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Abstract—Graphlets represent small induced subgraphs and
are becoming increasingly important for a variety of applica-
tions. Despite the importance of the local subgraph (graphlet)
counting problem, existing work focuses mainly on counting
graphlets globally over the entire graph. These global counts
have been used for tasks such as graph classification as
well as for understanding and summarizing the fundamental
structural patterns in graphs. In contrast, this work proposes
an accurate, efficient, and scalable parallel framework for
the more challenging problem of counting graphlets locally
for a given edge or set of edges. The local graphlet counts
provide a topologically rigorous characterization of the local
structure surrounding an edge. The aim of this work is to
obtain the count of every graphlet of size k for each edge.
The framework gives rise to efficient, parallel, and accurate
unbiased estimation methods with provable error bounds,
as well as exact algorithms for counting graphlets locally.
Experiments demonstrate the effectiveness of the proposed
exact and estimation methods on various datasets. In particular,
the exact methods show strong scaling results (11–16x on 16
cores). Moreover, our estimation framework is accurate with
error less than 5% on average.

Keywords-Graphlets; edge graphlet counts; statistical estima-
tion; relational learning; link classification; parallel algorithms.

I. INTRODUCTION

As part of the recent surge on large-scale network anal-
ysis and its wide applications in social, biological, and
information networks, a considerable amount of effort has
been devoted to the analysis of the local structure of these
networks and their properties (e.g., at the node/edge level).
Some popular examples of well-studied local properties
include the number of k-vertex small induced subgraphs
(i.e., graphlets) in node neighborhoods. For example, number
of links, triangles, and wedges surrounding a particular
node. Despite the importance of mining the local structure
surrounding nodes and edges and its applications in various
domains, the analysis has been largely limited to small
networks with a few hundred/thousand nodes and edges.
Moreover, incorporating higher-order properties (network
graphlets/motifs of k ≥ 3) is also more challenging and
computationally intensive even for relatively small graphs.

We define and study a fundamental computational prob-
lem at the heart of many network analysis and mining tasks,
the local graphlet decomposition problem: Given an input
graph, we seek to accurately compute the counts of all

possible k-vertex induced subgraphs (whether frequent or
not) incident to an arbitrary node/edge.

Graphlets are small induced subgraphs that were found
to be useful for many predictive and descriptive modeling
tasks [1], [2] in a variety of disciplines including bioinfor-
matics [3], cheminformatics [4], and image processing and
computer vision [5], [6]. Given a network G, our approach
counts the frequency of each k ∈ {3, 4}-vertex induced
subgraph patterns (See Table II). These counts represent
powerful features that succinctly characterize the fundamen-
tal network structure [3]. Indeed, it has been shown that such
features accurately capture the local network structure in a
variety of domains [7], [8], [9]. As opposed to global graph
parameters such as diameter for which two or more networks
may have global graph parameters that are nearly identical,
yet their local structural properties may be significantly
different.

While most previous work focused on global macro-level
graphlet statistics [3], [10], there are significantly fewer
methods for local graphlet statistics [11], even despite its
fundamental importance for a variety of machine learning
tasks. This is likely due to the fact that counting graphlets
locally is even more computational challenging (in terms
of both time and space) than the global graphlet counting
problem, which has only recently seen algorithms capable
of handling large networks with hundreds of millions of
vertices [10], [12]. In this paper however, we focus on
local micro-level graphlet statistics. Micro-level graphlet
statistics xj of an individual edge ej ∈ E in G (as
opposed to the global graph G) is important with numer-
ous potential applications. For instance, they can be used
as powerful discriminative features {x1,x2, . . . ,xM} for
improving statistical relational learning (SRL) tasks [13]
such as relational classification [14], link prediction and
weighting tasks (e.g., recommending items, friends, web
sites, music, events, etc.) [15], detecting anomalies in
graphs (e.g., detecting fraud, or attacks/malicious behavior
in computer networks) [16], network alignment in biological
networks [1], [2], among many others [17], [18], [19],
[20]. More generally, these edge graphlet counts provide a
topologically rigorous characterization of the local structure
surrounding an edge. See Figure 1 for intuition on the
problem solved in this work and potential applications.

We propose an exact, fast, efficient, and parallel frame-



work for computing local graphlet (counts) statistics. More-
over, we combine our proposed framework with a statistical
unbiased estimation framework with provable error bounds
for computing local graphlet statistics approximately. The
proposed methods were shown to be extremely effective
across a wide variety of networks with fundamentally dif-
ferent structural properties. In particular, the estimation
methods are strikingly accurate and fast with little noticeable
difference between the exact and estimated graphlet counts.
The paper is organized as follows. Section II provides
background and problem definition. Then, Section III derives
the computational framework and algorithms. Section IV
shows a theoretical analysis, unbiased estimation method,
and provable error bounds. Sections VI and VII provide
experiments and applications, and Section VIII reviews
related work. Finally, Section IX concludes.

II. LOCAL GRAPHLET COUNTING

This section formulates the general problem of local
(micro1) graphlet estimation, then derives a flexible compu-
tational framework. Preliminaries are given in Section II-A
and the problem formulation is provided in Section II-B.

A. Preliminaries

Let G = (V,E) be an undirected graph where V is the
set of vertices and E is the set of edges. The number of
vertices is N = |V | and number of edges is M = |E|.
We assume all vertex and edge sets are ordered, i.e.,
V = {v1, v2, ..., vi, ..., vN} such that vi−1 appears before
vi and so forth. Similarly, the ordered edges are denoted
E = {e1, e2, ..., ei, ..., eM}. Given a vertex v ∈ V , let
Γ(v) = {w|(v, w) ∈ E} be the set of vertices adjacent to v
in G. The degree dv of v ∈ V is the size of the neighborhood
|Γ(v)| of v. We also define ∆(G) to be the largest degree
in G (See Table I for a summary of the key notation).

