
Heterogeneous Graphlets
Ryan A. Rossi

Adobe Research

Nesreen K. Ahmed

Intel Labs

Aldo Carranza

Stanford University

David Arbour

Adobe Research

Anup Rao

Adobe Research

Sungchul Kim

Adobe Research

Eunyee Koh

Adobe Research

ABSTRACT
In this work, we generalize the notion of network motifs (graphlets)

to heterogeneous networks by introducing the notion of a small

induced typed subgraph called typed graphlet. Typed graphlets gen-
eralize graphlets to rich heterogeneous networks as they explicitly

capture the higher-order typed connectivity patterns in such net-

works. To address this problem, we describe a general framework

for counting the occurrences of such typed graphlets. The proposed

algorithms leverage a number of combinatorial relationships for

different typed graphlets. For each edge, we count a few typed

graphlets, and with these counts along with the combinatorial rela-

tionships, we obtain the exact counts of the other typed graphlets in

o(1) constant time. Notably, the worst-case time complexity of the

proposed approach matches the best known untyped algorithm. In

addition, the approach lends itself to an efficient lock-free and asyn-

chronous parallelization. The experiments confirm the approach is

orders of magnitude faster and more space-efficient than existing

methods. Unlike existing methods that take hours on small net-

works, the proposed approach takes only seconds on large networks

with millions of edges. This gives rise to new opportunities and

applications for typed graphlets on large real-world networks.

KEYWORDS
Heterogeneous graphlets, network motifs, colored motifs, hetero-

geneous networks, labeled graphs

1 INTRODUCTION
Higher-order connectivity patterns such as small induced sub-

graphs called graphlets (network motifs)
1
are known to be the

fundamental building blocks of simple homogeneous networks [13]

and are essential for modeling and understanding the fundamen-

tal components of these networks [4, 7]. Furthermore, graphlets

are also important for many predictive and descriptive modeling

tasks [2, 5, 10, 12, 13, 15, 19–21, 23]. However, such (untyped)

graphlets are unable to capture the rich (typed) connectivity pat-

terns in more complex networks such as those that are hetero-

geneous (which includes signed, labeled, bipartite, k-partite, and

attributed graphs as special cases). In heterogeneous networks,

1
The terms graphlet, network motif, and induced subgraph are used interchangeably.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MLG KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s).

⇒

(a) Typed 3-paths with L = 3 types

⇒

(b) Typed 4-cliques with L = 2 types

Figure 1: Examples of heterogeneous graphlets

nodes and edges can be of different types and explicitly modeling

such types is crucial [1, 6, 8, 9].

In this work, we introduce the notion of a typed graphlet that
naturally generalizes the notion of network motif to heterogeneous

networks.
2
Typed graphlets generalize the notion of graphlets to

rich heterogeneous networks as they capture both the induced

subgraph of interest and the types associated with the nodes in

the induced subgraph (Figure 1). These small induced typed sub-

graphs are the fundamental building blocks of rich heterogeneous
networks. Typed graphlets naturally capture the higher-order typed
connectivity patterns in bipartite, k-partite, signed, labeled, k-star,

attributed graphs, and more generally heterogeneous networks. As

such, typed graphlets are useful for a wide variety of predictive and

descriptive modeling applications in these rich complex networks.

Despite their fundamental and practical importance, counting

typed graphlets in large graphs remains a challenging and unsolved

problem. To address this problem, we propose a fast, parallel, and

space-efficient framework for counting typed graphlets in large

networks. The time complexity is provably optimal as it matches

the best untyped graphlet counting algorithm. Using non-trivial

combinatorial relationships between lower-order (k−1)-node typed

graphlets, we derive equations that allow us to compute many

of the k-node typed graphlet counts in o(1) constant time. Thus,

we avoid explicit enumeration of many typed graphlets by simply

computing the exact count directly in constant time using the dis-

covered combinatorial relationships. For every edge, we count a

few typed graphlets and obtain the exact counts of the remaining

typed graphlets in o(1) constant time. Furthermore, we store only

the nonzero typed graphlet counts for every edge.

This work generalizes the notion of network motif to hetero-

geneous networks and describes a framework for finding all such

heterogeneous network motifs. The proposed framework has the

following desired properties:

• Fast: The approach is fast for large graphs by leveraging novel

non-trivial combinatorial relationships to derivemany of the typed

2
The terms typed, colored, labeled, and heterogeneous graphlet/network motif are

used interchangeably.

1



graphlets in o(1) constant time. Theoretically, the worst-case

time complexity is shown to match the best untyped graphlet

algorithm (Section 5.1). As shown in Table 3, the approach is

orders of magnitude faster than existing methods.

• Space-Efficient: The approach is space-efficient by hashing and

storing only the typed motif counts that appear on a given edge.

Compared to existing methods, the proposed approach is orders

of magnitude more space-efficient (Section 6.2).

• Scalable for Large Networks: Unlike existing methods, the

proposed approach is scalable for large heterogeneous networks.

• Parallel: The typed graphlet approach lends itself to an efficient

lock-free & asynchronous parallel implementation.

• Effectiveness: We demonstrate the utility of typed motifs for

graph mining/exploratory analysis (Section 6.4).

2 HETEROGENEOUS GRAPHLETS
This section introduces a generalization of graphlets (network mo-

tifs) called heterogeneous graphlets (or simply typed graphlets).3

Definition 1 (Heterogeneous network). A heterogeneous
network is defined as G = (V ,E) consisting of a set of node objects
V and a set of edges E connecting the nodes in V . A heterogeneous
network also has a node type mapping function ϕ : V → TV and an
edge type mapping function defined as ξ : E → TE where TV and
TE denote the set of node object types and edge types, respectively. The
type of node i is denoted as ϕi whereas the type of edge e = (i, j) ∈ E
is denoted as ξi j = ξe .

Figure 2 shows a few special cases of our formulation of heteroge-

neous networks.

2.1 Graphlet Generalization
In this section, we introduce a more general notion of graphlet

called typed graphlet that naturally extends to both homogeneous

and general heterogeneous networks.We useG to represent a graph

and H or F to represent graphlets.

2.1.1 Untyped Graphlets. We begin by defining untyped graphlets

for graphs with a single type.

Definition 2 (Untyped Graphlet). An untyped graphlet H is a
connected induced subgraph of G.

Given a graphlet in some graph, it may be the case that we can

find other topologically identical “appearances" of this structure in

that graph. We call these “appearances" graphlet instances.

Definition 3 (Untyped Graphlet Instance). An instance of
an untyped graphlet H in graphG is an untyped graphlet F inG that
is isomorphic to H .

