
VisGNN: Personalized Visualization Recommendation
via Graph Neural Networks

Fayokemi Ojo

Johns Hopkins University

Ryan A. Rossi

Adobe Research

Jane Hoffswell

Adobe Research

Shunan Guo

Adobe Research

Fan Du

Adobe Research

Sungchul Kim

Adobe Research

Chang Xiao

Adobe Research

Eunyee Koh

Adobe Research

ABSTRACT
In this work, we develop a GraphNeural Network (GNN) framework

for the problem of personalized visualization recommendation. The

GNN-based framework first represents the large corpus of datasets

and visualizations from users as a large heterogeneous graph. Then,

it decomposes a visualization into its data and visual components,

and then jointly models each of them as a large graph to obtain em-

beddings of the users, attributes (across all datasets in the corpus),

and visual-configurations. From these user-specific embeddings of

the attributes and visual-configurations, we can predict the proba-

bility of any visualization arising from a specific user. Finally, the

experiments demonstrated the effectiveness of using graph neural

networks for automatic and personalized recommendation of visu-

alizations to specific users based on their data and visual (design

choice) preferences. To the best of our knowledge, this is the first

such work to develop and leverage GNNs for this problem.

KEYWORDS
Personalized Visualization Recommendation, Attribute Recommen-

dation, Graph Neural Networks, User Modeling, Personalization

1 INTRODUCTION
Visualization recommendation systems are important for many web

applications including exploratory data analysis and dashboard cre-

ation, among many others. The goal of such systems is to improve

the user experience by providing a set of proper visualizations for

users to efficiently and effectively find important patterns and in-

sights from their data for decision-making, marketing, and so on.

In many cases, these systems allow a user to select or upload a

dataset of interest and then immediately see potentially interesting

visualizations for their given dataset. However, existing work is

all rule-based [40, 41], and thus unable to recommend visualiza-

tions that are personalized to specific users based on the previous

visualizations that they preferred, liked, or generated.

In this work, we focus on the personalized visualization rec-

ommendation problem [26] where we leverage both implicit and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00

https://doi.org/10.1145/3485447.3512001

Dashboard = compatible set of
visualizationsSet of all possible

visualizations
(for specific dataset)

…

…

…

User
Dataset

(e.g., 100+ attributes)

Space of relevant
visualizations for user

Figure 1: Given a user 𝑖 and an arbitrary dataset of interest to
them (selected or uploaded by the user), the space of possible
visualizations to recommend are intractable. Despite this in-
tractable exponential space of all possible visualizations that
can be generated from the users dataset of interest, there is
only a very small subspace of visualizations that are relevant
and of interest to the user.

explicit user feedback to automatically learn a personalized model

for each user. Such a model can better recommend relevant visu-

alizations to the user in real-time given any new unseen dataset

of interest. The goal of personalized visualization recommenda-

tion is to learn individual recommendation models for each user.

Then when a user selects a dataset of interest to explore, the specific

model learned for that user can be applied and the top visualizations

that are most relevant and related to them will be recommended.

However, there are several challenges that make it difficult to

provide effective and personalized visualization recommendations.

First of all, users typically have their own datasets that are not

shared by any other user. Therefore, traditional collaborative fil-

tering approaches do not work in this setting. To mitigate this

issue, we introduce a GNN-based framework that leverages the

large corpus of datasets and visualizations from users as a large

heterogeneous graph. Secondly, the complexity of the visualization

space makes this problem even harder. Specifically, for a single

dataset, the set of possible candidate visualizations to recommend

to a user is exponential in the number of attributes in the dataset,

possible design choices (e.g., chart-types, colors, sizes, x/y, etc.), and
so on, making this a fundamentally challenging problem (Figure 1).

Hence, the space of visualizations for one dataset is intractable

already. To make matters worse, there are tens of thousands of

datasets and each dataset is often only utilized by a single user,

or at most a few such users. This makes an already difficult prob-

lem even more challenging to solve since it implies a very limited

1

https://doi.org/10.1145/3485447.3512001

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France F. Ojo, R. Rossi, J. Hoffswell et al.

amount of feedback per dataset, despite the intractable space of

visualizations. Furthermore, since a visualization consists of both

the particular data attributes used as well as the corresponding

design choices, the visualization is fundamentally tied to a specific

dataset, and therefore, the space of visualizations for one dataset is

completely disjoint from the space of visualizations from another

dataset (Figure 2).

Datasets

Location Date Profit (mil.) Visitors (mil.) Category …

Seattle 1/1/22 5 4.7 Jackets …
Seattle 1/2/22 2.8 4.5 Jackets …
Seattle 1/3/22 7.2 2.3 Jackets …
… … … … … …

San Jose 1/1/12 1.1 5.1 Tees …
San Jose 1/2/22 2.8 2 Tees …
San Jose 1/3/22 5 3.4 Tees …
… … … … … …

Visualizations
(for	specific	dataset)

Figure 2: Space of visualizations to score is dependent on
the specific dataset of interest to a user. Hence, given a dif-
ferent dataset of interest by some other user almost surely
leads to an entirely disjoint space of visualizations to recom-
mend. Intuitively, the space of datasets are shown on the left
where each point represents a different dataset, and the color
encodes the domain of the dataset. In this simple example,
there are datasets from four different domains. An example
of one such dataset is shown in the middle, and it includes
attributes such as location, date, category, profit, visitors, and
so on. From this dataset, we then show the space of visual-
izations that can be generated from using one or more data
attributes.

In this work, we develop a Graph Neural Network (GNN) frame-

work called VisGNN for personalized visualization recommenda-

tion. Specifically, given a set of users, their datasets of interest

(where each dataset consists of a set of data-attributes), and the vi-

sualizations that users generated from those datasets, VisGNN first

derives a series of graphs where nodes are users, data-attributes

(from all datasets), and all possible visual-configurations from the

corpus of visualizations. VisGNN encodes the interactions between

users and each of the data-attributes from a visualization of interest

as edges in the graph. Furthermore, VisGNN also derives edges

between users and the visual-configurations that were extracted

from a visualization preferred by that user, and also encodes the

relationship between the visual-configuration and data-attributes

used in the visualization that the visual-configuration was extracted.