Given a graph G and an edge e = (v, u) ∈ E, the edge-
induced subgraph is simply H = (W,E[W ]) where W =
Γ(v)

⋃
Γ(u) is the set of vertices adjacent to v and u and

E[W ] is the set of edges between any pair of vertices r, s ∈
W such that (r, s) ∈ E. A graphlet Gi = (Vk, Ek) is a
subgraph consisting of a subset Vk ⊂ V of the k vertices
from G = (V,E) together with all edges whose endpoints
are both in this subset Ek = {∀e ∈ E | e = (u, v) ∧ u, v ∈
Vk}. Let G(k) denote the set of all possible k-vertex induced
subgraphs and G = G(2) ∪ · · · ∪ G(k) is the union of all sets
for any 2 ≤ k ≤ N . Given the graph G = (V,E) and a
set W = {w1, . . . , wk} ⊂ V of k-vertices (i.e. |W | = k),
we define a k-graphlet as any k-vertex induced subgraph
Gi = (W,E[W ]) where Gi ⊂ G(k).

It is important to distinguish between the two fundamental
classes of graphlets, namely, connected and disconnected

1The terms local and micro are used interchangeably and refer to the
problem of computing graphlet statistics for individual graph elements such
as an edge or even a node.

Table I
SUMMARY OF NOTATION. ALL SETS ARE ORDERED. WHENEVER

POSSIBLE, WE USE STANDARD TERMINOLOGY IN THE LITERATURE.

N Number of nodes in the graph G
M Number of edges in the graph G
J Set of selected edges via some mechanism
K Number of selected edges
ε Error rate.
δ Confidence Level.
n Number of samples.
dv Degree of vertex v where dv = |Γ(v)|
∆ Maximum degree of the graph G
Te Set of vertices that form a triangle with edge e ∈ E.
Su Set of vertices forming a 2-star (centered at vertex u)

with edge (v, u) ∈ E.
Γ(ej) Edge neighborhood of ej = (v, u), also denoted as

Γ(v, u) for convenience. Let Γh(ej) be the set of
neighbors within h-hops of the edge ej .

Ψ(·) Fast lookup table for checking edge existence in con-
stant time (i.e., o(1))

Gi The ith induced subgraph, see Table II.
X Let X ∈ Rκ×M be a matrix representing the local

graphlet counts for all edges ej ∈ E.
xji Count of graphlet Gi for edge ej ∈ E
xj A vector of local graphlet counts for edge ej . We also

denote the local graphlet counts for ej as Xj: ∈ Rκ.

graphlets (see Table II). A k-graphlet Gi = (Vk, Ek) is
connected if there exists a path from any vertex to any
other vertex in the graphlet Gi, ∀u, v ∈ Vk,∃Pu−v :
u, . . . , w, . . . , v, where d(u, v) is the distance (number of
hops) between u and v, and d(u, v) ≥ 0∧ d(u, v) 6=∞. By
definition, a connected graphlet Gi has only one connected
component (i.e., |C| = 1). A k-graphlet Gi = (Vk, Ek) is
disconnected if there is no existing path from any vertex
v ∈ Gi to any other vertex u ∈ Gi. The goal of this
work is to compute local edge-centric induced subgraph
statistics for both connected and disconnected graphlets of
size k ∈ {3, 4}. As an aside, the terms graphlet, motif,
induced subgraph, and orbit have been used interchangeably
in the literature.

B. Problem Definition

Now, we formally define the local edge-centric graphlet
counting problems: Given a graph G = (V,E), an edge
ej = (v, u) ∈ E, find the number of induced subgraphs
(i.e., graphlets) that are incident to ej and isomorphic to the
graphlet pattern Gi ∈ G – i.e., |Gi(ej)| (see Table II for all
graphlet patterns of size k = {3, 4} nodes). For example,
|G1(ej)| represents the number of triangles incident to edge
ej ∈ E. Note that counting k-vertex graphlets incident to
any edge ej can be performed naively in O(∆k−1) [3].



Figure 1. Local graphlet decomposition. Given a graph as input, the local graphlet decomposition methods are useful for computing graph features which
in turn can be used for node and edge classification, relational representation discovery, role discovery, among other statistical relational learning (SRL)
tasks. Node color above represents class labels. Notice that the edge features derived by the proposed methods can easily be transformed into node features
or used directly by SRL algorithms [14].

Table II
SUMMARY OF THE GRAPHLETS OF SIZE k ∈ {3, 4}.

CONNECTED DISCONNECTED

G1 triangle G4 3-node-indep.

G2 2-star G3 3-node-1-edge

G5 4-clique G15 4-node-indep.

G6 chordal-cycle† G14 4-node-1-edge

G7 tailed-triangle‡ G13 4-node-2-star

G8 4-cycle G12 4-node-2-edge

G9 3-star G11 4-node-1-triangle

G10 4-path

Problem. (LOCAL EDGE-CENTRIC GRAPHLET ESTIMA-
TION) Given a graph G = (V,E) and an edge ej = (v, u) ∈
E, the local edge-centric graphlet estimation problem is to
find

x̂j =
[
x̂1 · · · x̂4 x̂5 · · · x̂10 · · · x̂15

]
where x̂j is an approximation of the exact local graphlet
statistics denoted xj for edge ej such that x̂j ≈ xj and
thus the distance D

(
x̂j ‖ xj

)
is minimized as well as the

computational cost associated with the estimation. Moreover,
x̂j is a provably unbiased estimate of xj with precise
error bounds (as we show in the next sections). Note that
D
(

x̂j ‖ xj
)

can be any loss/distance function. The aim
of the local edge-centric graphlet estimation problem is
to compute a fast approximation of the graphlet statistics
centered at (or incident to) an individual edge2. See Figure 1
for further intuition on the problem and potential use cases.