2.1.2 Typed Graphlets. In heterogeneous graphs, nodes/edges can

be of many different types and so explicitly and jointly modeling

such types is essential. In this work, we introduce the notion of a

typed graphlet that explicitly captures both the connectivity pat-

tern of interest and the types. Notice that typed graphlets are a

generalization of graphlets to heterogeneous networks.

3
Additional discussion and results can be found in the longer version of this paper [18].

Homogeneous Bipartite graph

k-star graphSigned network

+
-

+
+

Labeled graph

k-partite graph

…

Graph Type |TV | |TE |

Homogeneous 1 1

Bipartite 2 1

K-partite k k − 1

Signed 1 2

Labeled k ℓ
Star k k − 1

Figure 2: Heterogeneous graphlets are useful for a wide vari-
ety of different classes of graphs.

Definition 4 (Typed Graphlet). A typed graphlet of a graph
G = (V ,E,ϕ, ξ ) is a connected induced heterogeneous subgraph H =
(V ′,E ′,ϕ ′, ξ ′) of G such that

(1) (V ′,E ′) is a graphlet of (V ,E),
(2) ϕ ′ = ϕ |V ′ , that is, ϕ ′ is the restriction of ϕ to V ′,
(3) ξ ′ = ξ |E′ , that is, ξ ′ is the restriction of ξ to E ′.

The terms typed graphlet/motif, colored graphlet, and heteroge-

neous networkmotif (graphlet) are used interchangeably. See Figure

1 for examples of typed graphlets and untyped graphlets (in which

the type structure is ignored).

We can consider the presence of topologically identical “appear-

ances" of a typed graphlet in a graph.

Definition 5 (Typed Graphlet Instance). An instance of a
typed graphlet H = (V ′,E ′,ϕ ′, ξ ′) of graph G is a typed graphlet
F = (V ′′,E ′′,ϕ ′′, ξ ′′) of G such that

(1) (V ′′,E ′′) is isomorphic to (V ′,E ′),
(2) TV ′′ = TV ′ and TE′′ = TE′ , that is, the multisets of node and

edge types are correspondingly equal.
The set of typed graphlet instances of H in G is denoted as IG (H ).

Comparing the above definitions of graphlet and typed graphlet,

we see at first glance that typed graphlets are nontrivial exten-

sions of their homogeneous counterparts. The “position” of an edge

(node) in a typed graphlet is often topologically important, e.g., an
edge at the end of the 4-path vs. an edge at the center of a 4-path.

These topological differences of a typed graphlet are called (auto-

morphism) typed orbits since they take into account “symmetries”

between edges (nodes) of a graphlet. Typed graphlet orbits are a

generalization of untyped graphlet orbits [14].

2.1.3 Number of Typed Graphlets. For a single K-node untyped
motif (e.g., K-clique), the number of typed motifs with L types is:((

L

K

))
=

(
L + K − 1

K

)
(1)

where L = number of types (colors) and K = size of the network

motif (# of nodes). Table 1 shows the number of typed network
motifs that arise from a single motif H ∈ H of size K ∈ {2, . . . , 4}
nodes as the number of types varies from L = 1, 2, . . . , 9.

Table 1: Number of typed graphlets (for a single untyped
graphlet) as the size K and number of types L varies.

Types L
1 2 3 4 5 6 7 8 9

K=2 1 3 6 10 15 21 28 36 45

K=3 1 4 10 20 35 56 84 120 165

K=4 1 5 15 35 70 126 210 330 495

2



3 FRAMEWORK
This section describes the general framework for counting hetero-

geneous graphlets. Algorithm 1 shows the general approach for

counting typed network motifs. The algorithm naturally handles

heterogeneous graphs with arbitrary number of types and structure.

Algorithm 1 Heterogeneous Graphlets

Input: a graph G
Output: nonzero typed graphlet counts Xi j for each edge (i, j) ∈ E
1 parallel for each (i, j) ∈ E do
2 T t

i j = Γti ∩ Γtj , for t = 1, . . . , L ▷ typed triangles

3 S ti = Γti \T
t
i j , for t = 1, . . . , L ▷ typed 3-paths centered at i

4 S tj = Γtj \T
t
i j , for t = 1, . . . , L ▷ typed 3-paths centered at j

5 S ti j = S
t
i ∪ S

t
j , for t = 1, . . . , L ▷ typed 3-paths

6 Store nonzero counts of the 3-node typed graphlets derived above

7 Let Ti j =
⋃
t T t

i j , Si =
⋃
t S ti , and Sj =

⋃
t S tj

8 Given Si and Sj , derive typed path-based motifs via Algorithm 2

9 Given Ti j , derive typed triangle-based motifs via Algorithm 3

10 for t, t ′ ∈ {1, . . . , L } such that t ≤ t ′ do
11 Derive remaining typed graphlet orbits in constant time via

Eq. 13-16 and update counts x and set of motifsMi j

12 for c ∈Mi j do Xi j =Xi j ∪ {(c,xc )} ▷nonzero typed motif counts

13 end parallel

3.1 Counting 3-Node Typed Motifs
We begin by introducing the notion of a typed neighborhood and
typed degree of a node. These are then used as a basis for deriving

all typed 3-node motif counts in worst-case O(∆) time (Theorem 1).

Definition 6 (Typed Neighborhood). Given an arbitrary node
i in G, the typed neighborhood Γti is the set of nodes with type t
that are reachable by following edges originating from i within 1-hop
distance. More formally,

Γti = {j ∈ V | (i, j) ∈ E ∧ ϕ j = t} (2)

Intuitively, a node j ∈ Γti iff there exists an edge (i, j) ∈ E between i
and j and the type of node j denoted as ϕ j is t .

Definition 7 (Typed Degree). The typed-degree dti of node i
with type t is defined as dti = |Γ

t
i | where d

t
i is the number of nodes

connected to node i with type t .

Using these notions as a basis, we can define Sti , S
t
j , and T

t
i j for

t = 1, . . . ,L. Obtaining these sets is equivalent to computing all

3-node typed motif counts. These sets are all defined with respect

to a given edge (i, j) ∈ E between node i and j with types ϕi and
ϕ j . Since typed graphlets are counted for each edge (i, j) ∈ E, the
types ϕi and ϕ j are fixed ahead of time. Thus, there is only one

remaining type to select for 3-node typed motifs.