Every data-attribute from each dataset is also mapped to a shared

low-dimensional space that enables direct comparison of the data-

attributes across different datasets. We then learn initial feature vec-

tors for every user, data-attribute, and visual-configuration, which

are used as the node features in the initial layer of our GNN. Feature

information is then iteratively aggregated from neighbors and the

aggregated information is then encoded with the existing node

Updated Model

User

VisGNN: Personalized Visualization
Recommendation System

User uploaded or
selected dataset

Implicit

Queries
Explicit

Feedback

Visualization
Recommendations

User

User uploaded or
selected dataset

Implicit

Queries
Explicit

Feedback

Visualization
Recommendations

© 2020 Adobe. All Rights Reserved. Adobe Confidential.

Visualization
configuration

UsersVariablesMeta-Features

…

……

x1

x2

x3

z1

D1

Dt

zk

z3

z2

…

wij

…

…
…

xr

xm

…
…

…

…

Our Approach: Representation and Model

Update Model

Generate & Score
Visualizations

Figure 3: Overview of the web-based VisGNN Personalized Vi-
sualization Recommendation System. Users select/upload a
dataset of interest using thewebUI, then VisGNNupdates the
graph representations and user-specific models. The model
learned for the specific user is then used to obtain person-
alized scores of the visualizations for that specific user. The
top visualizations for each user and their dataset of interest
are then displayed to the user (from most relevant to least).
Quality of the personalized recommendations for the user
improves over time as the system continuously learns from
additional implicit/explicit feedback from the user on the
visualizations.

representation during propagation. VisGNN effectively captures

the non-linear interactions between the users, data-attributes, and

visual-configurations, thereby improving the learned representa-

tions, making it possible to infer highly relevant and interesting

visualizations personalized for specific users.

VisGNN derives a user-specific visualization representation by

concatenating all the learned representations that pertain to a spe-

cific visualization, i.e., representations of the user, data-attributes,
and visual-configuration that make up a visualization. We then

learn a non-linear function that maps the user-specific visualiza-

tion representation to a positive or negative class label that encodes

whether the user preferred the visualization or not. In addition to

the few positive visualizations for a given user, VisGNN is also

trained using many negative visualizations, which are visualiza-

tions that a specific user did not find interesting or relevant. Now,

given a new potential visualization for some arbitrary user, the

trained model can be used to accurately infer the probability of the

visualization being interesting or useful for that user. VisGNN is

also general and flexible with many interchangeable components,

making it useful for many different use cases (such as personalized

attribute recommendation). The proposed approach is able to effec-

tively deal with the vast sparsity and cold-start issues that make

this problem impractical using traditional methods. To the best

of our knowledge, this is the first work to develop a GNN-based

approach to solve this important problem.

There are a variety of different, yet complex implicit and explicit

user feedback that can be leveraged by VisGNN. Since visualization

recommendation systems typically show users visualizations, this

is the most common type of user feedback. See Figure 3 for an

overview of the web-based personalized visualization recommenda-

tion system. In particular, a user may “like” or “add a visualization

2

VisGNN: Personalized Visualization Recommendation via Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

to their dashboard”. These are all examples of explicit user feedback.

In contrast, examples of implicit user feedback include when a user

clicks or hover-over a visualization. However, feedback directly

on the visualizations is not very useful for our problem due to the

issues discussed in the previous paragraphs.

To overcome these issues, we decompose every visualization into

two parts: the data attributes and the set of visual design choices

used in the visualization, which we call a visual-configuration (Fig-

ure 4). An important detail is that the set of design choices do

not include the actual data-attributes, e.g., if a data attribute from
some arbitrary dataset was mapped to the color or x/y-axis, then

we replace the attribute name with some set of properties such

as whether it is numerical, categorical, and so on (attribute data

type). Decomposing the user-preferred visualization into the data

attributes and visual design choices used in it, enables us to learn

from user feedback. While the user feedback on the data-attributes

used in the visualization does not directly transfer for visualizations

created from a different dataset, the set of design choices preferred

by the user does, and we can leverage it in our model to recommend

better personalized visualizations for users. In many applications

or tools, there also exist direct implicit and explicit user feedback

on the attributes and design-choices of interest.

Through extensive experiments, we demonstrate the effective-

ness and utility of our approach using a large-scale corpus of 17.4k

users with 94k datasets (2.3 million attributes in total) and 32k

visualizations generated from those datasets. Overall, VisGNN out-

performs a variety of baseline methods. We also perform an abla-

tion study to investigate a few other GNN-based variants of our

approach. Finally, we investigate using the GNN-based approach

for recommending data attributes to individual users based on their

learned preferences.

2 RELATEDWORK
While there has been a lot of work on visualization recommendation,

there has only been a few such works that leverage models learned

from data. Furthermore, none of these works are based on graph

neural networks (GNNs).

2.1 Visualization Recommendation
Traditional user-driven workflow for creating data visualizations

contains stages of selecting datasets or subsets, data attributes,

visualization components and interactions [36]. To lower the bar-

riers of the required visualization knowledge and accelerate this

manual process, several automatic visualization recommendation

techniques have been developed to help choosing the visualization

components and configuring them. Rule-based visualization recom-

mendation systems such as Voyager [34, 41, 42], VizDeck [24], and

DIVE [13] use a large set of human perceptual effectiveness metrics

defined manually by domain experts to recommend appropriate vi-

sualizations that satisfy the rules [2, 6, 10, 15, 19, 20, 29, 30, 32]. Such

rule-based systems do not leverage any training data for learning

or user personalization. There have been a few “hybrid” approaches

that combine some form of learning with manually defined rules for

visualization recommendation [22], e.g., Draco learns weights for

rules (constraints) [22]. Recently, there has been work that focused

100+ attributes

Dataset
(selected by user)User

Visualization

data-attributes
(used in vis.)

vis-config
(design choices)

Figure 4: Visualizations are decomposed into data-attributes
and design choices (visual-configuration). While visualiza-
tions are dataset dependent, visual-configurations are not.
This approach enables VisGNN to learn from user feedback
across thousands of entirely different datasets.

on the end-to-end ML-based visualization recommendation prob-

lem [7, 27]. However, the above work learns a global visualization

recommendation model that is agnostic of the user, and thus not

able to be used for the personalized visualization recommendation

problem studied in our work.