III. LOCAL GRAPHLET FRAMEWORK

This section derives a flexible computational framework
for the local graphlet counting problem, and serves as a
basis for the proposed exact and estimation methods. In
particular, Section III-A discusses the initial preprocessing
steps that significantly improve the efficiency of our method.
Section III-B introduces the exact approach whereas the

2Graphlets are estimated locally (at the micro-level), that is, per edge as
opposed to globally.

Algorithm 1 Family of Local Edge-centric Graphlet De-
composition Algorithms
Input:

Graph G = (V,E)
Ordered set of edges J = {e1, · · · , eK} ⊆ E
Error rate ε
Confidence level δ

1: Compute preprocessing steps from Section III-A
2: parallel for each ej ∈ J in order do
3: Obtain exact local graphlet counts xj for ej via Alg. 2 or

use Alg. 3 (with parameters ε and δ) to obtain a fast and
accurate unbiased estimation of the local graphlet counts
x̂j for edge ej

4: Set Xj: to be x>j
5: end parallel
6: return X =

[
x1 · · · xj · · · xK

]> consisting of the
local graphlet counts xj for each edge ej ∈ J

unbiased estimation method for local edge graphlet counts
is proposed in Section IV.

A. Preprocessing Steps

Our approach benefits from the preprocessing steps below
and the useful computational properties that arise.
P1 The vertices V = {v1, . . . , vN} are sorted from small-

est to largest degree and relabeled such that d(v1) ≤
d(v2) ≤ d(vi) ≤ d(vN ).

P2 For each Γ(vi) ∈ {Γ(v1), . . . ,Γ(vN )}, the vertex
neighbors in Γ(vi) = {. . . , wj , . . . , wk, . . .} are or-
dered by an arbitrary graph property f(·) s.t. j < k
if f(wj) ≥ f(wk). Thus, the set of neighbors Γ(vi)
are ordered from largest to smallest degree and ties are
broken by vertex id.

P3 Given an edge (v, u) ∈ E, we ensure that dv ≥ du (i.e.,
v is always the vertex with larger or equal degree).

P4 Let π be an ordering of the set of edges such that k < j
for ek and ej if f(ek) > f(ej), and ties are broken
arbitrarily.

Clearly, the order that the preprocessing steps are performed
is important. The above preprocessing steps (P1 − P4)
give rise to many useful properties and leads to significant
reduction in runtime. For finding the 4-cycles centered at an



Algorithm 2 A generalized framework is described below for the
local graphlet problem. Given a graph G = (V,E), the algorithm
returns the graphlet feature vector xj = x for edge ej ∈ E.

1: procedure LOCALGRAPHLET(G, ej = (v, u))
2: Initialize variables
3: parallel for each w ∈ Γ(v) do
4: if w 6= u then Sv ← Sv ∪ {w} and Ψ(w) = λ1

5: parallel for each w ∈ Γ(u) and w 6= v do
6: if Ψ(w) = λ1 then
7: Te ← Te ∪ {w} and set Ψ(w) = λ3 . triangle
8: Sv ← Sv \ {w}
9: else Su ← Su ∪ {w} and set Ψ(w) = λ2 . wedge

10: parallel for each w ∈ Te do
11: for r ∈ Γ(w) do
12: if Ψ(r) = λ3 then Set x5 ← x5 + 1 . local 4-clique

13: Set Ψ(w) to λ4
14: Set σ′ ← σ′ + |Γ(w)| − 2

15: parallel for each w ∈ Su do
16: for r ∈ Γ(w) do
17: if Ψ(r) = λ1 then set x8 ← x8 + 1 . local 4-cycle

18: if Ψ(r) = λ2 then set x7 ← x7 + 1 . local tailed-tri

19: if Ψ(r) = λ4 then set σ ← σ + 1

20: Set Ψ(w) to 0

21: Set σ′ ← σ′ + |Γ(w)| − 1

22: parallel for each w ∈ Sv do
23: for r ∈ Γ(w) do
24: if Ψ(r) = λ1 then set x7 ← x7 + 1 . local tailed-tri

25: if Ψ(r) = λ4 then set σ ← σ + 1

26: Set Ψ(w) to 0

27: Set σ′ ← σ′ + |Γ(w)| − 1

28: Derive local 3-graphlets for ej via Eq.1-4
29: Use Eq.7–9 to derive the local connected 4-graphlets for ej and

disconnected 4-graphlets via Eq.10–14.
30: return xj = x, where xi is the count of graphlet Gi for ej

edge ej = (v, u) ∈ E, we avoid searching Sv completely,
and instead search only Su, which due to P3 is likely to be
much less expensive than searching Sv .

B. Exact Algorithm

Given a set of edges J ⊆ E where K = |J |, Alg. 1
computes X =

[
x1 · · · xk · · · xK

]>
consisting of

the local graphlet counts xj for each edge ej ∈ J . The
exact method for deriving local graphlet counts xj centered
at an individual edge ej is given in Alg. 2.

Local 3-graphlets: The proposed approach derives all k-
graphlets for k ∈ {3, 4} using only the local edge-based
counts of triangles, cliques, and cycles, along with a few
other constant time graph and vertex parameters such as
number of vertices N = |V |, edges M = |E|, as well as
vertex degree dv = |Γ(v)|. Given an edge ej = (v, u) ∈ E
from G, let x1, x5, and x8 be the frequency of triangles,
cliques, cycles, and tailed-triangles centered at (or incident
to) the edge ej ∈ E in the graph G, respectively. Note xi
(or xji, Xji) is the count of the induced subgraph Gi for an

arbitrary edge ej (See Table II for graphlets definition). Note
that this framework is based on the state-of-the-art methods
in [10], [12]. The local (micro-level) 3-graphlets for edge ej
are as follows:

x1 = |Te| (1)
x2 = (du + dv − 2)− 2|Te| (2)
x3 = N − x2 − |Te| − 2 (3)
x4 = (N3 )− (x1 + x2 + x3) (4)

Further, notice that given x1 = |Te| for ej = (v, u) ∈ E,
we can derive |Su| and |Sv| (that is, the number of 2-star
patterns centered at u and v of ej , respectively) as:

|Su| = du − |Te| − 1 (5)
|Sv| = dv − |Te| − 1 (6)

Therefore, the number of two-stars centered at ej denoted
x4 can be rewritten simply as x2 = |Su| + |Sv|. These 3-
vertex induced subgraph statistics are then used as a basis
to derive the induced subgraphs of size k+ 1 (i.e., 4-vertex
graphlets).

