
A Structural Graph Representation Learning Framework
Ryan A. Rossi

Adobe Research

Nesreen K. Ahmed

Intel Labs

Eunyee Koh

Adobe Research

Sungchul Kim

Adobe Research

Anup Rao

Adobe Research

Yasin Abbasi-Yadkori

VinAI

ABSTRACT
The success of many graph-based machine learning tasks highly

depends on an appropriate representation learned from the graph

data. Most work has focused on learning node embeddings that

preserve proximity as opposed to structural role-based embeddings
that preserve the structural similarity among nodes. These methods

fail to capture higher-order structural dependencies and connectiv-

ity patterns that are crucial for structural role-based applications

such as visitor stitching from web logs. In this work, we formu-

late higher-order network representation learning and describe a

general framework called HONE for learning such structural node

embeddings from networks via the subgraph patterns (network mo-

tifs, graphlet orbits/positions) in a nodes neighborhood. A general

diffusion mechanism is introduced in HONE along with a space-

efficient approach that avoids explicit construction of the k-step

motif-based matrices using a k-step linear operator. Furthermore,

HONE is shown to be fast and efficient with a worst-case time

complexity that is nearly-linear in the number of edges. The ex-

periments demonstrate the effectiveness of HONE for a number of

important tasks including link prediction and visitor stitching from

large web log data.

KEYWORDS
Structural node embeddings, role-based embeddings, structural

similarity, roles, network motifs, graphlets, structural embeddings

ACM Reference Format:
Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao,

and Yasin Abbasi-Yadkori. 2020. A Structural Graph Representation Learning

Framework. In The Thirteenth ACM International Conference on Web Search
and Data Mining (WSDM ’20), February 3–7, 2020, Houston, TX, USA. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3336191.3371843

1 INTRODUCTION
Structural role discovery [40] aims to reveal nodes with topologi-

cally similar neighborhoods while being possibly far away in the

graph or even in different graphs altogether. Intuitively, two nodes

belong to the same role if they are structurally similar (with re-

spect to the general connectivity and subgraph patterns in a nodes

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00

https://doi.org/10.1145/3336191.3371843

neighborhood). Roles may represent higher-order subgraph pat-

terns (network motifs) such as star-center (hub) nodes, star-edge

nodes, near-cliques or bridge nodes connecting different regions of

the graph. Most work on embeddings have focused on preserving

the notion of proximity (closeness) as opposed to the notion of

structural similarity proposed in [40]. As such, two nodes with

similar proximity-based embeddings are guaranteed to be near one

another in the graph (a property of communities [17]). However,

learning structural role-based embeddings that preserve the notion

of structural similarity are important for many predictive modeling

applications [41] such as the visitor stitching task where the goal

is to predict the web sessions that belong to the same user.

To address this problem and learn more appropriate structural
role-based embeddings for such applications, we propose a general

framework called Higher-Order Network Embeddings (HONE) for

learning higher-order structural node embeddings based on net-

work motifs (graphlets). The approach leverages all available motif

counts by deriving a weighted motif graph Wt from each network

motif Ht ∈ H and uses these as a basis to learn higher-order struc-

tural node embeddings. The HONE framework expresses a new

class of structural node embedding methods based on a set of motif-

based matrices and their powers. We also introduce diffusion-based

HONE variants that leverage a general diffusion mechanism to im-

prove predictive performance. Furthermore, this work describes a

space-efficient approach to avoid explicit construction of the k-step

motif-based matrices by defining a k-step linear operator. The time

complexity of HONE is shown to be linear in the number of edges

and therefore is fast and scalable for large networks. Empirically,

we investigate the HONE variants and their properties extensively

in Section 4. The experiments demonstrate the effectiveness of

higher-order structural embeddings for link prediction as we achieve

a mean relative gain in AUC of 19% over all embedding methods and

network data sets. In addition, the diffusion-based HONE variants

achieve a mean gain of 1.97% in AUC over the other HONE variants.

We also demonstrate the effectiveness of HONE for visitor stitching

using two real-world company data sets with known ground-truth.

Finally, HONE is shown to capture roles (structural similarity) as it

successfully uncovers the actual exact role assignments in graphs

with known ground-truth.

Contributions: This work makes three important contributions.

First, we introduce the problem of higher-order (motif-based) net-

work embedding. Second, we propose a general class of methods for

learning such structural (role-based) embeddings via higher-order

network motifs. The resulting embeddings are shown to be role-

based (structural) and capture the notion of structural similarity

(roles) [40] as opposed to proximity/community-based embeddings

https://doi.org/10.1145/3336191.3371843
https://doi.org/10.1145/3336191.3371843

that have been the focus of most previous work. Third, we demon-

strate the effectiveness of learning structural higher-order network
embeddings for link prediction and visitor stitching of web logs.

2 HIGHER-ORDER NETWORK EMBEDDINGS
This section proposes a new class of embedding models called

Higher-Order Network Embeddings (HONE) and a general frame-

work for deriving them. The class of higher-order network embed-

ding methods is defined as follows:

Definition 1 (Higher-Order Network Embeddings). Given
a network G = (V ,E), a set of network motifs H = {H1, . . . ,HT },
the goal of higher-order network embedding (HONE) is to learn a
function f : V → RD that maps nodes to D-dimensional structural
node embeddings using network motifsH .1

The particular family of higher-order structural node embeddings

presented in this work are based on learning a function f : V →
RD that maps nodes to D-dimensional embeddings using (powers

of) weighted motif graphs derived from a structural motif matrix

function Ψ. However, many other families of higher-order structural
node embedding methods exist in the class of higher-order network

embeddings (Definition 1).