All of the existing rule-based [13, 24, 34, 41, 42], hybrid [22], and

pure ML-based visualization recommendation [27] approaches are

unable to recommend personalized visualizations for specific users.

These approaches do not model users, but focus entirely on learning

or manually defining visualization rules that capture the notion

of an effective visualization [3–5, 8, 14, 16, 17, 21, 31, 35, 38, 39].

Therefore, no matter the user, the model always gives the same

recommendations. One recent work called VizRec [23] studied the

setting where there is a single dataset shared by all users, and

therefore a single small set of visualizations that the users have

explicitly liked and tagged, which are then recommended to the

users based on a very simple heuristic approach. This problem is

unrealistic with many impractical assumptions that are not aligned

with practice. More recently, Qian et al. [26] introduced the prob-

lem of personalized visualization recommendation and proposed

an approach capable of solving it. However, that work relied on

a large dense meta-feature matrix to characterize the attributes

across datasets. Further, they do not introduce nor investigate a

graph neural network framework for personalized visualization

recommendation.

While most research effort has been focused on recommending

visualization, very few studies work towards the automation of

data attribution selection, which is also a critical step of the visu-

alization creation workflow. Some visualization recommendation

systems, such as SeeDB [35], Voyager [41, 42] and DeepEye [18]

3

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France F. Ojo, R. Rossi, J. Hoffswell et al.

require users to specify interested data variables or query the at-

tributes by keywords before recommending visual configurations.

The selection of data attributes are closely related to personalized

visualization settings, where the importance of attributes may vary

according to users’ roles and exploration behaviors. Therefore, most

of the non-personalized visualization recommendation techniques

fail to support automatic attribute recommendation. Our method

addresses this problem by aggregating the information of visual

configurations and data attributes when training the model, and

predicts the probabilities of each data attributes to be of user’s

interest while making visualization recommendation.

2.2 Graph Neural Networks
GNNs have been successfully applied to a variety of important ap-

plications including neural machine translation in text [1], content-

based recommendation systems [9, 11, 33, 37, 45], and human-object

interaction detection [25]. We refer the reader to the survey [43, 46]

for a detailed list of GNNs proposed for more an even wider range

of GNN applications. Within these applications, GNNs provide

state-of-the-art results for tasks related to node classification, link

prediction problems, and graph classification [44]. To the best of our

knowledge, our work is the first one to use GNNs for visualization

recommendation.

3 APPROACH
In this section, we formally introduce our GNN framework for

the personalized visualization problem called VisGNN. Given an

arbitrary dataset, we recommend the top-k visualizations personal-

ized for the given user based on the users previous visual and data

preferences.

Given a visualization 𝒱 from user 𝑖 for some arbitrary dataset

of interest, we decompose the visualization into the set of data

attributes A used in the visualization and the set of visual design

choices (which we also call the visual-configuration, see Figure 4).

We set 𝐴𝑖 𝑗 = 1 for all data attributes 𝑗 ∈ A and 𝐶𝑖𝑘 = 1 for the

extracted visual configuration 𝑘 (which represents the complete

set of design choices). We also include nodes for the other data-

attributes in the user’s dataset that have not yet been used in a

visualization. Initially, these attribute nodes are not connected to

any other node in the graph. In addition to the two graphs A and C
described above, we also encode the attributesA used in the specific

visual-configuration 𝑘 using another graph D. More specifically,

𝐷 𝑗𝑘 = 1 for all 𝑗 ∈ A and 𝑘 is the visual-configuration of the

visualization 𝒱 . This approach results in three graphs, encoded by

the sparse adjacency matrices A, C, and D. Given these graphs, we

first derive a larger unified graph as follows:

G =


■ A C
A⊤ ■ D
C⊤ D⊤ ■

 (1)

In Figure 5, we provide an example of the resulting unified graph

shown on the right. Notably, the graph shows three users whom

are connected to the visual-configurations (set of design choices)

and data-attributes used in the visualizations that they provided

positive user-relevant feedback. In this graph, there is no notion of

a visualization, however, one can generate a valid visualization by

combining one or more data-attributes with a visual-configuration.

data attribute vis-configuser

…
Figure 5: Every subgraph shown on the left pertains to a
single dataset and user. There are many data-attributes from
a users dataset of interest that are not used in a visualization.
These data-attributes are not shown in the above figure for
simplicity. On the right, we see the unified graph.

Then, we obtain a low-dimensional rank-𝑑 approximation of G
denoted as 𝜙 (G). Given the large heterogeneous graphG and 𝜙 (G),
we have a graph neural network layer of the following form:

H𝑘+1 = 𝑓 (H(𝑘) , ℓ (G)) (2)

where 𝑓 is a non-linear function over H(𝑘)
and the graph G. For

the initial GNN layer 𝑘 = 0, we have:

H1 = 𝑓 (𝜙 (G), ℓ (G)) (3)

where H0 = 𝜙 (G) ∈ R𝑛×𝑑 . In this work, we use 𝜙 (G) = U where U
is derived by solving the singular value decomposition of G, that is,
G ≈ G𝑑 ≈ USV𝑇 and hence G𝑑 is the best rank-𝑑 approximation

of G. The above is only one such possibility of 𝜙 , as the framework

is flexible with many interchangeable components (hence, 𝜙 can

be interchanged with any other function over the sparse adjacency

matrix G). In general, H0
can also be any features, or even random

vectors. Hence, they are not required to be dependent on the graph

as H0 = 𝜙 (G). Furthermore, ℓ can be any function over a graph’s

adjacency matrix such as the normalized Laplacian or random

walk matrix such as ℓ (G) = Q− 1

2GQ− 1

2 where Q = diag(G) the
diagonal node degree matrix of G. Since we also want the model to

include the features of the node itself in the propagation, we simply

G + I where I is the identity matrix. As an aside, note that for the

visualization recommendation problem, we can also set H(0)
to be

the meta-feature matrix of the users, attributes, and so on. Now,

one simple model is:

𝑓 (H(𝑘) , ℓ (G)) = 𝜎
(
ℓ (G)H(𝑘)W(𝑘)

)
(4)

where 𝜎 is a non-linear activation function and W(𝑘)
is the weight

matrix of the 𝑘th layer. An intuitive example is shown in Figure 6.