Local Connected 4-graphlets: Recall that Su and Sv are
the number of 2-star patterns centered at u and v for edge
ej and can easily be derived in o(1) time using only du,
dv , and the triangle count x1. Given the frequency of 3-
cliques (triangles) x1 and 4-cliques x5 centered at ej , the
local chordal cycles x6 centered at ej are as follows (note
that ej in this case is the chord edge):

x6 =

(
|Te|
2

)
− x5 (7)

Similarly, given the local 4-cycle count x8, we derive the
local 4-path count x10 for edge ej as follows:

x10 =
(
|Sv| · |Su|

)
− x8 (8)

Finally, given the local tailed-triangle count x7, we derive
the local 3-star count x9 for edge ej as follows (note that
ej in this case is the tail edge):

x9 =

(
|Sv|

2

)
+

(
|Su|

2

)
− x7 (9)

Local Disconnected 4-graphlets: Disconnected graphlets
are derived as follows:

x11 = |Te| ·
[
N − (|Te|+ |Su|+ |Sv|+ 2)

]
(10)

x12 = M − (du + dv − 1)− (σ′ − σ − x5 − x8 − x7)
(11)

x13 = (|Su|+ |Sv|) ·
[
N − (|Te|+ |Su|+ |Sv|+ 2)

]
(12)

x14 =
(
N−
[
|Te|+|Su|+|Sv|+2

]
2

)
− x12 (13)

x15 = (N4 )−
14∑
i=5

xi (14)



Algorithm Discussion: Alg. 2 counts only a few graphlets
and achieves all the remaining counts in constant time by
using equations 1–14. Alg. 2 starts by finding the set of
triangles Te and 2-stars Su, Sv incident to an input edge
ej = (u, v) (see Lines 3–9). Note that in Alg. 2, we use
a categorization scheme to divide the search space (similar
to [10], [12]). More specifically, we use a hash table Ψ(w)
to identify the connectivity pattern of any node w in the
neighborhood of ej (i.e., w ∈ Γ(ej)). We set Ψ(w) to one
of the variables {λ1, λ2, λ3, λ4}. The variables {λ1, λ2, λ3}
are used to distinguish between star nodes incident to v, star
nodes incident to u, and triangle nodes incident to both u
and v respectively. Note that the variables {λ1, λ2, λ3, λ4}
are unique variables (i.e., λ1 6= λ2 6= λ3 6= λ4). In Lines 10–
14, Alg. 2 finds the 4-cliques, and set Ψ(w) = λ4 for
all nodes w ∈ Te (to avoid. Then, Lines 15–21 searches
for 4-cycles and tailed-triangles (centered around vertex u).
Finally, Lines 22–27 continues the search for tailed-triangles
(centered around vertex v).

C. Sampling Algorithm

A generalized and flexible framework for the local
graphlet estimation problem is given in Alg 3. In particular,
Alg. 3 takes as input an edge ej , a graph G, an error rate
ε, a confidence level δ, and it returns the unbiased estimates
for the graphlet feature vector x̂j for edge ej ∈ E. Given
w ∈ Te (or Su, Sv), we propose selecting r ∈ Γ(w)
(a neighbor of w) with probability πr according to an
arbitrary weighted/uniform distribution F. First, we compute
Te, Su, and Sv in Lines 3-10. Afterwards, Eq. 1–4 compute
all graphlets of size k = 3 exactly. Next, we compute
4-cliques in Lines 11-16. Line 11 searches each vertex
w ∈ Te in parallel. Given w ∈ Te, we draw a vertex r
randomly with replacement from the neighbors of w, where
πr is the inclusion/sampling probability according to some
distribution function F. Then, we check if r is of type λ3

(from Line 8), as this indicates that r also participates in
a triangle with ej = (v, u), and since r ∈ Γ(w), then
{v, u, w, r} is a 4-clique. Finally, we use the estimators and
error bounds in Section IV to obtain the unbiased estimate
of 4-clique counts for edge ej . In addition, Line 16 ensures
that the same 4-clique is not counted twice. Further, 4-
cycles are computed in Lines 18-25 as well as the tailed-
triangles centered around u. The remaining tailed-triangles
are computed in Lines 27-33. As an aside, σ, σ′ are also
computed and used for estimating x12 for graphlet G12

(Eq. 11). Finally, the remaining graphlets {x6, . . . , x15} are
estimated in o(1) time (Eq. 7–14) using knowledge from the
previous steps. Notably, Alg. 3 gives rise to an efficient exact
method, e.g., if πr = 1 and selection is performed without
replacement (in this case Alg. 3 is equivalent to Alg. 2).

Algorithm 3 Unbiased Local Graphlet Estimation Framework.
Given a graph G, error rate ε, and confidence level δ, the algorithm
returns the estimated graphlet feature vector x̂j for ej ∈ E.