Definition 8 (Typed Triangle Nodes). Given an edge (i, j) ∈ E
between node i and j with types ϕi and ϕ j , let T ti j denote the set of
nodes of type t that complete a typed triangle with i and j defined as:

T ti j = Γti ∩ Γtj (3)

where |T ti j | denotes the number of nodes that form triangles with node
i and j of type t . Every node k ∈ T ti j is of type t and completes a typed
triangle with i and j consisting of types ϕi , ϕ j , and ϕk = t .

Definition 9 (Typed 3-Star Nodes Centered at i). Given an
edge (i, j) ∈ E between node i and j with typesϕi andϕ j . Let Sti denote
the set of nodes of type t that form 3-node stars (or equivalently 3-node
paths) centered at node i (and not including j). More formally,

Sti =
{
k ∈ (Γti \ {j})

�� k < Γtj } (4)

= Γti \
(
Γtj ∪ {j}

)
= Γti \T

t
i j (5)

where |Sti | denotes the number of nodes of type t that form 3-stars
centered at node i (not including j).

Similarly, it is straightforward to define the set Stj of typed 3-

star/path nodes of type t centered at j in a similar fashion:

Stj =
{
k ∈ (Γtj \ {i})

�� k < Γti } (6)

= Γtj \
(
Γti ∪ {i}

)
= Γtj \T

t
i j (7)

Property 1.

Ti j =
L⋃
t=1

T ti j , Si =
L⋃
t=1

Sti , Sj =
L⋃
t=1

Stj (8)

These lower-order 3-node typed motif counts are used to derive

the counts of many higher-order typed motifs in o(1) constant time

(Section 3.3).

Definition 10 (Typed 3-Stars (for an edge)). Given an edge
(i, j) ∈ E between node i and j with types ϕi and ϕ j , the number of
typed 3-node stars that contain (i, j) ∈ E with types ϕi , ϕ j , t is:

|Sti j | = |S
t
i | + |S

t
j | (9)

where |Sti j | denotes the number of typed 3-stars that contain nodes i
and j with types ϕi , ϕ j , t .

Moreover, the number of typed triangles centered at (i, j) ∈ E
with typesϕi ,ϕ j , t is simply |T ti j | (Definition 8) whereas the number

of typed 3-node stars that contain (i, j) ∈ E with types ϕi , ϕ j , t is
|Sti j | = |S

t
i | + |S

t
j | (Definition 10). We do not need to actually store

the sets Sti , S
t
j , and T

t
i j for every type t = 1, . . . ,L. We only need

to store the size/cardinality of the sets (as shown in Algorithm 1)

since these are the counts of all possible 3-node typed graphlets.

For convenience, we denote the size of those sets as |Sti |, |S
t
j |, and

|T ti j | for all t = 1, . . . ,L, respectively. At this point, all typed 3-

node graphlets with nonzero counts have been computed for edge

(i, j) ∈ E in O(|Γi | + |Γi |) = O(∆) time where ∆ is max degree (See

Section 5.1 for proof). Note |Γi | =
∑
t |Γ

t
i |.

3.2 Counting 4-Node Typed Motifs
To derive k-node typed graphlets, the framework leverages the

lower-order (k−1)-node typed graphlets. Therefore, 4-node typed

graphlets are derived by leveraging the typed sets T ti j = Γti ∪ Γtj ,

Stj = Γtj \T
t
i j , and S

t
i = Γti \T

t
i j (for t ∈ {1, . . . ,L}) computed from

the lower-order 3-node typed graphlets along with the set I t of

3



Algorithm 2 Typed Path-based Graphlets

1 for each wk ∈ Si do
2 for wr ∈ Γwk \ {i, j } do
3 if wr < (Γi ∪ Γj ) then ▷ typed 4-path-edge orbit
4 ⟨x,Mi j ⟩ = Update(x,Mi j , F(д3, Φi , Φj , Φwk , Φwr ))

5 else ifwr ∈Si ∧wr ≤wk then ▷ typed tailed-tri (tail orbit)
6 ⟨x,Mi j ⟩ = Update(x,Mi j , F(д7, Φi , Φj , Φwk , Φwr ))

7 for each wk ∈ Sj do
8 for wr ∈ Γwk \ {i, j } do
9 if wr < (Γi ∪ Γj ) then ▷ typed 4-path-edge orbit
10 ⟨x,Mi j ⟩ = Update(x,Mi j , F(д3, Φi , Φj , Φwk , Φwr ))

11 else if wr ∈ Sj ∧wr ≤wk then ▷ typed tailed-tri (tail orbit)
12 ⟨x,Mi j ⟩ = Update(x,Mi j , F(д7, Φi , Φj , Φwk , Φwr ))

13 else if wr ∈ Si then ▷ typed 4-cycle
14 ⟨x,Mi j ⟩ = Update(x,Mi j , F(д6, Φi , Φj , Φwk , Φwr ))

15 return set of typed motifsMi j between i and j and counts x

Algorithm 3 Typed Triangle-based Graphlets

1 for each wk ∈ Ti j do
2 for wr ∈ Γwk \ {i, j } do
3 if wr ∈Ti j ∧wr ≤wk then ▷ typed 4-clique
4 ⟨x,Mi j ⟩=Update(x,Mi j , F(д12, Φi , Φj , Φwk , Φwr))

5 else ifwr ∈ (Si ∪ Sj ) then ▷ typed chord-cycle-edge orbit
6 ⟨x,Mi j ⟩=Update(x,Mi j , F(д10, Φi , Φj , Φwk , Φwr ))

7 else if wr < (Γi ∪ Γj ) then ▷ typed tailed-tri-center orbit
8 ⟨x,Mi j ⟩=Update(x,Mi j , F(д8, Φi , Φj , Φwk , Φwr ))

9 return set of typed motifsMi j between i and j and counts x

non-adjacent nodes of type t w.r.t. (i, j) ∈ E defined formally as:

I t = V t \ (Γti ∪ Γtj ) (10)

= V t \ (T ti j ∪ S
t
i ∪ S

t
j ∪ {i, j}).

where V t ⊆ V is the set of nodes in V of type t .

Property 2.

|V t | = |I t | + |Γti | + |Γ
t
j | (11)

The proof is straightforward by Eq. 10 and applying the principle

of inclusion-exclusion.