Besides the sum aggregator used implicitly in Eq. 4, we can also

4

VisGNN: Personalized Visualization Recommendation via Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Aggregate info. from neighbors

+
+

h() =
Update graph

Transform info.

Figure 6: VisGNN aggregates embeddings from the neighbor-
ing visual-configurations and data-attributes. The resulting
embeddings are then transformed, stored, and updated for
use in the next layer.

leverage other relational neighborhood aggregators in our frame-

work, such as the mean aggregator, LSTM aggregator, pooling ag-

gregator, among many others as well. For instance, the mean ag-

gregator would simply be:

h(𝑘)
𝑖

= 𝜎
(
W(𝑘−1) · mean({h(𝑘−1)

𝑖
} ∪ {h(𝑘−1)

𝑗
, ∀𝑗 ∈ 𝑁 (𝑖)})

)
(5)

More generally,

h(𝑘)
𝑖

= 𝜎

(
W(𝑘−1) ·

[
h(𝑘−1)
𝑖

Aggr

(
{h(𝑘−1)

𝑗
, ∀𝑗 ∈ 𝑁 (𝑖)}

)])
(6)

whereAggr(·) is any arbitrary aggregator function [28] andW(𝑘−1)

is the learned transformation matrix. This process is repeated for

every node in our graph.

The model predicts the probability of an edge (𝑢, 𝑣) existing by

deriving a score between the representations of node h𝑢 and h𝑣
using a function (e.g., an MLP or a dot product):

𝑦𝑢𝑣 = 𝑔(h𝑢 , h𝑣) (7)

We use a binary cross-entropy loss:

L = −
∑︁

𝑢𝑣∈D

(
𝑦𝑢𝑣 log(𝑦𝑢𝑣) + (1 − 𝑦𝑢𝑣) log(1 − 𝑦𝑢𝑣)

)
(8)

From the above, we can naturally derive a score for user 𝑖 on any

arbitrary visualization V by first decomposing it into the visual-

configuration 𝑡 (set of visual design choices) and the attributes used

𝑟1, . . . , 𝑟𝑠 . Then, we can easily obtain the probability of each of these

components. For instance, for user 𝑖 and the configuration 𝑡 , we

have 𝑦𝑖𝑡 , and similarly, for attribute 𝑟 we have 𝑦𝑖𝑟 . Given all these

probabilities, we can combine them to get a probability score for

the overall visualization by taking the product. Then, we have

𝑦 = 𝑔(h𝑖 , h𝑡)
∏
𝑗 ∈A

𝑔(h𝑖 , h𝑗) (9)

where 𝑦 is the final predicted score of the visualization for V user

𝑖 . Intuitively, a user-relevant visualization V is assigned a high

scorewhen both the probability of the visual-configuration𝑔(h𝑖 , h𝑡)
for user 𝑖 and the probability of each of the data attributes 𝑗 ∈
A, 𝑔(h𝑖 , h𝑗) that can be assigned to the visual-configuration are

high, that is,

∏
𝑗 ∈A 𝑔(h𝑖 , h𝑗).

Table 1: Summary of the user-level corpus of datasets and
visualizations preferred by users from the web (plot.ly).

Users 17,469

Datasets 94,419

Attributes 2,303,033

Visualizations 32,318

Vis. Configs 686

mean # attr. per dataset 24.39

mean # attr. per user 51.63

mean # vis. per user 1.85

mean # datasets per user 5.41

Density (A) <0.0001

Density (C) <0.0001

Density (D) <0.0001

In addition, given a user 𝑖 and a visualization V = (X(𝑘)
𝑖 𝑗
,𝐶𝑡)

to score from some dataset, we can leverage the user-specific em-

beddings learned from our graph neural network to learn another

model that outputs a score for a visualization directly. These are

leveraged by concatenating the embedding of user 𝑖 , visual config-

uration 𝑡 , along with the embeddings for each attribute 𝑟1, . . . , 𝑟𝑠
used in the visualization. More formally,

𝜓 (V = ⟨X(𝑘)
𝑖 𝑗
,𝐶𝑡 ⟩) =

[
u𝑖 z𝑡 v𝑟1 · · · v𝑟𝑠

]
(10)

where u𝑖 is the embedding of user 𝑖 , z𝑡 is the embedding of the

visual-configuration 𝐶𝑡 , and v𝑟1 , . . . , v𝑟𝑠 are the embeddings of the

attributes used in the visualization being scored for user 𝑖 . For

clarity, we use different symbols for each node type, however, each

node has a specific index in H, hence, z𝑡 and h𝑡 are one in the same.

We leverage the user, visual-configuration, and attribute em-

beddings as input into a deep multilayer neural network with 𝐿

fully-connected layers,

𝜓 (V = ⟨X(𝑘)
𝑖 𝑗
,𝐶𝑡 ⟩) =

[
u𝑖 z𝑡 v𝑟1 · · · v𝑟𝑠

]⊤
(11)

q
1
= 𝜎1 (W1𝜙 (V) + b1) (12)

q
2
= 𝜎2 (W2q1 + b2) (13)

.

.