1 procedure LOCALGRAPHLETESTIMATION(G, ej = (v, u), ε, δ)
2 Initialize variables
3 parallel for each w ∈ Γ(v) do
4 if w 6= u then
5 Sv ← Sv ∪ {w} and Ψ(w) = λ1

6 parallel for each w ∈ Γ(u) and w 6= v do
7 if Ψ(w) = λ1 then
8 Te ← Te ∪ {w} and set Ψ(w) = λ3 . triangle
9 Sv ← Sv \ {w}

10 else Su ← Su ∪ {w} and set Ψ(w) = λ2 . wedge

11 parallel for each w ∈ Te do
12 Set d′w =

⌈
0.5ε−2 ln(2/δ)

⌉
13 for i = 1, ..., d′w do
14 Select a vertex r ∈ Γ(w) via an arbitrary distribution F

15 if Ψ(r) = λ3 then Set x5 ← x5 +
(
dw/d′w

)
. 4-clique

16 Set Ψ(w) to λ4
17 Set σ′ ← σ′ + |Γ(w)| − 2

18 parallel for each w ∈ Su do
19 Set d′w =

⌈
0.5ε−2 ln(2/δ)

⌉
20 for i = 1, ..., d′w do
21 Select a vertex r ∈ Γ(w) via an arbitrary distribution F

22 if Ψ(r) = λ1 then set x8 ← x8 +
(
dw/d′w

)
. 4-cycle

23 if Ψ(r) = λ2 then set x7 ← x7 +
(
dw/d′w

)
. tailed-tri

24 if Ψ(r) = λ4 then set σ ← σ +
(
dw/d′w

)
25 Set Ψ(w) to 0

26 Set σ′ ← σ′ + |Γ(w)| − 1

27 parallel for each w ∈ Sv do
28 Set d′w =

⌈
0.5ε−2 ln(2/δ)

⌉
29 for i = 1, ..., d′w do
30 Select a vertex r ∈ Γ(w) via an arbitrary distribution F

31 if Ψ(r) = λ1 then set x7 ← x7 +
(
dw/d′w

)
. tailed-tri

32 if Ψ(r) = λ4 then set σ ← σ +
(
dw/d′w

)
33 Set Ψ(w) to 0

34 Set σ′ ← σ′ + |Γ(w)| − 1

35 Derive local 3-graphlets for ej via Eq.1-4
36 Use Eq.7–9 to derive the local connected 4-graphlets for ej and

disconnected 4-graphlets via Eq.10–14.
37 return x̂j = x̂, where x̂i is the estimate of graphlet Gi for ej

IV. UNBIASED ESTIMATION AND ERROR BOUNDS

Assume we are given an input edge ej = (v, u) and an
arbitrary neighbor vertex w where w ∈ Γ(ej) with degree
dw = |Γ(w)| and Ψ(w) = λ. For each vertex r in Γ(w), we
check if Ψ(r) = λ′. Note that λ and λ′ are two identifiers
used to define the connectivity patterns of w and r with
respect to ej . Hence, λ ≡ λ′ when the two vertices w and
r have the same connectivity pattern with respect to ej . For
example, if Ψ(w) = λ3 and Ψ(r) = λ3 then both w and r
form triangles with ej (i.e., w, r ∈ Te(ej)).

Let H = ({v, u, w, r}, E[{v, u, w, r}]) be the 4-vertex
induced subgraph incident to ej and isomorphic to some



graphlet Gi ∈ G(4) where Ψ(w) = λ and Ψ(r) = λ′. Ob-
serve that there are xji 4-vertex induced subgraphs incident
to ej and isomorphic to some graphlet Gi ∈ G(4), where xji
defined as follows,

xji =
∑

∀w∈Γ(ej)
I[Ψ(w)=λ]=1

∑
∀r∈Γ(w)

I[Ψ(r) = λ′]

Observe that I[Ψ(w) = λ] and I[Ψ(r) = λ′] are indicator
functions that take the value 1 if Ψ(w) = λ and Ψ(r) = λ′

respectively, and 0 otherwise.

Suppose we draw a random sample q = {q1, ..., qn} of
size n < |Γ(w)| with replacement from the set of neighbors
of w (i.e., Γ(w)). Because we are sampling with replace-
ment, the sample may contain the same vertex more than
once. Let πr be the sampling probability of vertex r ∈ Γ(w),
such that πr = 1/|Γ(w)| if r is sampled uniformly. Let
Y = {Y1, ..., Yn} be a set of random variables such that
Ys = 1 if Ψ(qs) = λ′ and Ys = 0 otherwise. Observe
that H = ({v, u, w, qs}, E[{v, u, w, qs}]) is a sampled 4-
vertex induced subgraph incident to ej and isomorphic to
some graphlet Gi ∈ G(4). We can give a reasonably good
estimate of xji by computing the count of all 4-vertex
induced subgraphs that are observed in the sample (i.e.,
Ytot =

∑n
s=1 Ys ), and also isomorphic to the graphlet

Gi ∈ G(4) (i.e., H). Then, we scale the observed count
by |Γ(w)|/n (using Horvitz-Thompson estimation to fix the
sampling bias [21], [22]). In other words, if x̂ji is our
estimate of the count of graphlet Gi incident ej , then

x̂ji =
∑

∀w∈Γ(ej)
I[Ψ(w)=λ]=1

n∑
s=1

Ys ·
|Γ(w)|
n

Note that we calculate this estimate given only the values
of Y for each sampled vertex in q. Next, we prove in
Lemma 1 that the local estimated count for any graphlet
incident to any edge ej is unbiased.

Lemma 1. Given a graph G and any graphlet pattern Gi ∈
G(k), for any edge ej = (v, u) and using Algorithm 3, x̂ji
is an unbiased estimator of xji – where xji is the count of
all occurrences of Gi incident to ej .