3.2.1 General Principle for Counting Typed Graphlets. We now

introduce a general typed graphlet formulation. Let fi j (H , t) denote
the number of distinct k-node typed graphlet orbits of H with the

type vector t that contain edge (i, j) ∈ E and have properties P ∈

{Sti , S
t
j ,T

t
i j , I

t } and Q ∈ {St
′

i , S
t ′
j ,T

t ′
i j , I

t ′} for any t , t ′ ∈ {1, . . . ,L}

defined as:

fi j (H , t) =
���{{i, j,wk ,wr }

��wk ∈ P ∧wr ∈ Q∧ (12)

I{(wk ,wr ) ∈ E} ∧wr , wk∧

t =
[
ϕi ϕ j ϕwk ϕwr

]}���
where I{(wk ,wr ) ∈ E} = 1 if (wk ,wr ) ∈ E holds and 0 otherwise

(i.e., I{(wk ,wr ) ∈ E} = 0 if (wk ,wr )< E). For clarity and simplicity,

(wk ,wr ) ∈ E or (wk ,wr ) < E is sometimes used (e.g., Table 2)

as opposed to I{(wk ,wr ) ∈ E} = 1 or I{(wk ,wr ) ∈ E} = 0. The

equations for deriving every typed graphlet orbit of size 4 are

provided in Table 2. Notice that all typed graphlets with k-nodes
are formulated with respect to the typed node sets derived from

the typed graphlets with (k−1)-nodes. Hence, higher-order typed

graphlets of order k are derived from lower-order (k−1)-node typed

graphlets. We classify typed motifs as path-based or triangle-based.

Typed path-based motifs are the typed 4-node motifs derived from

the sets Si =
⋃
t S

t
i and Sj =

⋃
t S

t
j of nodes that form 3-node

typed paths centered at node i and j, respectively (Algorithm 2).

Conversely, typed triangle-based motifs are the typed 4-node motifs

derived from the setTi j =
⋃
t T

t
i j of nodes that form typed triangles

(typed 3-cliques) with node i and j (Algorithm 3).

The typed graphlet equations in Table 2 are mainly used to

characterize the typed graphlets, and of course can be used to count

them. However, using those equations to count all typed graphlets

is still expensive since some non-negligible work is required to

count every typed graphlet. Instead, we count only a few typed

graphlets and use newly discovered combinatorial relationships

(see Section 3.3) to derive the others directly in o(1) constant time.

Algorithm 4 Update Typed Graphlets

1 procedure Update(x,Mi j , c = F (д, Φi , Φj , Φk , Φr ))
2 if c < Mi j thenMi j ← Mi j ∪ {c } and set xc = 0

3 xc = xc + 1

4 return updated set of typed graphletsMi j and counts x

3.3 Combinatorial Relationships
Now, we show the existence of combinatorial relationships be-

tween the different typed motifs and demonstrate how they can be

leveraged to derive the counts of typed graphlets efficiently. These

combinatorial relationships allow us to derive many typed motifs in
o(1) constant time (avoiding explicit enumeration of the nodes and

types involved in those typed motifs) and play a significant role

in the speed/efficiency of the proposed approach (see Section 6.1).

Since we derive all typed graphlet counts for a given edge (i, j) ∈ E,
we already have two types ϕi and ϕ j . Thus, these types are fixed
ahead of time. In the case of 4-node typed graphlets, there are two

remaining types that need to be selected. Notice that for typed

graphlet orbits, we must solve
L(L−1)

2
+ L equations in the worst-

case. The counts of all remaining typed graphlets are derived in

o(1) constant time (Eq. 13-16) using the counts of the lower-order

(k−1)-node typed graphlets and a few other counts from the k-node
typed graphlets.

Typed 4-Path Center Orbit Count: To count the typed 4-path

center orbits for a given edge (i, j) ∈ E with types ϕi and ϕ j , we
simply select the remaining two types denoted as t and t ′ to obtain
the 4-dimensional type vector t =

[
ϕi ϕ j t t ′

]
and derive the

count directly as follows:

fi j (д4, t) =


(|Sti | · |S

t
j |) − fi j (д6, t) if t = t ′

(|Sti | · |S
t ′
j |)+ otherwise

(|St
′

i | · |S
t
j |) − fi j (д6, t)

(13)

where fi j (д6, t) is the typed 4-cycle count for edge (i, j) ∈ E with

type vector t.

Typed 4-Star Count: To count the typed 4-stars for a given edge

(i, j) ∈ E with types ϕi and ϕ j , we simply select the remaining two

types denoted as t and t ′ to obtain the 4-dimensional type vector

4



Table 2: Typed graphlet orbit equations. All typed graphlet orbits with 4-nodes are formulated with respect to the typed node
sets Sti , S

t
j ,T

t
i j , I

t for t = 1, . . . ,L derived from the typed 3-node graphlets. Recall T ti j = Γti ∩ Γtj , S
t
j = Γtj \ T

t
i j , S

t
i = Γti \ T

t
i j , and

I t = V t \ (Γti ∪ Γtj ) = V
t \ (T ti j ∪ S

t
i ∪ S

t
j ∪ {i, j}) where V t is the set of nodes in V of type t . In all cases,wr , wk .