.

q𝐿 = 𝜎𝐿 (W𝐿q𝐿−1 + b𝐿) (14)

𝑦 = 𝜎 (h⊤q𝐿) (15)

where W𝐿 , b𝐿 , and 𝜎𝐿 are the weight matrix, bias vector, and ac-

tivation function for layer 𝐿. Further, 𝑦 = 𝜎 (h⊤q𝐿) (Eq. 15) is the
output layer where 𝜎 is the output activation function and h⊤ de-

notes the edge weights of the output function. For the hidden layers,

we used ReLU as the activation function. For visualizations that do

not use 𝑠 attributes, then we pad the remaining unused attributes

with zeros. This approach allows the multi-layer neural network

architecture to be flexible for visualizations with any number of

attributes. Hence, 𝑦 is the predicted visualization score for user 𝑖 .

In addition to visualization recommendation, we can also lever-

age our GNN-based framework for many other important related vi-

sualization tasks including personalized design choice recommenda-

tion (e.g., chart-type), personalized attribute recommendation, per-

sonalized visualization-configuration recommendation, and even

5

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France F. Ojo, R. Rossi, J. Hoffswell et al.

Table 2: Results for Personalized Visualization Recommendation. Our proposed approach, VisGNN, outperformed all of the
baseline models for both the hit ratio (HR) and normalized discounted cumulative gain (NDCG), across all values of 𝑘 .

HR@K NDCG@K

Model @1 @2 @3 @4 @5 @1 @2 @3 @4 @5

PopVis 0.105 0.158 0.158 0.158 0.228 0.088 0.132 0.132 0.132 0.156

kNNVis 0.088 0.088 0.105 0.105 0.105 0.028 0.035 0.042 0.048 0.052

eALS 0.111 0.216 0.291 0.349 0.375 0.104 0.172 0.210 0.235 0.245

VisGNN 0.684 0.724 0.756 0.786 0.800 0.415 0.530 0.570 0.590 0.598

personalized recommendation of users with similar visual and data

preferences or interests (e.g., which may be useful for collabora-

tion purposes, among other applications). Besides visualization

recommendation, we also explore using VisGNN for recommend-

ing personalized data attributes for users from some user-specific

dataset of interest. For a user 𝑖 , the VisGNN model predicts the

probability of a data-attribute 𝑗 by using the learned representa-

tions of the user 𝑖 denoted as h𝑖 and the attribute representation

h𝑗 via a function 𝑔 (such as MLP or a dot product) as follows:

𝑦𝑖 𝑗 = 𝑔(h𝑖 , h𝑗) (16)

Therefore, using the above, we can obtain the probability of each

attribute 𝑗 ∈ A in the dataset of interest to user 𝑖 , that is, 𝑦𝑖 𝑗 =

𝑔(h𝑖 , h𝑗),∀𝑗 ∈ A. From the resulting data-attribute probabilities,

we obtain a personalized user-relevant ranking of the data-attributes

for user 𝑖 .

4 EXPERIMENTS
We design experiments to investigate the effectiveness of our GNN-

based framework for personalized visualization recommendation.

In this work, we derived a user-centered dataset where for each user

we know their datasets, visualizations, visual-configurations (set of

design choices for a visualization), and the subset of attributes used

in the visualizations. We started with 2.3 million visualizations from

the Plot.ly Community Feed. We group visualizations and datasets

by the author user. Each visualization from a user gets decomposed

into a visual-configuration (set of design choices) and a set of data

attributes used in the visualization (Figure 4). The set of attributes

used in the user-generated visualization is typically a small subset

of the attributes in the user’s dataset. Then, we simply add a node in

the graph for a user, the visual-configuration, and a node for every

attribute in the dataset (which includes the attributes used in the

visualization generated by the user). Nodes are added in the above

step only if they do not already exist in the graph. We then add

edges that connect a user with the attributes used in the specific

visualization they generated, along with an edge connecting the

user to the visual-configuration pertaining to the visualization at

hand.

Attributes from a dataset that never appeared in a visualization

are also included in the graph, since if meta-feature vectors are

available for such attributes, then our GNN-based approach can

leverage these attributes to learn implicit connections between

the attributes that were also never used. For instance, another

user that liked or created a visualization using attributes from a

different dataset, may be similar to another attribute in some other

dataset of interest from a different user through the meta-feature

vectors pertaining to these attributes. Hence, connections can be

implicitly created through the meta-feature vectors of attributes

across different datasets. In addition, even though the attributes are

not included in one or more visualizations for a specific user, they

are likely to be very useful for generating new visualizations that

the user may find useful and insightful. As an example, a dataset of

interest to some user may have many attributes, and some of these

can be similar to the attributes used in a visualization preferred

by that user, and therefore important to them for their underlying

task. However, the user may not know about this attribute and

its similarity with the attributes of interest (e.g., it could just be

overlooked or perhaps the dataset is so large and its infeasible for

the user to understand all the attributes in this dataset of interest).

The large corpus of user-preferred visualizations and datasets are

summarized in Table 1. In particular, Table 1 reports the number of

users, attributes, datasets, visualizations, and visual-configurations

extracted from all the visualizations of the users, among many other

useful statistics that aid in understanding the large corpus used

in this work. The user-level corpus (of datasets and visualizations)

consists of a total of 17,469 users; these users created visualizations

from 94,419 datasets which included a total of 2,303,033 attributes.

The user-centric visualization training corpus has a total of 32,318

relevant visualizations generated by these users with an average of

1.85 relevant visualizations created per user. Each user in the corpus

has an average of 5.41 datasets and each dataset has an average of

24.39 attributes. From the 32.3k visualizations, we extracted a total

of 686 unique visual-configurations.

For every user and dataset of interest to them, we know the

visualizations that they preferred (generated), and therefore can

use this ground-truth information to quantitatively evaluate our

approach for personalized visualization recommendation. To evalu-

ate the system quantitatively, we randomly select a single relevant

visualization generated by the user for a specific dataset of interest

to them, and randomly sample 19 negative visualizations that were

not of interest to the user.
1
This approach gives us a total of 20 vi-

sualizations per user (1 positive + 19 negative) to use for evaluation.

