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ABSTRACT

This work introduces higher-order ranking and link prediction
methods based on closing higher-order network motifs. In particular,
we propose the general notion of a motif closure that goes beyond
simple triangle closures and demonstrate that these new motif clo-
sures often outperform triangle-based methods. This result implies
that one should consider other motif closures beyond simple trian-
gles. We also find that the “best” motif closure depends highly on
the underlying network and its structural properties. Furthermore,
the methods are fast and efficient for real-time applications such
as online visitor stitching, web search, and recommendation. The
experimental results indicate the importance of these new motif
closures. Finally, the new motif closures can serve as a basis for
developing better (un)supervised ranking/link prediction methods.

1 HIGHER-ORDER MOTIF CLOSURES

We first formally define the notion of a higher-order motif closure:

Definition 1 (Motif Closure). A node pair (i, j) is said to
close a motif H iff adding an edge (i, j) to E closes an instance F ∈
IG′(H ) of motif H where G ′ = (V ,E ∪ {(i, j)}) and IG′(H ) is the set
of unique instances of motif H in G ′.

A few examples of higher-order motif closures are shown in Figure 1.
The edge (i, j) shown as a dotted line in Figure 1 closes each motif.
For instance, the edge between node i and j in the rightmost motif in
Figure 1 closes a 4-clique. We now formally introduce the frequency
of higher-order motif closures for a node pair (i, j) as follows:

Definition 2 (Higher-OrderMotifClosureFreqency).

Let G ′ = (V ,E ′) where E ′ = E ∪ {(i, j)} and let IG′(H ) be the set of
unique instances of motif H in G ′. Then the frequency of closing a
higher-order motif H between node i and j is:

Wi j =
∑

F ∈IG′ (H )

I
(
{i, j} ∈ E ′(F )

)
(1)

whereWi j is equal to the number of unique instances ofH that contain
nodes {i, j} ⊂ V (G ′) as an edge.

We provide a simple routine in Alg. 1 for computing the weight
Wi j representing the frequency of closing motif H between node
i and j. The approach has two simple steps. First, given an arbi-
trary node pair (i, j), a motif H of interest, and the current graph
G = (V ,E), we simply add the node pair (i, j) as an edge by set-
ting E ′ ← E ∪ {(i, j)} and G ′ = (V ,E ′) (Alg. 1 Line 1). This can
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Figure 1: Motif Closures. The unshaded/white nodes are

node i and j. Given a node pair (i, j) < E (unshaded/white

nodes) and any motif/induced subgraph H , the “edge” be-

tween i and j (dotted gray line) is said to close an instance

F of H if the edge (i, j) were to actually exist in G.

be performed implicitly without any additional work. However,
it is shown in Alg. 1 since after adding (i, j) to the edge set, we
can use the fastest known algorithm [1] for counting the occur-
rences of motif (induced subgraph/graphlet) H between node i
and j in G ′. Second, we compute the number of instances of mo-
tif H that contain nodes i and j in G ′ (Alg. 1 Line 2). Given a set
Y = {y1,y2, . . . ,yj , . . .} of nodes (items, ads, songs, friends) to be
ranked, Alg. 1 computesWi j = f (xi ,yj ), ∀j = 1, . . . , |Y|.

Algorithm 1 Higher-Order Motif Closures
Input: a graphG = (V , E), node pair (i, j), and network motif/graphlet H
Output: the frequencyWi j of motif closures of H for nodes i and j
1 Set E′ ← E ∪ {(i, j)} and G′ = (V , E′)
2 Use fast algorithm [1, 4] to computeWi j = # of occurrences of motif H

between node i and j in G′

2 EXPERIMENTS

The experiments investigate the following key questions:
Q1 Do other motif closures perform better than triangle closure

and its variants for some graphs?
Q2 Does the “best” motif closure depend highly on the under-

lying network and its structural properties or is there one
motif closure that always outperforms the others?

For comparison, we use triangle closure (common neighbors) and its
variants since these have the same desired properties as the higher-
order motif closure methods described in this paper. We hold-out
10% of the observed node pairs uniformly at random and randomly
sample the same number of negative node pairs. We repeat this 10
times and average the results. We then use the methods to obtain a
ranking of the node pairs in this set. Recall the proposed techniques
do not require learning a sophisticated model nor do they require
training data. As such, the notion of motif closure proposed in this
work can be used in a real-time streaming fashion and has many
other advantages to more sophisticated model-based approaches.
Mean Average Precision (MAP) results are provided in Table 1.