Typed Motif H Orbit |E(H ) | fi j (H, t) =
���{{i, j, wk , wr }

��wk ∈ P ∧wr ∈ Q ∧ I{(wk , wr ) ∈ E } ∧wr , wk ∧ t =
[
ϕi ϕj ϕwk ϕwr

]}���
4-path edge 3 fi j (д3, t) =

���{{i, j, wk , wr }
��wk ∈ S ti ∧wr ∈ I t

′
∧ (wk , wr ) ∈ E ∧ t =

[
ϕi ϕj ϕwk ϕwr

]}���
center 3 fi j (д4, t) =

���{{i, j, wk , wr }
�� (wk ∈S tj )∧(wr ∈S t

′

i )∧(wk ,wr )<E ∧ t =
[
ϕi ϕj ϕwk ϕwr

]}���
4-star 3 fi j (д5, t) =

���{{i, j, wk , wr }
��wk ∈ S ti ∧wr ∈ S t

′

i ∧ (wk , wr )< E ∧ t =
[
ϕi ϕj ϕwk ϕwr

]}���
4-cycle 4 fi j (д6, t) =

���{{i, j, wk , wr }
��wk ∈ S tj ∧wr ∈ S t

′

i ∧ (wk , wr ) ∈ E ∧ t =
[
ϕi ϕj ϕwk ϕwr

]}���
tailed-triangle tail-edge 4 fi j (д7, t) =

���{{i, j, wk , wr }
��wk ∈ S ti ∧wr ∈ S t

′

i ∧wr , wk ∧ (wk , wr ) ∈ E ∧ t =
[
ϕi ϕj ϕwk ϕwr

]}���
center 4 fi j (д8, t) =

���{{i, j, wk , wr }
��wk ∈ T t

i j ∧wr ∈ I t
′
∧ (wk , wr ) ∈ E ∧ t =

[
ϕi ϕj ϕwk ϕwr

]}���
tri-edge 4 fi j (д9, t) =

���{{i, j, wk , wr }
��wk ∈ T t

i j ∧wr ∈ S t
′

i ∧ (wk , wr )< E ∧ t =
[
ϕi ϕj ϕwk ϕwr

]}���
chordal-cycle edge 5 fi j (д10, t) =

���{{i, j, wk , wr }
��wk ∈ T t

i j ∧wr ∈ (S t
′

i ∪ S
t ′
j ) ∧wr , wk ∧ (wk , wr ) ∈ E ∧ t =

[
ϕi ϕj ϕwk ϕwr

]}���
center 5 fi j (д11, t) =

���{{i, j, wk , wr }
��wk ∈ T t

i j ∧wr ∈ T t ′
i j ∧wr , wk ∧ (wk , wr )< E ∧ t =

[
ϕi ϕj ϕwk ϕwr

]}���
4-clique 6 fi j (д12, t) =

���{{i, j, wk , wr }
��wk ∈ T t

i j ∧wr ∈ T t ′
i j ∧wr , wk ∧ (wk , wr ) ∈ E ∧ t =

[
ϕi ϕj ϕwk ϕwr

]}���
t =

[
ϕi ϕ j t t ′

]
. We derive the typed 4-star counts with the type

vector t for edge (i, j) ∈ E in constant time as follows:

fi j (д5, t) =


(
|S ti |

2

)
+
(
|S tj |

2

)
− fi j (д7, t) if t = t ′

(|Sti | · |S
t ′
i |)+ otherwise

(|Stj | · |S
t ′
j |) − fi j (д7, t)

(14)

where fi j (д7, t) is the tailed-triangle tail-edge orbit count for edge
(i, j) ∈ E with type vector t. The only path-based typed graphlet

containing a triangle is the tailed-triangle tail-edge orbit. Observe

that this is the only orbit needed to derive typed 4-star counts in

o(1) constant time.

Typed Tailed-Triangle Tri-Edge Orbit Count:

fi j (д9,t)=


(
|T ti j | ·(|S

t
i | + |S

t
j |)

)
− fi j (д10,t) if t = t ′(

|T ti j | ·(|S
t ′
i | + |S

t ′
j |)

)
+ otherwise(

|T t
′

i j | ·(|S
t
i | + |S

t
j |)

)
− fi j (д10,t)

(15)

where fi j (д10, t) is the chordal-cycle edge orbit count for edge

(i, j) ∈ E with type vector t.

Typed Chordal-Cycle Center Orbit Count:

fi j (д11, t) =

(
|T t
i j |

2

)
− fi j (д12, t) if t = t ′(

|T ti j | · |T
t ′
i j |

)
− fi j (д12, t) otherwise

(16)

where fi j (д12, t) is the typed 4-clique count for edge (i, j) ∈ E with

type vector t.

3.4 From Typed Orbits to Graphlets
Counts of the typed graphlets for each edge (i, j) ∈ E can be derived

from the typed graphlet orbits using the following equations:

fi j (h3, t) = fi j (д3, t) + fi j (д4, t) (17)

fi j (h4, t) = fi j (д5, t) (18)

fi j (h5, t) = fi j (д6, t) (19)

fi j (h6, t) = fi j (д7, t) + fi j (д8, t) + fi j (д9, t) (20)

fi j (h7, t) = fi j (д10, t) + fi j (д11, t) (21)

fi j (h8, t) = fi j (д12, t) (22)

where h is the graphlet without considering the orbit (Table 2).

3.5 Typed Motif Hash Functions
Given a general heterogeneous graph with L unique types such

that L < 10, then a simple and efficient typed motif hash function

F is defined as follows:

F(д, t) = д10
4 + t110

3 + t210
2 + t310

1 + t4 (23)

where д encodes the k-node motif orbit (e.g., 4-path center) and t1,
t2, t3, t4 encode the type of the nodes in H ∈ H with type vector

t =
[
t1 t2 t3 t4

]
. Since the maximum hash value resulting from

Eq. 23 is small (and fixed for any arbitrarily large graph G), we can
leverage a perfect hash table to allow for fast o(1) constant time

lookups to determine if a typed motif was previously found or not

as well as updating the typed motif count in o(1) constant time. For

k-node motifs where k < 4, we simply set the last 4 − k types to 0.

Note the simple typed motif hash function defined above can be

extended trivially to handle graphs with L ≥ 10 types:

F(д, t) = д10
8 + t110

6 + t210
4 + t310

2 + t4 (24)

In general, any non-cryptographic hash function F can be used.

Thus, the approach is independent of F and can always leverage

the best known hash function. Thus far we have not made any

assumption on the ordering of types in t. As such, the hash function

5



F discussed above can be used directly in the framework for count-

ing typed graphlets such that the type structure and position are

preserved. However, since we are interested in counting all typed

graphlets w.r.t. Definition 5, then we map all such orderings of the

types in t to the same hash value using a precomputed hash table.

This allows us to obtain the unique hash value in o(1) constant
time for any ordering of the types in t. In our implementation, we

compute s = t110
3 + t210

2 + t310
1 + t4 and then use s as an index

into the precomputed hash table to obtain the unique hash value c
in o(1) constant time.

4 GLOBAL TYPED GRAPHLET COUNTS

Definition 11 (Global Typed Graphlets). Given a graph G
with L types, the global typed graphlet counting problem is to find the
set of all typed motifs that occur in G along with their frequencies.

A general equation for solving the above problem for any arbitrary

typed graphlet H is given below. Let H denote an arbitrary typed

graphlet and x be anM-dimensional vector of counts ofH for every

edge (i, j) ∈ E, then the frequency of H in G is:

CH =
1

|E(H )|
x⊤e (25)

where |E(H )| is the number of edges in the typed graphlet H and

e = [ 1 · · · 1 ] is anM-dimensional vector of all 1’s.

5 THEORETICAL ANALYSIS
5.1 Time Complexity

Theorem 1. The worst-case time complexity for counting all 3-
node typed graphlets for a given edge (i, j) ∈ E is:

O(2|Γi | + |Γj |) = O(∆) (26)

where |Γi | and |Γj | denote the number of nodes connected to node i
and j, respectively. Further, ∆ is the maximum degree in G.