Using this held-out set of user visualizations, we evaluate the ability

of the proposed approach to recommend positive visualizations to

the user (which are visualizations the specific user actually created).

In particular, given a user 𝑖 and a dataset of interest to that user, we

use the proposed approach to recommend the top-𝑘 visualizations

personalized for that specific user and dataset.

1
Since the space of possible visualizations is tied to the specific user’s dataset (and

disjoint across different datasets), non-relevant visualizations for a specific dataset and

user are sampled from those that can be generated for the underlying dataset.

6

VisGNN: Personalized Visualization Recommendation via Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 3: Ablation study results for different variants of our GNN-based framework.

HR@K NDCG@K

Model @1 @2 @3 @4 @5 @1 @2 @3 @4 @5

VisGNN 0.684 0.724 0.756 0.786 0.800 0.415 0.530 0.570 0.590 0.598

VisGNN-lstm 0.672 0.727 0.750 0.763 0.778 0.530 0.633 0.653 0.661 0.667
VisGNN-mean 0.640 0.690 0.726 0.741 0.754 0.399 0.502 0.536 0.549 0.557

Table 4: Results of VisGNN variants that leverage meta-
feature embeddings explicitly.

HR@K

Model @1 @2 @3 @4 @5

VisGNN 0.684 0.724 0.756 0.786 0.800

VisGNN-M 0.537 0.660 0.751 0.825 0.873

To quantitatively evaluate the personalized ranking of visualiza-

tions given by the proposed personalized visualization recommen-

dation models, we use rank-based evaluation metrics including Hit

Ratio at 𝐾 (HR@K) and Normalized Discounted Cumulative Gain

(NDCG@K) [12]. Intuitively, HR@K quantifies whether the held-

out relevant (user-generated) visualization appears in the top-𝐾

ranked visualizations or not. Similarly, NDCG@K takes into ac-

count the position of the relevant (user generated) visualization in

the top-𝐾 ranked list of visualizations, by assigning larger scores

to visualizations ranked more highly in the list. For both HR@K

and NDCG@K, we report 𝐾 = 1, . . . , 5 unless otherwise mentioned.

An effective personalized visualization recommender will assign a

larger score to the user-relevant visualizations and smaller scores

to the non-relevant visualizations for that specific user.

We used a variety of baseline methods for comparison:

• PopVis: PopVis decomposes a visualization into its attribute

and visual-configuration, then derives a score for the vi-

sualization by taking the product of the number of times

the visual-configuration was used in the corpus, along with

the frequencies of the attributes used in the visualization of

interest.

• kNNVis: Given the attributes and visual-configuration of a

visualization of interest, we score the visualization by taking

the mean score of the visual configurations that are most sim-

ilar to it, along with the mean score of the top attributes most

similar to each of the attributes used in the visualization.

• eALS: This baseline is a state-of-the-art MF method typically

used for item recommendation [12], which we adapted to

our visualization recommendation problem by minimizing

squared loss while treating all unobserved user iterations

between attributes and visual-configurations as negative ex-

amples, which are weighted non-uniformly by the frequency

of attributes and visual-configurations.

Personalized Visualization Recommendation Results.Overall,
our proposed GNN model for personalized visualization recommen-

dation significantly outperforms the baselines as seen in Table 2.

This result holds across both evaluation metrics (HR and NDCG)

and across all 𝑘 . In Table 3, we compare a few variants from our

VisGNN framework. For these experiments, we vary the relational

aggregation function used in VisGNN while fixing all hyperpa-

rameters. This allows us to understand the impact and utility of

using other aggregation functions. In particular, we investigate us-

ing other relational neighborhood aggregator functions including

mean and lstm. For HR@K, we observe that VisGNN generally

outperforms the other methods across all hit ratios as shown in

In Table 3 (with the exception of HR@K where VisGNN-lstm per-

forms slightly better). In contrast, we observe that VisGNN-lstm

outperforms the other variants when considering the NDCG rank-

ing evaluationmetric. These results demonstrate the utility of graph

neural networks for this complex recommendation task.

1 2 3 4 5
HR@k

2

4

8

16

32
E

m
be

dd
in

g
D

im
en

si
on

 (d
)

0.330 0.432 0.502 0.558 0.615

0.402 0.543 0.621 0.667 0.699

0.605 0.661 0.709 0.739 0.766

0.684 0.724 0.756 0.786 0.800

0.782 0.791 0.804 0.825 0.842

0.4

0.5

0.6

0.7

0.8

Figure 7: Varying embedding dimension 𝑑 and HR@K.

VisGNN with Meta-Features. In Table 4, we compare a variant from

the VisGNN framework. Notably, we investigate a variant of Vis-

GNN that leverage additional graph information in the form of the

meta-feature matrix M. More specifically, we use the meta-feature

learning approach proposed in [27] to derive the meta-feature ma-

trix M that consists of a fixed-length meta-feature vector m for

every attribute across all datasets. Intuitively, the meta-feature vec-

tor of an attribute (from an arbitrary dataset) captures the important

data characteristics of the attribute in a shared low-dimensional

space where attributes from any arbitrary dataset can be compared

and leveraged in learning. We map every attribute to a shared k-

dimensional meta-feature space that allows our GNN framework to

learn from user-level attribute preferences across all the different

datasets of the users. Most importantly, the shared meta-feature

space is independent of the specific datasets and the meta-features

7

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France F. Ojo, R. Rossi, J. Hoffswell et al.

represent general functions of an arbitrary attribute, independent

of the user or dataset that it arises. This approach enables our GNN-

based framework to learn from the user-level attribute preferences,

despite that those preferences are on entirely different datasets.

Now, given M, we derive the following new heterogeneous graph

G as follows:

G =


■ A C ■
A⊤ ■ D M
C⊤ D⊤ ■ ■
■ M⊤ ■ ■

 (17)

Results are provided in Table 4. Overall, we observe that when

𝑘 is small, the original VisGNN without M performs best. How-

ever, as 𝑘 becomes larger, then using this additional information

during training allows for better user-personalized embeddings to

be learned, and therefore improves the user-specific personalized

visualization recommendations given by our approach, as shown

in Table 4. However, VisGNN-M still significantly outperforms the

baseline methods in Table 2 across all HR@𝐾 .