Proof: For each w ∈ Γ(ej), assume we select a random
sample q = {q1, ..., qn} with replacement from the set of
neighbors Γ(w), such that πr = 1/|Γ(w)| is the sampling
probability for any vertex r ∈ Γ(w) and n<|Γ(w)| is the
sample size. Let zr be a Binomial random variable that
indicate the number of times that vertex r ∈ Γ(w) appeared
in the sample q. Note that zr = 0 if vertex r did not appear
in the sample. We can rewrite x̂ji as follows,

x̂ji =
∑

∀w∈Γ(ej)
I[Ψ(w)=λ]=1

∑
∀r∈Γ(w)

zr · I[Ψ(r) = λ′] · 1

n · πr

Given that
∑
r∈Γ(w) zr = n and E(zr) = n · πr for any

r ∈ Γ(w), we have the expected value of x̂ji as follows,

E(x̂ji) =
∑

∀w∈Γ(ej)
I[Ψ(w)=λ]=1

∑
∀r∈Γ(w)

E(zr) · I[Ψ(r) = λ′] · 1

n · πr

=
∑

∀w∈Γ(ej)
I[Ψ(w)=λ]=1

∑
∀r∈Γ(w)

n · πr · I[Ψ(r) = λ′] · 1

n · πr

=
∑

∀w∈Γ(ej)
I[Ψ(w)=λ]=1

∑
∀r∈Γ(w)

I[Ψ(r) = λ′]

Thus, x̂ji is an unbiased estimator for xji because,

E(x̂ji) = xji

Next, we show that the local estimated count has provable
error bounds by using Hoeffding’s inequality [23].

Theorem 1. [Hoeffding’s Inequality [23]] Let Y =
{Y1, Y2, ..., Yn} be n independent 0-1 random variables,
not necessarily identically distributed. Then for Ytot =∑n
s=1 Ys , µ = E(Ytot), and b > 0,

Pr[|Ytot − µ| ≥ b] ≤ e−2b2/n

Lemma 2. With probability 1 − δ, the estimated local
graphlet count is bounded as follows,

xji(w)− ε|Γ(w)| ≤ x̂ji(w) ≤ xji(w) + ε|Γ(w)| (15)

for any given edge ej ∈ E, vertex w ∈ Γ(ej), a random
sample with replacement q = {q1, ..., qn} selected uniformly
from the neighbors of w, and any graphlet pattern Gi.

Proof: Let Ys be a random variable for vertex qs ∈ q,
if Ψ(qs) = λ′ then Ys = 1 and Ys = 0 otherwise. Note that
the sampling probability that any vertex r ∈ Γ(w) is πr =
1/|Γ(w)|. Also, let xji(w) is the count of all occurrences of
Gi incident to ej and w. Then, the expected value of Ys is

E(Ys) =
∑

∀r∈Γ(w)

πr · I[Ψ(r) = λ′]

= πr · xji(w)

Thus, if Ytot =
∑n
s=1 Ys , we have µ = E(Ytot) = n ·πr ·

xji(w). We have x̂ji(w) = |Γ(w)|
n · Ytot from Lemma 1. If

we now apply the Hoeffding’s inequality with b = εn, we
have that



Figure 2. Edge to node graphlet frequency. Given graphlet counts a, b,
and c for graphlet G, we compute the graphlet count xi for node vi as
(a+ b+ c)/α where α is the normalization constant for graphlet G.

Pr[|Ytot − µ| ≥ εn] ≤ 2e−2ε2n = δ

So that we have
n

|Γ(w)|
· xji(w)− εn ≤ Ytot ≤

n

|Γ(w)|
· xji(w) + εn

Now if we multiply the inequalities by |Γ(w)|/n, we get
the desired result with probability at least 1− δ as follows,

xji(w)− ε|Γ(w)| ≤ x̂ji(w) ≤ xji(w) + ε|Γ(w)|

If we set n =
⌈
0.5ε−2 ln(2/δ)

⌉
then with confidence at

least 1− δ the error rate in our estimate is at most ε.

Note that Lemma 2 naturally generalizes for the total
estimated counts for any edge ej and graphlet pattern Gi.

V. EDGE TO NODE GRAPHLET FREQUENCY

Besides the straightforward parallel performance and
load-balancing advantages that arise from our edge-centric
graphlet counting approach, the edge-centric graphlet counts
can be used to efficiently derive the node-centric graphlet
counts. However, the reverse is not possible, that is, given a
set of vectors {xi ∈ Rκ}Ni=1 where xi is the κ-dimensional
vector for node vi ∈ V , it is not possible to efficiently derive
the counts {xk ∈ Rκ}Mk=1 where xk is a vector of graphlet
counts for an edge ek ∈ E. Moreover, it is impractical and
essentially amounts to recomputing the counts per edge.

Now, we demonstrate how to derive node graphlet counts
efficiently using only edge counts from the edge-centric
graphlet decomposition. For simplicity, let ωij be the count
of an arbitrary graphlet pattern G for an edge ek = (vi, vj) ∈
E, thus all ωij ≥ 0. Further, let A = [Aij ] be a sparse
adjacency matrix where Aij = ωij if there exists an
edge ek = (vi, vj) ∈ E, and Aij = 0 otherwise. Let
D = diag(Ae) be an N × N square diagonal matrix
with the (weighted) degree of each vertex on the diagonal,
and d = De is the vector of degrees where e is the
vector of all ones. Thus, d = [d1 · · · di · · · dn] where
di = 1/α

∑
vj∈Γ(vi)

Aij ; di is the sum of graphlet counts
over all he edges incident to vertex vi ∈ V , and α is some
normalization constant to account for counting the same
pattern more than once. Suppose the graphlet pattern is 4-
cliques, then x = d/3 where x ∈ RN is the vector of 4-clique

counts for the n nodes in V (see Fig. 2 for an example).
Notice the above transformation is extremely efficient. For
a single node vi, it is linear in the number of neighbors.

VI. EXPERIMENTS

In this section, we investigate the effectiveness of the
proposed exact and estimation methods from Section III
for the local graphlet counting problem. We have also
released all codes3 and graph data sets4 are also available
for download [24].

Table III
RUNTIME RESULTS COMPARING EXACT VARIANTS.