Result 1. Higher-order motif closures can outperform triangle
closure (common neighbors) and other methods based on it.
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Table 1: Mean average precision (MAP) results for ranking (and prediction) methods based on closing higher-order motifs.
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4-path 0.829 0.687 0.607 0.594 0.649 0.778 0.865 0.729 0.893 0.873 0.914 0.788 0.942 0.326 0.844 0.854 0.707
4-star 0.880 0.787 0.595 0.696 0.922 0.814 0.895 0.861 0.840 0.813 0.889 0.688 0.961 0.388 0.807 0.972 0.695

4-cycle 0.881 0.958 0.651 0.926 0.827 0.885 0.908 0.935 0.927 0.957 0.930 0.900 0.773 0.950 0.870 0.902 0.847
4-tailed-triangle 0.804 0.612 0.570 0.752 0.773 0.663 0.773 0.681 0.689 0.779 0.600 0.496 0.530 0.834 0.722 0.937 0.582
4-chordal-cycle 0.801 0.837 0.598 0.842 0.312 0.966 0.840 0.854 0.977 0.996 0.986 0.947 0.750 0.939 0.935 0.782 0.969

4-clique 0.804 0.838 0.595 0.843 0.293 0.963 0.842 0.847 0.972 0.997 0.986 0.965 0.759 0.939 0.960 0.798 0.982

CN 0.705 0.872 0.613 0.839 0.422 0.814 0.833 0.897 0.839 0.960 0.949 0.852 0.342 0.945 0.790 0.890 0.941
Jaccard Sim. 0.705 0.873 0.618 0.841 0.537 0.933 0.853 0.918 0.955 0.997 0.973 0.918 0.764 0.944 0.841 0.933 0.949

Adamic/Adar 0.705 0.883 0.621 0.842 0.549 0.940 0.856 0.920 0.959 0.997 0.976 0.919 0.777 0.945 0.848 0.935 0.953

In nearly all cases, the higher-order motif closures achieve better
precision than techniques based on closing lower-order triangles.
This result has a number of important implications. First, it implies
that one should also consider other motif closures that go beyond
simple triangles. Second, it brings new opportunities for research on
different and more useful variants based on the new motif closures.

Result 2. The best motif closure depends highly on the struc-
tural characteristics of the graph and its domain (biological vs. social
network) as shown in Table 1.

This implies that no single motif closure will always perform best
for all graphs and is consistent with the no-free-lunch theorem [5].
Furthermore, different structural properties are known to be impor-
tant for different network domains, and these higher-order motifs
capture the important structural properties since they cover the
full spectrum of 4-node induced subgraphs. In Table 1, biological
and brain networks achieve best performance using the ranking
given by 4-cycle and 4-star closures. This also holds true for the in-
teraction (ia-reality) and road network investigated. The 4-star and
4-cycle motif closures are more sparse compared to the 4-chordal-
cycle (paw motif) and 4-clique motif closure. In the web graph,
economic, and social networks, both the 4-chordal-cycle (diamond
motif closure) and 4-clique motif closure achieves significantly bet-
ter performance than the other motif closures. Notice that both
these motif closures are composed of two or more triangles and
thus can be seen as a stronger triadic closure motif.

Runtime Performance: We report the average runtime in mil-
liseconds to compute all motif closures for each node pair inG . The
methods were implemented in python and all experiments were
performed on a laptop (MacBook Pro 2017, 3.1 GHz Intel Core i7,
16GB RAM). For most graphs, it takes less than a millisecond on
average as shown in Figure 2 and therefore is fast for large-scale
ranking problems. Note these results include the runtime to com-
pute 3-node motif closures as well (and thus includes methods such
as common neighbors), since the algorithm used to count them
leverages 3-node motifs to derive the 4-node motifs efficiently [1].

Result 3. For any 4-node motifH , counting the number of motif
closuresWi j that would arise if an edge between i and j was added to
G is fast taking less than a millisecond on average across all graphs.

b
n
-m

o
u
se

b
io

-D
M

-L
C

b
io

-C
E

-H
T

b
io

-D
M

-H
T

ia
-r

e
a
lit

y
w

e
b
-p

o
lb

lo
g
s

b
io

g
ri
d
-w

o
rm

b
io

g
ri
d
-p

la
n
t

b
io

g
ri
d
-y

e
a
st

e
m

a
il-

d
n
c-

co
re

c.
so

c-
a
d
vo

g
a
to

e
co

n
-w

m
1

b
n
-m

a
ca

q
u
e
-r

h
e
.

ro
a
d
-m

in
n
e
so

ta
so

c-
fb

-m
e
ss

a
g
e
s

e
m

a
il-

E
U

e
m

a
il-

u
n
iv

0

0.5

1

1.5

2

2.5

3

3.5

ru
n
ti
m

e
 (

m
s
.)

Figure 2: Average runtime in milliseconds to compute all
{3, 4}-node motif closures for each node pair. The runtime

includes the baselines since they require 3-node motifs.

3 CONCLUSION

In this paper, we proposed the general notion of a motif closure
that goes beyond simple triangle closures. Indeed, triangle closure
has been used as a basis for link prediction over the last decade.
In this work, we demonstrated that other motif closures are often
more predictive than their triangle-based counterparts. This result
has three important implications. First, it implies that one should
also consider motif closures that are different from triangles. Sec-
ond, the “best” motif closure (i.e., the motif closure that is most
predictive of a link) depends highly on the underlying network
structure and processes that govern it. Third, existing supervised
learning methods [2, 3] can benefit from these new motif closures
by leveraging the full range of motif closures (going from least to
most dense as shown in Figure 1).
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