Embedding size. To understand the effect of model performance

with respect to the embedding size used in VisGNN, we vary the

embedding size 𝑑 of the VisGNN models from 𝑑 ∈ {2, 4, 8, 16, 32}.
We provide results in Figure 7. We observe that performance of the

trained VisGNN models generally increases as a function of the

embedding size 𝑑 . More specifically, performance of the VisGNN

models generally increases as the embedding size 𝑑 becomes larger

as shown in Figure 7.

Layer size. We also investigate the impact of the layer sizes of

VisGNN. In this experiment, the network structure of VisGNN

follows a tower pattern where the layer size of each successive

layer is halved. In Table 5, we observe a significant improvement

in the ranking when using larger layer sizes.

Table 5: Varying the layer sizes used in VisGNN. We vary the
layer sizes used in the neural architecture tower structure by
a multiple of {2, 3, 4}.

HR@K

Layer Sizes @1 @2 @3 @4 @5

8-16-32-64-128-256 0.707 0.739 0.769 0.795 0.815

8-28-84-252-756-2268 0.740 0.759 0.772 0.788 0.807

8-32-128-512-2048-8192 0.794 0.804 0.817 0.837 0.851

Personalized Attribute Recommendation Results. In this sec-

tion, we investigate VisGNN for personalized attribute recommen-

dation. For these experiments, we randomly hold-out 5% of the

nonzero values that correspond to observed attribute preferences.

We repeat this 10 times and average the results. Each sample cor-

responds to a train and test split. The ranking is on the specific

dataset where an attribute appears in. For attribute recommenda-

tion, we compare to a random baseline that selects an attribute

uniformly at random from the test dataset. The probability of cor-

rectly recommending the attribute in the test dataset 𝑗 for user 𝑖

is
1

|X𝑖 𝑗 | where |X𝑖 𝑗 | denotes the number of attributes (columns) in

the data matrix X𝑖 𝑗 . We also use a kNN baseline for this problem

called AttrKNN. This baselines computes the similarity between

each of the attributes in the dataset and uses these scores to obtain a

ranking of the attributes for the given user. Results are provided in

Table 6. Overall, the VisGNN approach outperforms both baselines

across all 𝐾 .

Table 6: Results for Personalized Attribute Recommendation.

HR@K

@1 @2 @3 @4 @5

Random 0.089 0.168 0.262 0.349 0.429

AttrKNN 0.222 0.296 0.296 0.370 0.444

VisGNN 0.630 0.704 0.704 0.741 0.777

5 CONCLUSION
This work proposed VisGNN: a graph neural network framework

for the problem of personalized visualization recommendation. To

the best of our knowledge, this is the first work to develop and lever-

age GNNs for this problem. We developed a GNN-based framework

that first represents the large corpus of datasets and visualizations

from users as a large heterogeneous graph. Our GNN framework

decomposes a visualization into its data and visual components,

and then jointly models each of them as a large graph to obtain em-

beddings of the users, attributes (across all datasets in the corpus),

and visual-configurations. From these user-specific embeddings of

the attributes and visual-configurations, we can then predict the

probability of any visualization arising from a specific user. Finally,

the experiments demonstrated the effectiveness of using graph

neural networks for automatic and personalized recommendation

of visualizations to specific users based on their data and visual

(design choice) preferences.

REFERENCES
[1] Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil

Sima’an. 2017. Graph Convolutional Encoders for Syntax-aware Neural Machine

Translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Copenhagen,

Denmark, 1957–1967. https://doi.org/10.18653/v1/D17-1209

[2] Stephen M Casner. 1991. Task-Analytic Approach to the Automated Design of

Graphic Presentations. ACM Transactions on Graphics (ToG) 10, 2 (1991), 111–151.
[3] Zhe Cui, Sriram Karthik Badam, M Adil Yalçin, and Niklas Elmqvist. 2019. Dat-

asite: Proactive Visual Data Exploration With Computation of Insight-Based

Recommendations. Information Visualization 18, 2 (2019), 251–267.

[4] Tuan Nhon Dang and Leland Wilkinson. 2014. ScagExplorer: Exploring Scatter-

plots by Their Scagnostics. In 2014 IEEE Pacific visualization symposium. IEEE,

73–80.

[5] Çağatay Demiralp, Peter J Haas, Srinivasan Parthasarathy, and Tejaswini Pedapati.

2017. Foresight: Recommending Visual Insights. In Proceedings of the VLDB
Endowment International Conference on Very Large Data Bases, Vol. 10.

[6] Mark Derthick, John Kolojejchick, and Steven F Roth. 1997. An interactive

visualization environment for data exploration. In KDD. 2–9.
[7] Victor Dibia and Çağatay Demiralp. 2019. Data2vis: Automatic generation of

data visualizations using sequence-to-sequence recurrent neural networks. IEEE
computer graphics and applications 39, 5 (2019), 33–46.

[8] Stef van den Elzen and Jarke J. van Wijk. 2013. Small Multiples, Large Singles: A

New Approach for Visual Data Exploration. In Computer Graphics Forum, Vol. 32.

191–200.

[9] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In The World Wide Web
Conference. 417–426.

[10] Steven Feiner. 1985. APEX: An Experiment in the Automated Creation of Pictorial

Explanations. IEEE Computer Graphics and Applications 5, 11 (1985), 29–37.
[11] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

8

https://doi.org/10.18653/v1/D17-1209

VisGNN: Personalized Visualization Recommendation via Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[12] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-

trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval. 549–558.

[13] Kevin Hu, Diana Orghian, and César Hidalgo. 2018. Dive: A mixed-initiative sys-

tem supporting integrated data exploration workflows. In Workshop on Human-
In-the-Loop Data Anal. 1–7.

