
Fast Hierarchical Graph Clustering in Linear-Time
Ryan A. Rossi
Adobe Research

Nesreen K. Ahmed
Intel Labs

Eunyee Koh
Adobe Research

Sungchul Kim
Adobe Research

ABSTRACT

While there has been a lot of research on graph clustering (com-
munity detection), most work (i) does not address the hierarchi-
cal community detection problem or are (ii) inefficient for large
networks. In this work, we describe an approach called hLP that
addresses both these limitations. Notably, hLP is fast and efficient
for discovering a hierarchy of communities in large networks with
a worst-case time and space complexity that is linear in the number
of edges and nodes, respectively. The experiments demonstrate the
effectiveness of hLP. Finally, we show an application for visualizing
large networks with hundreds of thousands of nodes and edges.

1 INTRODUCTION

Communities in a graph are sets of vertices C1, . . . ,Ck such that
each set Ck has more connections inside the set than outside [3].
While there are many different methods for finding communities [3,
8], it is generally agreed that a community Ck ⊆ V is “good" if the
induced subgraph is dense (e.g., many edges between vertices in
Ck) and there are relatively few edges from Ck to other vertices
C̄k = V \Ck [8]. Semantically, communities may represent a tightly-
knit group of friends, a household or organization, web pages of
the same topic, or researchers that frequently publish together. In
this work, we address the following problem:

Definition 1 (Hierarchical Community Detection).

Given an (un)directed graphG = (V ,E), the problem of hierarchical

community detection is to find

(i) a hierarchy of communities H = {𝒞1, . . . ,𝒞L} where 𝒞t =
{Ct

1 , . . . ,C
t
k } are the communities at level t s.t. |𝒞t−1 | > |𝒞t |,∀t .

(ii) a hierarchy of community (super) graphs G1, . . . ,Gt , . . . ,GL
such that Gt = (Vt ,Et) succinctly captures the relationships be-

tween the communities (nodes inGt) at a lower t−1 level in the hier-
archy where Et =

{
(i, j) : r ∈ Ct

i , s ∈ C
t
j ∧ (r , s) ∈ Et−1 ∧ i , j

}
Unlike previous work [3, 8], we focus on hierarchical community de-

tection and propose an approach called hLP that is fast and efficient
for large networks with a worst-case time and space complexity
that is linear in the number of edges and nodes, respectively.

2 APPROACH

We now present our fast linear-time approach called hLP for re-
vealing hierarchical communities in large graphs. A summary of
hLP is shown in Alg. 1. The approach begins with each node be-
longing to its own community. Let Γi = {j ∈ V | (i, j) ∈ E} denote

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7024-0/20/04.
https://doi.org/10.1145/3366424.3382673

the neighbors of i . For each node i , we assign it to the community
Ck ∈ 𝒞 with the max number of neighbors in it. More formally,

argmax
Ck ∈𝒞

∑
j ∈ Γi

I
[
j ∈ Ck

]
(1)

where I
[
j ∈ Ck

]
= 1 iff j ∈ Ck , and 0 otherwise. Eq. 1 can be easily

modified to take into account other important aspects. This step
converges when an iteration results in no further change to the
community assignments. To further speedup this step, if a node has
been assigned to the same community for δ consecutive rounds,
we make this assignment final.

Algorithm 1 hLP
Input: a graph G = (V , E)
Output: hierarchical communities H = {𝒞1, . . . , 𝒞L }
1 Set G0 ← G to be the initial graph and t ← 0
2 repeat

3 t ← t + 1
4 𝒞t ← LabelProp(Gt−1)
5 Gt = (Vt , Et) ← CreateSuperGraph(Gt−1, 𝒞t)
6 until |Vt | < 2 ▷ Stop when no nodes to combine

Algorithm 2 Create Super Graph
Input: a graph Gt−1 = (Vt−1, Et−1), communities 𝒞t from Gt−1
Output: community (super) graph Gt = (Vt , Et) for layer t
1 Vt ← 𝒞t = {C1, . . . , Ck } and Et ← ∅
2 Let c be the community assignment vector where ci = k if i ∈ Ck
3 parallel for i ∈ Vt−1 do
4 for j ∈ Γi do ▷ Neighbor of vertex i
5 if ci , c j and (ci , c j) < Et then
6 Et ← Et ∪ (ci , c j)

Given a graphGt−1 and 𝒞t = {Ct
1 , . . . ,C

t
k }, Algorithm 2 computes

the community (super) graphGt = (Vt ,Et) for layer t in the com-
munity hierarchy where Vt ← 𝒞t and Et =

{
(i, j) : r ∈ Ct

i , s ∈

Ct
j ∧ (r , s) ∈ Et−1 ∧ i , j

}
. hLP terminates when |Vt | < 2.

Property 1. Let |E(Gt)| and |V (Gt)| be the number of edges and

nodes in Gt and G0 ← G, then |E(G0)| > · · · > |E(GL)| and
|V (G0)| > · · · > |V (GL)|.

Let L be the number of layers andT be the max number of iterations
at any given layer. Further, let N = |V | andM = |E |.

Lemma 1. The worst-case time complexity of hLP is O(LTM) =
O(M) since L and T are small constants.

A single iteration of label propagation takes O(M) time to update all
N nodes. SinceM ≫ |Et | for any t > 0, then the subsequent layers
are much faster. The worst-case time complexity of Algorithm 2 is
O(|Et−1 |), which is bounded above byM = |E |.