Proof. It takes at most O(|Γi | + |Γj |) time to compute typed

triangles (i.e., T ti j , for all t = 1, . . . ,L) by hashing neighbors of i

in O(|Γi |) time, and then checking if each node w ∈ Γj is hashed
or not, taking O(|Γj |) time. Similarly, ifw ∈ Γj is not hashed, then
Stj ← Stj ∪ {w} where t = ϕw . Now all that remains is computing

Sti , for all t . Notice |S
t
i | = |Γ

t
i | − |T

t
i j |, for all t = 1, . . . ,L. ■

5.1.1 Typed 4-Node Graphlets. We first provide the worst-case

time complexity of deriving typed path-based and typed triangle-
based graphlet orbits in Lemma 5.1-5.2, and then give the total

worst-case time complexity of all 3 and 4-node typed graphlets in

Theorem 2 based on these results. Note that Lemma 5.1-5.2 includes

the time required to derive all typed 3-node typed graphlets.

Lemma 5.1. For a single edge (i, j) ∈ E, the worst-case time com-
plexity for deriving all typed path-based graphlet orbits is:

O

(
∆
(
|Si | + |Sj |

) )
(27)

Note |Si |∆ ≥
∑
k ∈Si dk and |Sj |∆ ≥

∑
k ∈Sj dk .

Lemma 5.2. For a single edge (i, j) ∈ E, the worst-case time com-
plexity for deriving all typed triangle-based graphlet orbits is:

O
(
∆|Ti j |

)
(28)

Notice |Ti j |∆ ≥ |Ti j |∆T ≥
∑
k ∈Ti j dk where ∆ is the maximum

degree of a node in G and ∆T is the maximum degree of a node

in Ti j . Thus, |Ti j |∆ only occurs iff ∀k ∈ Ti j , dk = ∆ where ∆ =
maximum degree of a node inG . In sparse real-world graphs, Ti j is
likely to be smaller than Si and Sj as triangles are typically more

rare than 3-node paths. Conversely,Ti j is also more likely to contain

high degree nodes, as nodes with larger degrees are obviously more

likely to form triangles than those with small degrees.

From Lemma 5.1-5.2, we have the following:

Theorem 2. For a single edge (i, j) ∈ E, the worst-case time com-
plexity for deriving all 3 and 4-node typed graphlet orbits is:

O
(
∆
(
|Si | + |Sj | + |Ti j |

) )
(29)

Proof. The time complexity of each step is provided below.

Hashing all neighbors of node i takes O(|Γi |). Recall from Lemma 1

that counting all 3-node typed graphlets takesO(2|Γi |+ |Γj |) = O(∆)
time for an edge (i, j) ∈ E. This includes the time required to derive

the number of typed 3-node stars and typed triangles for all types

t = 1, . . . ,L. This information is needed to derive the remaining

typed graphlet orbit counts in constant time. Next, Algorithm 2 is

used to derive a few path-based typed graphlet orbit counts taking

O(∆(|Si | + |Sj |)) time in the worst-case. Similarly, Algorithm 3 is

used to derive a few triangle-based typed graphlet orbit counts

taking in the worst-case O(∆|Ti j |) time. As an aside, updating the

count of a typed graphlet count is o(1) (Algorithm 4).

Now, we derive the remaining typed graphlet orbit counts in

constant time (Line 10-11). Since each type pair leads to different

typed graphlets, we must iterate over at most L(L − 1)/2 + L type

pairs. For each pair of types selected, we derive the typed graphlet

orbit counts in o(1) constant time via Eq. 13-16 (See Line 10-11).

Furthermore, the term involving L is for the worst-case when there

is at least one node in all L sets (i.e., at least one node of every type L).
Nevertheless, since L is a small constant, L(L− 1)/2+L is negligible.

Therefore, for a single edge, the worst-case time complexity is

O(∆(|Si | + |Sj | + |Ti j |)).
Let T̄ and S̄ denote the average number of triangle and 3-node

stars incident to an edge in G. More formally, T̄ = 1

M
∑
(i j)∈E |Ti j |

and S̄ = 1

M
∑
(i j)∈E |Si | + |Sj |. The total worst-case time complex-

ity for all M edges is O(M∆(S̄ + T̄ )). Note that obviously S̄M =∑
(i j)∈E |Si | + |Sj | and T̄M =

∑
(i j)∈E |Ti j |. ■

Corollary 1. The worst-case time complexity of counting typed
graphlets using Algorithm 1 matches the worst-case time complexity
of the best known untyped graphlet counting algorithm.

Proof. From Theorem 2 we have that O
(
∆
(
|Si | + |Sj | + |Ti j |

) )
,

which is exactly the time complexity of the best known untyped

graphlet counting algorithm [3, 4]. ■

5.2 Space Complexity
Since our approach generalizes to graphs with an arbitrary number

of types L, the specific set of typed motifs is unknown. As demon-

strated in Table 1, it is impractical to store the counts of all possible

k-node typed motifs for any graph of reasonable size as typically

done in traditional methods for untyped graphlets [3, 11]. Despite

this being obviously impractical due to the amount of space that

6



Table 3: Results comparing the proposed approach to the state-of-the-art methods in terms of runtime performance (seconds).
Since existing methods are unable to handle large or even medium-sized graphs as shown below, we include a number of very
small graphs (e.g., cora, citeseer, webkb) for comparison. Note ∆ =max degree; |TV | = # of node types; |TE | = # of edge types.

seconds speedup (ours vs.)

|V | |E | ∆ |TV | |TE | GC ESU G-Tries Ours GC ESU G-Tries

citeseer 3.3k 4.5k 99 6 21 46.27 5937.75 144.08 0.022 2103x 269897x 6549x

cora 2.7k 5.3k 168 7 28 467.20 10051.07 351.40 0.032 14600x 314095x 10981x

fb-relationship 7.3k 44.9k 106 6 20 1374.60 54,837.69 3789.17 0.701 1960x 78227x 5405x

web-polblogs 1.2k 16.7k 351 2 1 28,986.70 26,577.10 1,563.04 1.055 27475x 25191x 1481x

ca-DBLP 2.9k 11.3k 69 3 3 149.20 1,188.11 18.90 0.100 1492x 11881x 189x

inf-openflights 2.9k 15.7k 242 2 2 9262.20 18,839.36 458.01 0.578 16024x 32594x 792x