[14] Alicia Key, Bill Howe, Daniel Perry, and Cecilia Aragon. 2012. VizDeck: Self-

Organizing Dashboards for Visual Analytics. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. 681–684.

[15] Doris Jung-Lin Lee. 2020. Insight Machines: The Past, Present, and Future of
Visualization Recommendation.

[16] Doris Jung-Lin Lee, Himel Dev, Huizi Hu, Hazem Elmeleegy, and Aditya

Parameswaran. 2019. Avoiding Drill-Down Fallacies With VisPilot: Assisted

Exploration of Data Subsets. In Proceedings of the 24th International Conference
on Intelligent User Interfaces. 186–196.

[17] Halden Lin, Dominik Moritz, and Jeffrey Heer. 2020. Dziban: Balancing Agency

& Automation in Visualization Design via Anchored Recommendations. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–12.

[18] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. DeepEye: towards

automatic data visualization. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE, 101–112.

[19] Jock Mackinlay. 1986. Automating the design of graphical presentations of

relational information. ACM Trans. Graph. 5, 2 (1986), 110–141.
[20] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show Me: Automatic

presentation for visual analysis. TVCG 13, 6 (2007), 1137–1144.

[21] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show Me: Automatic

Presentation for Visual Analysis. IEEE transactions on visualization and computer
graphics 13, 6 (2007), 1137–1144.

[22] Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith,

Bill Howe, and Jeffrey Heer. 2018. Formalizing visualization design knowledge

as constraints: Actionable and extensible models in draco. IEEE transactions on
visualization and computer graphics 25, 1 (2018), 438–448.

[23] BelginMutlu, Eduardo Veas, and Christoph Trattner. 2016. Vizrec: Recommending

personalized visualizations. ACM Transactions on Interactive Intelligent Systems
(TIIS) 6, 4 (2016), 1–39.

[24] Daniel B Perry, Bill Howe, Alicia MF Key, and Cecilia Aragon. 2013. VizDeck:

Streamlining exploratory visual analytics of scientific data. (2013).

[25] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, and Song-Chun Zhu.

2018. Learning Human-Object Interactions by Graph Parsing Neural Networks.

arXiv:1808.07962 [cs.CV]

[26] XinQian, RyanARossi, FanDu, Sungchul Kim, Eunyee Koh, SanaMalik, Tak Yeon

Lee, and Nesreen K Ahmed. 2021. Personalized Visualization Recommendation.

arXiv:2102.06343 (2021).
[27] XinQian, RyanARossi, FanDu, Sungchul Kim, Eunyee Koh, SanaMalik, Tak Yeon

Lee, and Joel Chan. 2021. Learning to Recommend Visualizations from Data. In

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 1359–1369.

[28] Ryan A Rossi, Rong Zhou, and Nesreen K Ahmed. 2017. Deep feature learning

for graphs. arXiv preprint arXiv:1704.08829 (2017).
[29] Steven F Roth, John Kolojejchick, Joe Mattis, and Jade Goldstein. 1994. Interactive

graphic design using automatic presentation knowledge. In CHI. 112–117.
[30] Jinwook Seo and Ben Shneiderman. 2005. A Rank-by-Feature Framework for

Interactive Exploration of Multidimensional Data. Information visualization 4, 2

(2005), 96–113.

[31] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya

Parameswaran. 2016. Effortless Data Exploration With zenvisage: An Expressive

and Interactive Visual Analytics System. arXiv preprint arXiv:1604.03583 (2016).
[32] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A system for query,

analysis, and visualization of multidimensional relational databases. TVCG 8, 1

(2002), 52–65.

[33] Rianne van den Berg, Thomas N. Kipf, and Max Welling. 2017. Graph Convolu-

tional Matrix Completion. arXiv:1706.02263 [stat.ML]

[34] Manasi Vartak, Silu Huang, Tarique Siddiqui, Samuel Madden, and Aditya

Parameswaran. 2017. Towards visualization recommendation systems. SIG-
MOD 45, 4 (2017), 34–39.

[35] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and

Neoklis Polyzotis. 2015. Seedb: Efficient data-driven visualization recommenda-

tions to support visual analytics. In Proceedings of the VLDB Endowment Interna-
tional Conference on Very Large Data Bases, Vol. 8. NIH Public Access, 2182.

[36] Martin Voigt, Stefan Pietschmann, and Klaus Meißner. 2013. A semantics-based,

end-user-centered information visualization process for semantic web data. In

Semantic models for adaptive interactive systems. Springer, 83–107.
[37] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:

Knowledge graph attention network for recommendation. In Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 950–958.

[38] Leland Wilkinson and Graham Wills. 2008. Scagnostics Distributions. Journal of
Computational and Graphical Statistics 17, 2 (2008), 473–491.

[39] Graham Wills and Leland Wilkinson. 2010. Autovis: automatic visualization.

Information Visualization 9, 1 (2010), 47–69.

[40] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill

Howe, and Jeffrey Heer. 2016. Towards a General-Purpose Query Language for

Visualization Recommendation. In Proceedings of the Workshop on Human-In-the-
Loop Data Analytics. ACM, 4.

[41] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill

Howe, and Jeffrey Heer. 2016. Voyager: Exploratory Analysis via Faceted Brows-

ing of Visualization Recommendations. IEEE transactions on visualization and
computer graphics 22, 1 (2016), 649–658.

[42] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,

Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2:

Augmenting visual analysis with partial view specifications. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. 2648–2659.

[43] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[44] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks? arXiv:1810.00826 [cs.LG]

[45] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In KDD. 974–983.
[46] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:

A review of methods and applications. AI Open 1 (2020), 57–81.

9

https://arxiv.org/abs/1808.07962
https://arxiv.org/abs/1706.02263
https://arxiv.org/abs/1810.00826

	Abstract
	1 Introduction
	2 Related Work
	2.1 Visualization Recommendation
	2.2 Graph Neural Networks

	3 Approach
	4 Experiments
	5 Conclusion
	References