We now provide the runtime and output space complexity.

https://doi.org/10.1145/3366424.3382673

WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan Rossi, R. A. et al.

(a) road-luxembourg (𝒞2) (b) 𝒞3 (c) 𝒞4 (d) 𝒞5

Figure 1: This case study uses road-luxembourg consisting of 114.6k nodes and 239k edgesmaking it impossible to visualize the

entire network. (a) Super graph 𝒞2
consisting of 9.4k supernodes (communities) with 25.3k superedges (between-community

edges). (b) consists of 2,023 communities with only 6,588 between community edges whereas (c)-(d) consists of 372 and 48

communities with 1,580 and 214 between community edges, respectively. Nodes areweighted by degree. See text for discussion.

Lemma 2. The runtime space complexity of hLP is O(L(M + N)) in
the worst-case where L is a small constant, and therefore linear in the

number of edges and nodes in G.

Lemma 3. The output space complexity of hLP is O(NL) in the

worst-case. Since L ≪ N , it is linear in the number of nodes N in G.

Since we avoid storing the node community assignments at each
layer and store only how these communities are merged at each
subsequent layer, all that we need are the sets 𝒞1, . . . ,𝒞L that take
significantly less space than NL. Hence, instead of using O(NL)
space, hLP uses only O

(∑
k |C

1
k | + · · · +

∑
k |C

L
k |
)
≪ O(NL) space.

3 EXPERIMENTS

We investigate the quality, runtime performance, and utility of hLP
for a visualization application. For data and statistics, see [7].

Table 1: Quantitative evaluation using modularity.

DS KCore LP Louv Spec hLP

soc-yahoo-msg 0.0003 0.0004 0.0479 0.0394 0.0005 0.0569

bio-gene 0.0195 0.0217 0.0315 0.0408 -0.0208 0.0846

ca-cora 0.0089 0.0304 0.0444 0.0608 0.0164 0.1026

soc-terror 0.0888 0.0892 0.0967 0.0967 0.0999 0.1243

inf-US-powerGrid 0.0027 0.0027 0.0061 0.0212 0.1127 0.1242

web-google 0.0272 0.0275 0.0429 0.0471 0.1010 0.1122

ca-CSphd 0.0224 0.0224 0.0234 0.0198 0.0131 0.1201

ca-netscience 0.0164 0.0168 0.1063 0.0561 0.1229 0.1233

road-luxem. 0.0629 0.0629 0.0077 0.0046 -0.1170 0.1141

bio-DD21 0.0865 0.0866 0.0106 0.0202 0.1241 0.1247

Quantitative evaluation:We compare hLP to baselines that are
fast with linear-time complexity (with the exception of Louvain).
This includes Densest Subgraph (DS) [4], KCore Communities
(KCore) [9], Label Propagation (LP) [6], Louvain (Louv) [1], and
Spectral Clustering (Spec) [2]. We evaluate the communities using
modularity [5]. We report the best result from any method. Results
using modularity are provided in Table 1. Notably, hLP outperforms
all baselines across all graphs (Table 1). In particular, hLP typically
achieves at least an order of magnitude improvement over the other
methods. These results demonstrate the effectiveness of hLP across
a wide variety of graphs.

Runtime Performance: In Figure 2, we compare the runtime of
hLP for two large networks including a social network (soc-yahoo-
msg) and a road network dataset (road-luxembourg). In both cases,
hLP and LP perform the best followed by KCore, DS, Spectral clus-
tering, and Louvain.

soc-yahoo-msg road-luxem.
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140

ti
m

e
 (

s
e

c
o

n
d

s
)

 DS

 KCore

 LP

 Louv

 Spec

 hLP

Figure 2: Runtime comparison.

Visualizing Large Networks: One important application of hLP
is for visualization and exploration of large networks in an interac-
tive fashion. In Figure 1, visualizing the entire graph would cause
information overload and be extremely slow to render and explore
in real-time. However, we can simply apply hLP to summarize the
graph structure at multiple levels as shown in Figure 1. Thus, hLP
provides a more manageable view of the key network structures
from which the user can explore further by clicking on each super
node that represents a lower-level community.

REFERENCES

[1] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. JSTAT 10 (2008).

[2] Fan RK Chung. 1997. Spectral graph theory. AMS.
[3] Santo Fortunato. 2010. Community detection in graphs. Phy. Rep. 3 (2010).
[4] Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In ICALP.
[5] M.E.J. Newman. 2001. The structure of scientific collaboration networks. PNAS

98, 2 (2001), 404.
[6] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear

time algorithm to detect community structures in large-scale networks. Physical
Review E 76, 3 (2007), 036106.

[7] Ryan A. Rossi and Nesreen K. Ahmed. 2016. An Interactive Data Repository with
Visual Analytics. SIGKDD Exp. (2016). http://networkrepository.com

[8] Satu Elisa Schaeffer. 2007. Graph clustering. Comp. sci. rev. 1, 1 (2007), 27–64.
[9] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2016. CoreScope: Graph

Mining Using k-Core Analysis–Patterns, Anomalies and Algorithms. In ICDM.

http://networkrepository.com

	Abstract
	1 Introduction
	2 Approach
	3 Experiments
	References

