standard marker-
based tracking procedure [4, 13]. Fig. 2 provides an overview of our
encoding and decoding pipeline.

2.2 Encoding
The human vision system has a limited detection ability of time-
variant fluctuation of light intensity [6, 8]. When the changes are
above the Critical Flicker Frequency (CFF), the human vision system
is not able to detect the changes, while only the averaged lumi-
nance is perceived. For example, if we have a white image and a
black image displayed alternatively at a high frame rate, the human
vision system will recognize it as a static gray image. According to
the literature in vision research, CFF is affected by factors like back-
ground color, color contrast, and motion [6, 8]. It is believed that in
most cases, CCF of human eyes is 40-50Hz [3, 6, 8]. Thus, flickering
on a modern computer monitor (usually 60Hz) is unobtrusive to
humans.

Given the characteristics of the human vision system, our goal
is to generate two images where the averaged image under flicker-
ing is identical to the original image for human eyes; meanwhile,
the two images should contain enough clear AR markers that are
detectable by a high-frame-rate camera.

We generate the flickering image pair 𝐼+
𝑖 𝑗
and 𝐼−

𝑖 𝑗
as follows:

𝐼+𝑖 𝑗 = 𝐼0𝑖 𝑗 + 𝛼 ∗ 𝛿𝑖 𝑗 , 𝐼−𝑖 𝑗 = 𝐼0𝑖 𝑗 − 𝛼 ∗ 𝛿𝑖 𝑗 , (1)

where 𝐼+ and 𝐼− are the pair of images to be displayed alternatively
at the monitor’s refresh rate, 𝑖 𝑗 are the pixel coordinate, 𝐼𝑖 𝑗 denotes
the luminance of image 𝐼 at 𝑖 𝑗 , 𝐼0 is the original input image. 𝛿𝑖 𝑗 = 1
if the AR marker is white at 𝑖 𝑗 , otherwise 𝛿𝑖 𝑗 = 0. We use ArUco [2]
in our implementation as it is the most popular AR marker design.
But it can be replaced by any other AR markers. 𝛼 is a parameter
for controlling the AR marker visibility. The higher 𝛼 is used, the
more visible the AR markers become in 𝐼+ and 𝐼−. The averaged
luminance value of 𝐼− and 𝐼+ is equal to the original image 𝐼 . Ac-
cording to existing studies [6, 8, 10, 11], the image resulted from
flickering between 𝐼− and 𝐼+ should remain visually close to the
original image under human eyes. Here we use the scale of 0 to 1
when representing the luminance.

2.3 Decoding
The goal of the decoding step is to detect the centers of the AR
markers for each frame and use those detected centers to recover
the camera position in absolute metric scale and render AR content.
We first use a smartphone that can capture video under 120fps or
higher. Most modern smartphones (e.g., iPhone 6 or later) support
this feature. Initially, we investigated using the standard AR marker
detection toolkit to extract the center of the markers frame by frame.
However, we found that although each frame contains a visible
portion of the markers, these markers are not fully detectable due
to the low contrast of the original frames (see Fig. 2-e). Thus, we
use adjacent frames to help detect the AR markers on a specific
frame.

When detecting the markers on frame 𝑖 , we use frames 𝑖 −2, 𝑖 −1
and 𝑖 +1 and apply the feature-based image alignment technique [9]
to align those image with respect to frame 𝑖 . More specifically, we
use ORB feature [7] which is efficient to compute and invariant to
rotation and translation across each frame. Once the ORB features
are computed and matched across each frames, we compute the
homography matrix between frame 𝑖 − 2/𝑖 − 1/𝑖 + 1 and 𝑖 , respec-
tively. Then, we use OpenCV’s cv::warpPerspective function
to generate aligned image with respect to frame 𝑖 . All frames are
converted to grayscale before performing any process. Notably,
this alignment is highly accurate with error that is negligible since
we are recording at high frame rate and the motion between each
frame is subtle. Let us denote the aligned frame as 𝐼𝑖−2, 𝐼𝑖−1, 𝐼𝑖+1
and our target frame 𝐼𝑖 . We derive 𝐼 ′ as an transformed image of 𝐼
as follows:

𝐼 ′ = (|𝐼𝑖−2 − 𝐼𝑖−1 | + |𝐼𝑖 − 𝐼𝑖+1 |)/2 (2)
This process will generate a high contrast image 𝐼 ′ on markers, be-
cause only the regions of where markers existed are different across
these aligned frames. Next, given 𝐼 ′, we can leverage OpenCV’s AR
marker detection function (i.e., cv::aruco::detectMarkers) to
detect the centers of AR markers as well as its id on 𝐼 ′ (see Fig. 2-f).