CLASS OF GRAPHLETS (SEC.) all k ∈
{3, 4}

GRAPH 3-graphlets 4-clique 4-cycle tailed-tri graphlets

soc-flickr 0.11 6.75 18.23 73.93 80.67
soc-gowalla 0.01 0.2 0.47 3.85 4.05
socfb-MIT 0.003 0.06 0.27 0.75 0.81

socfb-Texas84 0.02 0.44 2.2 9.01 9.45
web-wikipedia09 0.03 0.11 0.51 2.49 2.61

bio-dmela 0.001 0.002 0.01 0.03 0.03
brain-mouse-ret1 0.002 0.13 0.14 0.62 0.75

tech-RL-caida 0.003 0.01 0.06 0.2 0.21

A. Exact methods

This section investigates the runtime performance of the
following exact variants derived from Alg. 2 including:
(a) 3-graphlets: a method that derives all the 3-graphlets

from a single quantity representing the triangles (3-
cliques) centered at edge ej ∈ E.

(b) clique-based graphlets: a method that finds only 4-
cliques and the other 4-graphlets that are directly de-
rived from that quantity.

(c) cycle-based graphlets: a method that finds only 4-
cycles and the other 4-graphlets that are directly derived
from that quantity.

(d) tailed-triangles: a method for finding tailed-triangles
for each edge in G directly.

(e) all {3, 4}-graphlets: a method that finds all graphlet
counts from Table II for each edge in G.

We denote the graphlets derived from (b) and (c) as
the class of clique-based and cycle-based graphlets. All
the exact variants find the frequency of the connected and
disconnected 3-graphlets, which are then used as a basis for
deriving the others extremely efficiently.

See Table III for results. Note that (b)-(e) (last four
columns of Table III) all include the time it takes to compute
all 3-graphlets (first column in Table III), as these are used
to derive the others efficiently. Observe that in most cases,
the class of 4-clique graphlets are orders of magnitude
faster than the others including graphlets based on 4-cycles.
The only exception appears to be brain-mouse-ret1 as the

3www.github.com/nkahmed/pgd
4www.networkrepository.com



runtime of 4-cliques is very close to that of 4-cycle-based
graphlets. Nevertheless, in all cases, the runtime of 4-cliques
and 4-cycles is orders of magnitude faster than tailed-
triangles (third column in Table III).

Unfortunately, there is no direct method for comparison,
since existing local exact methods are limited to counting
graphlets for each node (i.e., are node graphlet counting
methods) [25], [26], whereas our approach reveals edge
graphlet features and counts for individual edges in the
graph. Nevertheless, we found that our approach is signifi-
cantly faster than existing local node graphlet methods such
as FANMOD [11], ORCA [26], and RAGE [25]. Moreover,
in many large network problems, these methods failed to
finish after running for 12 hours. However, in the case of
smaller networks (that these methods could handle), our
approach was found to be more than 100 times faster,
even despite the fact that these methods count graphlets for
each node, as opposed to each edge — a fundamentally
more challenging problem. For instance, our approach leads
to a 498× improvement in runtime over RAGE [25] and
a 19324× improvement over FANMOD [11] for an email
communication network (ia-email-EU).

Table IV
LOCAL GRAPHLET ESTIMATION EXPERIMENTS. THE AVERAGE

RELATIVE ERROR FOR THE TOP-1000 EDGES WITH LARGEST DEGREE
(dv + du) ARE REPORTED BELOW USING πr = 0.01. RESULTS SHOWN

FOR COUNTS AND GRAPHLET FREQUENCY DIST.

RELATIVE ERROR

graph

soc-gowalla GFD <10−4 <10−4 <10−4 <10−4 <10−4 <10−4

COUNT 0.008 0.008 0.001 0.006 <10−4 0.0003

ca-dblp12 GFD 0.0001 <10−4 <10−4 <10−4 <10−4 <10−4

COUNT 0.003 <10−4 0.0003 <10−4 0.0004 <10−4

socfb-Texas84 GFD 0.001 0.001 0.001 0.001 0.001 0.001
COUNT 0.031 0.075 0.013 0.042 0.002 0.002

Table V
KS-STATISTIC AND L1 DISTANCE RESULTS FOR LOCAL GRAPHLET

ESTIMATION.

graph KS L1

soc-gowalla 0.0002 <10−4

ca-dblp12 0.0002 <10−4

socfb-Texas84 0.002 0.001

B. Estimation methods

We proceed by first demonstrating the effectiveness of the
proposed methods for estimating the frequency of both
connected and disconnected graphlets up to size k = 4.
Given an estimated count x̂ji of an arbitrary graphlet
Gi ∈ G for edge ej ∈ E, we consider the relative error:
D
(
x̂ji ‖xji

)
=
|x̂ji−xji|

xji
where xji is the actual count of

Gi. The relative error indicates the quality of an estimated

graphlet statistic relative to the magnitude of the actual
statistic. Table IV shows the relative error for the top 1000
edges with highest cumulative degree (dv+du) for each edge
ej = (v, u). In addition, we use Kolmogorov-Smirnov (KS)
statistic and Normalized L1 distance [27] to quantify the
distance between the actual and estimated normalized fre-
quency (graphlet frequency distribution GFD computed on
the full spectrum of connected and disconnected graphlets).
The KS and L1 errors for a variety of graph problems
are shown in Table V, and found to be extremely small.
Thus, the estimation methods have excellent accuracy and
the difference between the estimated and actual statistic is
small and in most cases the difference is insignificant.
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Figure 3. Strong scaling results for a variety of networks.

C. Scaling

This section investigates the parallel performance of the
proposed method. The parallel algorithms for exact and
approximate local graphlet counting have the following
properties: lock-free updates due to the partitioning of edges
across the processing units and the fact that each edge is
guaranteed to be processed by a single worker, decentralized,
and finally completely asynchronous due to the intrinsic
lock-free property of our algorithm. We have also optimized
memory to be closely aligned with cache lines. For these
experiments5, we used a machine with two Intel Xeon6 E5-
2687W v4 platform with 3.1GHz CPUs. Each processor has
8 cores with 20MB of L3 cache and 256KB of L2 cache.
The machine has 128GB of memory, however, the method
never came close to using all of it. The proposed method
scales well as the number of processing units increase. In
particular, strong scaling is observed in Fig. 3 for a variety

5Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to
http://www.intel.com/performance

6Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in
the U.S. and/or other countries.



of graphs with different characteristics. Significant speedups
are obtained from the different graphs. For all graph types
we obtain linear or nearly linear speedups.