soc-wiki-elec 7.1k 100.8k 1.1k 2 2 ETL ETL 26,468.85 5.316 ∞ ∞ 45793x

webkb 262 459 122 5 14 85.82 7,158.10 187.22 0.006 14303x 1193016x 31203x

terrorRel 881 8.6k 36 2 3 192.6 3130.7 241.1 0.039 4938x 80274x 6182x

pol-retweet 18.5k 48.1k 786 2 3 ETL ETL ETL 0.296 ∞ ∞ ∞

web-spam 9.1k 465k 3.9k 3 6 ETL ETL ETL 210.97 ∞ ∞ ∞

movielens 28.1k 170.4k 3.6k 3 3 ETL ETL ETL 5.23 ∞ ∞ ∞

citeulike 907.8k 1.4M 11.2k 3 2 ETL ETL ETL 126.53 ∞ ∞ ∞

yahoo-msg 100.1k 739.8k 9.4k 2 2 ETL ETL ETL 35.22 ∞ ∞ ∞

dbpedia 495.9k 921.7k 24.8k 4 3 ETL ETL ETL 56.02 ∞ ∞ ∞

digg 217.3k 477.3k 219 2 2 ETL ETL ETL 5.592 ∞ ∞ ∞

bibsonomy 638.8k 1.2M 211 3 3 ETL ETL ETL 3.631 ∞ ∞ ∞

epinions 658.1k 2.6M 775 2 2 ETL ETL ETL 85.27 ∞ ∞ ∞

flickr 2.3M 6.8M 216 2 2 ETL ETL ETL 120.79 ∞ ∞ ∞

orkut 6M 37.4M 166 2 2 ETL ETL ETL 1241.01 ∞ ∞ ∞

∗
ETL = Exceeded Time Limit (24 hours / 86,400 seconds)

would be required, existing methods such as GC [9] store counts

of all possible typed graphlets, and therefore the space complex-

ity of such methods is at least O(MTmax) where M = |E | is the
number of edges in G and Tmax is the number of different possible

typed graphlets with L types. In contrast, Algorithm 1 is orders of

magnitude more space-efficient.

Lemma 5.3. The space complexity of typed graphlets is O(MT̄ ).

Proof. For an edge (i, j) ∈ E, it takes |Xi j | space to store the

counts of the nonzero typed graphlets. Let T̄ = 1

M
∑
(i j)∈E |Xi j |

denote the average number of typed graphlets with nonzero counts

per edge. Therefore, the total space required to store the nonzero

typed graphlet counts for all M = |E | edges is only O(MT̄ ). The
space of all other data structures used in Algorithm 1 is small in

comparison, e.g., Ψ takes at most O(|V |) space, whereasTi j , Si , and
Sj take O(∆) space in the worst-case (by Property 1) and can be

reused for every edge. In addition, the size of x is independent of

the graph size (|V | + |E |) and can also be reused. ■

From Lemma 5.3, it is straightforward to see that

O(MT̄ ) ≪ O(MTmax) (30)

The space required by the proposed approach (Algorithm 1) is

nearly-optimal and orders of magnitude lower than the next best

method. This is also shown empirically in Table 4.

6 EXPERIMENTS
The experiments are designed to investigate the effectiveness of the

approach for computing heterogeneous graphlets in large networks.

6.1 Runtime Comparison
We first demonstrate how fast the proposed framework is for deriv-

ing typed graphlets by comparing the runtime (in seconds) of our

approach against the three existing methods, namely, ESU (using

fanmod) [22], G-Tries [16], and GC [9]. Since existing methods are

inherently serial (and difficult to parallelize), we use a serial version

of the proposed approach. We also note that the three existing meth-

ods count typed graphlets for every node whereas the proposed

approach derives typed graphlets for every edge; and many of these

methods count only a subset of the typed graphlets obtained by

the proposed approach. Nevertheless, these methods are used for

comparison since they are the closest to our own work and solve

conceptually simpler problems.

For comparison, we use a variety of heterogeneous and labeled /

attributed graphs from different domains. All data can be accessed

at NetworkRepository [17]. In Table 3, we report the time (in sec-

onds) required by each method and the speedup of our approach.

Strikingly, the existing methods are unable to handle medium to

large graphs with hundreds of thousands or more nodes and edges

as shown in Table 3. Even small graphs can take hours to finish us-

ing existing methods (Table 3). For instance, on the small cora graph

with 2.7K nodes and 5.3K edges, GC takes 467 seconds whereas

G-Tries takes 351 seconds. However, our approach finishes count-

ing all typed motifs with {2, 3, 4}-nodes in only 0.03 seconds. This

is 10,000 times faster than the next best method. Unlike existing

methods, our approach is shown to be significantly faster and able

to handle large-scale graphs. This is primarily due to the new non-

trivial combinatorial relationships that we leverage to derive a

number of typed graphlets in o(1) constant time whereas GC and

other typed graphlet methods must enumerate all graphlets in order

to obtain their type/color configuration. These methods require

a lot of extra work to compute the typed graphlets that we can

derive directly in o(1) constant time with a few equations. Across

all graphs, the proposed method achieves significant speedups over

the existing methods as shown in Table 3 (last 3 columns). These

7



results demonstrate the effectiveness of our approach for counting
typed graphlets in large real-world networks.

6.2 Space Efficiency Comparison
We theoretically showed the space complexity of our approach in

Section 5.2. In this section, we empirically investigate the space-

efficiency of our approach compared to ESU (using fanmod) [22], G-

Tries [16], andGC [9]. Table 4 reports the space used by eachmethod

for a variety of real-world graphs. Strikingly, the proposed approach

uses between 42x and 776x less space than existing methods as

shown in Table 4. These results indicate that our approach is space-

efficient and practical for large networks.

Table 4: Comparing the space used by the proposed typed
graphlet approach to the state-of-the-art methods.

citeseer cora movielens web-spam

GC 30.1MB 50.4MB ETL ETL

ESU 13.4MB 46.2MB ETL ETL

G-Tries 161.9MB 448.6MB ETL ETL

Ours 316KB 578KB 22.5MB 128.9MB
∗
ETL = Exceeded Time Limit (24 hours / 86,400 seconds)

6.3 Parallel Speedup
This section evaluates the parallel scaling of the proposed approach.

In these experiments, we used a two processor, Intel Xeon E5-2686

v4 system with 256 GB of memory. None of the experiments came

close to using all the memory. Parallel speedup is simply Sp =
T1

Tp
where T1 is the execution time of the sequential algorithm, and Tp
is the execution time of the parallel algorithm with p processing

units (cores). In Figure 3, we observe nearly linear speedup as we in-

crease the number of cores. These results indicate the effectiveness

of the parallel algorithm for counting typed graphlets in general

heterogeneous graphs.

1 4 8 16 24 32

Processing Units

0

5

10

15

20

25

30

S
p
e
e
d
u
p

soc-wiki-elec

web-polblogs

infra-openflights

Figure 3: Parallel speedup of the proposed approach.

6.4 Exploratory Analysis
This section demonstrates the use of heterogeneous graphlets for

mining and exploratory analysis.