iMarker: Instant and True-to-scale AR with Invisible Markers UIST ’22, October 29, 2022, Bend, OR

Encoding

(a) (b) (c)

Decoding

(d) (e) (f)

Figure 2: Overview of encoding and decoding steps. For encoding, we first take (a) the image of the original content (e.g., a
webpage) as input. Then, we generate a pair of images which embeds the (b) 𝐼+ and 𝐼−, generated by the method described
in Sec. 2.2. (c) A regular monitor is used to display the generated image alternatively, at its own refresh rate (e.g., 60Hz). The
blended image appears identical to the original image under the human vision system. For decoding, (d) we use a smartphone
to capture multiple frames at a high frame rate (e.g., 240fps). At each time step, we select (e) 4 continuous frames. By using the
method described in Sec. 2.3, we synthesis (f) an enhanced image. We then apply the standard AR marker detection package to
extract the center of those markers, which are later used to recover the camera position. Green boxes indicate successfully
detected markers.

3 DISCUSSION AND CONCLUSION
Our systems also has several limitations. The first limitation is
we need a monitor to host iMarker. This makes our system not
compatible with AR applications that only use the device itself.
Thus, we position our system as an auxiliary AR system that help
the users to gain extra information in 3D (e.g., size) while watching
content in a 2D display. Second, although in theory our method can
work on objects with any size, in practice we found that our system
will become unstable when dealing with objects much larger than a
monitor. This is because if we want to see the full picture of a large
object, we need to move the camera far away from the monitor. If
the camera is too far from the monitor, the detection of iMarkers
will be unstable as less pixels is contained in each iMarker. Last, our
current system uses a single threshold 𝛼 for the entire image. If the
image has complex background color, using a single 𝛼 may exceed
the range of the intensity values at some part, which may generate
observable spots for the users. In the future, we hope to explore
adaptive way to set different 𝛼 to different color while maintain
high detection rate.

REFERENCES
[1] Mustafa Doga Dogan, Ahmad Taka, Michael Lu, Yunyi Zhu, Akshat Kumar, Aakar

Gupta, and Stefanie Mueller. 2022. InfraredTags: Embedding Invisible ARMarkers
and Barcodes Using Low-Cost, Infrared-Based 3D Printing and Imaging Tools. In
CHI Conference on Human Factors in Computing Systems. 1–12.

[2] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas, and
Rafael Medina-Carnicer. 2016. Generation of fiducial marker dictionaries using
mixed integer linear programming. Pattern recognition 51 (2016), 481–491.

[3] Daniel G Green. 1969. Sinusoidal flicker characteristics of the color-sensitive
mechanisms of the eye. Vision research 9, 5 (1969), 591–601.

[4] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. 2009. Epnp: An
accurate o (n) solution to the pnp problem. International journal of computer
vision 81, 2 (2009), 155.

[5] Dingzeyu Li, Avinash S Nair, Shree K Nayar, and Changxi Zheng. 2017. Aircode:
Unobtrusive physical tags for digital fabrication. In Proceedings of the 30th annual
ACM symposium on user interface software and technology. 449–460.

[6] Robert L Myers. 2003. Display interfaces: fundamentals and standards. John Wiley
& Sons.

[7] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564–2571.

[8] Ernst Simonson and Josef Brozek. 1952. Flicker fusion frequency: background
and applications. Physiological reviews 32, 3 (1952), 349–378.

[9] Richard Szeliski et al. 2007. Image alignment and stitching: A tutorial. Foundations
and Trends® in Computer Graphics and Vision 2, 1 (2007), 1–104.

[10] Anran Wang, Zhuoran Li, Chunyi Peng, Guobin Shen, Gan Fang, and Bing Zeng.
2015. Inframe++ achieve simultaneous screen-human viewing and hidden screen-
camera communication. In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services. 181–195.

[11] Anran Wang, Chunyi Peng, Ouyang Zhang, Guobin Shen, and Bing Zeng. 2014.
Inframe: Multiflexing full-frame visible communication channel for humans and
devices. In proceedings of the 13th ACMWorkshop on Hot Topics in Networks. 1–7.

[12] Chang Xiao, Cheng Zhang, and Changxi Zheng. 2018. Fontcode: Embedding
information in text documents using glyph perturbation. ACM Transactions on
Graphics (TOG) 37, 2 (2018), 1–16.

[13] Zhengyou Zhang. 2000. A flexible new technique for camera calibration. IEEE
Transactions on pattern analysis and machine intelligence 22, 11 (2000), 1330–1334.

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Encoding
	2.3 Decoding

	3 Discussion and Conclusion
	References