Table VI
COMPUTATIONAL COMPLEXITY

Global Local Graphlet

O(K∆Tmax) O(∆ub · |Te|) 4-clique

O(K∆Smax)
O(∆ub · |Su|) 4-cycle
O
(
∆ub · (|Su|+ |Sv|)

)
tailed-tri

O
(
K∆(Smax + Tmax)

)
O
(
∆ub(|Su|+ |Sv|+ |Te|)

)
all

D. Complexity

Time Complexity: The computational complexity of our
proposed algorithms is summarized in Table VI. Recall
that we only need to compute a few graphlets and can
directly obtain the others in constant time. To compute all
local graphlets for a given edge, it takes: O

(
∆ub

(
|Su| +

|Sv| + |Te|
))

where ∆ub ≤ ∆ is the maximum sampled
degree from any vertex in Sv , Su, and Te. We place this
upper bound ∆ub on the number of neighbors searched
from any vertex in Sv , Su, and Te by using sampling
and estimation (as we show in Alg. 3). This allows us
to reduce the time quite significantly7. The intuition is
that for vertices with large neighborhoods we only need to
observe a relatively small (but representative) fraction of it
to accurately extrapolate to the unobserved neighbors and
their structure.

Space Complexity: Given an edge ej , our approach re-
quires the frequency of triangles x3, 4-cycles x8, tailed-
triangles x7, and 4-cliques x5, and from these we can derive
all other graphlets of size k ∈ {3, 4} directly in o(1) time.
Alg. 1 takes O(4M) only space to store the graphlets,
and thus it is space-efficient, since the counts of all other
graphlets can be derived from the few ones stored.

VII. APPLICATIONS

A. Relational Classification

Given a partially labeled (attributed) network G, a known
set of node labels Y ` = {yi|vi ∈ V `} for nodes V ` ⊂ V ,
the within-network classification task is to infer Y u for the
set V u = V \V ` of remaining vertices with unknown labels.

We compared exact and estimated local graphlet features
from Alg. 2 and Alg. 3, respectively. We used 5-fold cross-
validation with a label density of 10% (e.g., the fraction
of nodes with known labels is 10%.). For this experiment,
we used the TerroristRel network. All self attributes and
all other features besides the local graphlet-based features
were discarded. This was done since we are interested in
understanding the impact in predictive performance when

7proof is omitted for brevity

the graphlet features for each edge (and node) are estimated
as opposed to computed exactly. For simplicity, we used a
recent approach called relational similarity machines (RSM),
see [28] for more details. Though, we have also observed
similar behavior using other relational and collective classi-
fication approaches. Using only the exact graphlet features
gave 92.29% accuracy, whereas the estimated graphlet fea-
tures resulted in 92.16% accuracy. The difference in pre-
dictive accuracy is not significantly different. Furthermore,
the accuracy did not change for most other networks tested,
including Cora, Citeseer, a Gene protein interaction network,
and many smaller biological and chemical/molecular net-
works. We posit that in some cases, the estimated graphlet
features could even lead to an increase in accuracy due to the
possible benefits of generalization and reducing overfitting.

(a) Exact (b) Estimate

Figure 4. Edges and nodes from tech-routers are colored and weighted by
the local 4-cliques. On the left, the exact local 4-cliques are used whereas
the right is from our graphlet estimation framework with ε = 0.05 and
δ = 0.05. Note that nodes with degree less than 15 were filtered (along
with their links). See text for discussion.

B. Estimation Impact on Revealing Higher-order Structures

Recently, Ahmed et al. [10], [12] observed that by en-
coding the color and size of nodes and edges using the
counts of specific network motifs/graphlets immediately
reveal large structures that are otherwise difficult to observe
and understand. Moreover, in that work, they use graphlets
to find and rank large stars, cliques, and other larger higher-
order structures, which are of fundamental importance in
many types of networks such as technological/communi-
cation networks (e.g., the Internet AS) as well as social
networks [29]. More recently, Benson et al. [30] proposed a
spectral clustering algorithm based on that key observation.
We test the impact of our proposed local graphlet unbiased
estimation on revealing higher-order structures. We observe
that the visualizations in Fig 4(a) and Fig 4(b) using the
exact and estimated graphlet features (to encode the color
and size of the edges and nodes) are strikingly similar, with
trivial differences. This finding justifies the local graphlet



estimation framework and its efficiency in revealing higher-
order structure and organization in large networks.

VIII. RELATED WORK

While there have been a number of exact/approximation
methods for the global graphlet counting problem, i.e.,
counting all graphlets in the graph G [11], [25], [26], [31],
there are significantly fewer methods for the local graphlet
problem [11], even despite its fundamental importance for a
variety of machine learning tasks. Moreover, existing meth-
ods for local graphlet counting focus on counting graphlets
centered around a vertex and/or counting/sampling a few
particular graphlet patterns (e.g., triangles and wedges) [32],
[33]. In contrast, our approach counts all the local graphlets
that surround an edge. Moreover, nearly all of the existing
methods focus only on connected graphlets, whereas this
work derives the full spectrum of graphlet patterns for each
edge (both connected and disconnected)8. Moreover, most
existing methods for counting local graphlets are sequen-
tial [11], [25], [26]. To the best of our knowledge, this work
is the first to demonstrate the significant speedups that can
be achieved using the power of sampling combined with an
effective parallelism strategy for counting all local graphlets.

IX. CONCLUSION

This work proposed efficient parallel exact and estima-
tion methods for the local graphlet counting problem. The
methods were shown to be extremely effective across a
wide variety of networks with fundamentally different struc-
tural properties. In particular, the estimation methods are
strikingly accurate and fast with little noticeable difference
between the exact and estimated graphlet counts.
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