6.4.1 Political retweets. The political retweet data consists of 18,470
Twitter users. To study the (higher-order) structural characteristics

of users in this network w.r.t. their political orientation, we assign
types to nodes based on their political leanings (i.e., left, right).
Interestingly, the 24,815 (untyped) triangles in this network are

distributed as follows:

p =
[
0.608 0.003 0.001 0.388

]
Notably, we observe that 60.86% and 38.79% of the 24,815 triangles

are formed among users with the same political leanings. These

homogeneous typed triangles ( , ) account for 99.65% of the

24,815 triangles. This implies that three users with the same politi-

cal leanings are more likely to retweet each other than with users

of different political leanings. These results highlight the impor-

tance of heterogeneous graphlets, since such key observations and

insights would not be possible using untyped graphlets. We also

investigated typed 4-clique motifs. Notably, only 4 of the 5 typed

4-clique motifs that arise from 2 types actually occur in the graph.

In particular, the typed 4-clique motif with 2 right users and 2 left

users does not even appear in the graph. This typed motif might in-

dicate collusion between individuals from different political parties

or some other rare anomalous activity.

7 CONCLUSION
In this work, we generalized the notion of network motif to hetero-

geneous networks. We proposed a fast and space-efficient frame-

work for counting heterogeneous graphlets. The approach counts

only a few typed graphlets and derives the others in o(1) constant
time using new non-trivial combinatorial relationships that involve

counts of lower-order typed graphlets. Thus, it avoids explicit enu-

meration of any nodes involved in those typed graphlets. Theoreti-

cally, the worst-case time complexity of the approach is shown to

match the best untyped graphlet algorithm. Given the ubiquity of

heterogeneous networks and the predictive and descriptive power

of heterogeneous graphlets, we posit that typed graphlets will be

an essential tool for many real-world applications. This work gives

rise to new opportunities and applications for typed graphlets.

REFERENCES
[1] Evrim Acar, Tamara G Kolda, and Daniel M Dunlavy. 2011. All-at-once optimiza-

tion for coupled matrix and tensor factorizations. arXiv:1105.3422 (2011).
[2] Nesreen K. Ahmed, Nick Duffield, Theodore L. Willke, and Ryan A. Rossi. 2017.

On Sampling from Massive Graph Streams. In VLDB. 1430–1441.
[3] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. 2015.

Efficient Graphlet Counting for Large Networks. In ICDM. 10.

[4] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, Nick Duffield, and Theodore L.

Willke. 2016. Graphlet Decomposition: Framework, Algorithms, and Applications.

KAIS (2016), 1–32.
[5] Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou, John Boaz Lee, Xiangnan Kong,

Theodore L. Willke, and Hoda Eldardiry. 2018. Learning Role-based Graph

Embeddings. In StarAI IJCAI.
[6] Arindam Banerjee, Sugato Basu, and Srujana Merugu. 2007. Multi-way clustering

on relation graphs. In SDM. SIAM, 145–156.

[7] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016), 163–166.
[8] Aldo G. Carranza, Ryan A. Rossi, Anup Rao, and Eunyee Koh. 2018. Higher-order

Spectral Clustering for Heterogeneous Graphs. In arXiv:1810.02959. 15.
[9] Shawn Gu, John Johnson, Fazle E Faisal, and Tijana Milenković. 2018. From ho-

mogeneous to heterogeneous network alignment via colored graphlets. Scientific
reports 8, 1 (2018), 12524.

[10] Wayne Hayes, Kai Sun, and Nataša Pržulj. 2013. Graphlet-based measures are

suitable for biological network comparison. Bioinformatics 29, 4 (2013), 483–491.
[11] Dror Marcus and Yuval Shavitt. 2012. RAGE–a rapid graphlet enumerator for

large networks. Computer Networks 56, 2 (2012), 810–819.
[12] Tijana Milenković and Nataša Pržulj. 2008. Uncovering Biological Network

Function via Graphlet Degree Signatures. Cancer Informatics 6 (2008), 257.
[13] R Milo, S Shen-Orr, S Itzkovitz, N Kashtan, D Chklovskii, and U Alon. 2002.

Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 5594
(2002), 824–827.

[14] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distri-

bution. Bioinfo. 23, 2 (2007), e177–e183.

8



[15] N Pržulj, Derek G Corneil, and Igor Jurisica. 2004. Modeling interactome: scale-

free or geometric? Bioinformatics 20, 18 (2004), 3508–3515.
[16] Pedro Ribeiro and Fernando Silva. 2014. Discovering colored network motifs. In

Complex Networks V. Springer, 107–118.
[17] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository

with Interactive Graph Analytics and Visualization. In AAAI. 4292–4293. http:

//networkrepository.com

[18] Ryan A Rossi, Nesreen K Ahmed, Aldo Carranza, David Arbour, Anup Rao,

Sungchul Kim, and Eunyee Koh. 2019. Heterogeneous Network Motifs.

arXiv:1901.10026 (2019).
[19] Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao,

and Yasin Abbasi-Yadkori. 2018. HONE: Higher-Order Network Embeddings.

arXiv:1801.09303 (2018).
[20] Nino Shervashidze, Tobias Petri, Kurt Mehlhorn, Karsten M Borgwardt, and Svn

Vishwanathan. 2009. Efficient graphlet kernels for large graph comparison. In

AISTATS.
[21] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M

Borgwardt. 2010. Graph kernels. JMLR 11 (2010), 1201–1242.

[22] Sebastian Wernicke and Florian Rasche. 2006. FANMOD: a tool for fast network

motif detection. Bioinformatics 22, 9 (2006), 1152–1153.
[23] L. Zhang, R. Hong, Y. Gao, R. Ji, Q. Dai, and X. Li. 2016. Image Categorization by

Learning a Propagated Graphlet Path. TNNLS 27, 3 (2016), 674–685.

9

http://networkrepository.com
http://networkrepository.com

	Abstract
	1 Introduction
	2 Heterogeneous Graphlets
	2.1 Graphlet Generalization

	3 Framework
	3.1 Counting 3-Node Typed Motifs
	3.2 Counting 4-Node Typed Motifs
	3.3 Combinatorial Relationships
	3.4 From Typed Orbits to Graphlets
	3.5 Typed Motif Hash Functions

	4 Global Typed Graphlet Counts
	5 Theoretical Analysis
	5.1 Time Complexity
	5.2 Space Complexity

	6 Experiments
	6.1 Runtime Comparison
	6.2 Space Efficiency Comparison
	6.3 Parallel Speedup
	6.4 Exploratory Analysis

	7 Conclusion
	References