We summarize the main steps of the HONE framework in Al-

gorithm 1 (with the exception of attribute diffusion discussed in

Section 2.6 and normalization, which are both optional). For clar-

ity, Algorithm 1 also summarizes the organization and shows the

connections between Sections 2.1-2.5.

2.1 Network Motifs
The HONE framework can use graphlets or orbits; and both can be

computed fast in only a few seconds for very large networks, see [1,

4]. Recall that the term network motif is used generally in this work

and may refer to graphlets or orbits (graphlet automorphisms) [1,

35]. A graphlet Ht = (Vk ,Ek) is an induced subgraph consisting

of a subset Vk ⊂ V of k vertices from G = (V ,E) together with all

edges whose endpoints are both in this subset Ek = {∀e ∈ E | e =
(u,v) ∧ u,v ∈ Vk }. Alternatively, the nodes of every graphlet can

be partitioned into a set of automorphism groups called orbits [35].

It is important to consider the position of an edge in a graphlet, for

instance, an edge in the 4-node path (Figure 1) has two different

unique positions, namely, an edge on the outside of the 4-node path

(H4 in Figure 1) or the edge in the center of the path (H5). Each

unique edge position in a graphlet is called an orbit. In this work,

we use all (2-4)-vertex connected edge orbits and denote this set as

H (Figure 1).

H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

Figure 1: All (2-4)-vertex connected edge orbits. For
graphlets with more than one edge orbit (e.g., 4-path-edge
orbit H4 and 4-path-center orbit H5), the gray edge (between
the unshaded nodes) is used to distinguish between the dif-
ferent edge orbits of the graphlet.
1
Network motifs is used generally to refer to either induced subgraphs/graphlets or

graphlet orbits (Section 2.1).

Algorithm 1 Higher-Order Network Embedding (HONE)

Step 1: Given a network G = (V , E) with N = |V | nodes and a set

H = {H1, . . . , HT } of T motifs (Section 2.1), form the weighted

motif adjacency matricesW =
{
W1, . . . , WT

}
where (Wt)i j =

of instances of motif Ht ∈H between node i and j (Section 2.2).

Step 2: Derive all k-step motif matrices for all T motifs and K steps:

S(k)t = Ψ(Wk
t), for k = 1, . . . , K and t = 1, . . . , T

where Ψ is a motif matrix function from Section 2.3.

Step 3: Find low-rank “local” structural node embeddings for each k-step

motif matrix S(k)t by solving Eq. 12 (Section 2.4).

Step 4: Concatenate all low-dimensional structural node embeddings for

all T network motifs and K steps to obtain Y (Eq. 15).

Step 5: Given Y, find a “global” low-dimensional rank-D structural node

embedding matrix Z by solving Eq. 17 (Section 2.5) and return

Z ∈ RN×D .

2.2 Weighted Motif Graphs
Given a networkG = (V ,E)withN = |V | nodes,M = |E | edges, and
a setH = {H1, . . . ,HT } ofT network motifs, we form the weighted

motif adjacency matrices:W =
{
W1,W2, . . . ,WT

}
where

(Wt)i j = # occurrences of motif Ht ∈ H that contain (i, j) ∈ E

The weighted motif graphs differ from the original graph in two

important and fundamental ways. First, the edges in each motif

graph is likely to be weighted differently. This is straightforward to

see as each network motif can appear at a different frequency than

another arbitrary motif for a given edge. Intuitively, the edge motif

weights when combined with the structure of the graph reveal

important structural properties with respect to the weighted motif

graph. Second, the motif graphs are often structurally different

as shown in Figure 2. For instance, if edge (i, j) ∈ E exists in the

original graph G , but (Wt)i j = 0 for some arbitrary motif Ht , then

(i, j) < Et where Et is the edge set for motif Ht ∈ H . Hence,

the motif graphs encode relationships between nodes that have

a sufficient number of motifs. To generalize the above weighted

motif graph formulation, we replace the edge constraint that says

an edge exists between i and j if the number of instances of motif

Ht ∈ H that contain nodes i and j is 1 or larger, by enforcing an

edge constraint that requires each edge to have at least δ motifs.

In other words, different motif graphs can arise using the same

motif Ht by enforcing an edge constraint that requires each edge to

have at least δ motifs. This is an important property of the above

formulation.

2.3 Structural Motif Matrix Functions
To generalize HONE for any motif-based matrix formulation, we
define Ψ as a function Ψ : RN×N→ RN×N over a weighted motif

adjacency matrixWt ∈ W. Using Ψ we derive

St = Ψ(Wt), for t = 1, 2, . . . ,T (1)

The term motif-based matrix refers to any motif matrix S derived
from Ψ(W).2 We summarize a few motif matrix functions Ψ below.

• Weighted Motif Graph: Given a graphG and a network motif

Ht ∈ H , form Wt where Ht : (Wt)i j = number of instances of

2
For convenience,W denotes a weighted adjacency matrix for an arbitrary motif.

Ht that contain nodes i and j . In the case of using HONE directly

with a weighted motif adjacency matrixW, then

Ψ : W→ IW (2)

The number of paths weighted by motif counts from node i to
node j in k-steps is given by

(Wk)i j =
(
W · · · W︸ ︷︷ ︸

k

)
i j (3)

• Weighted Motif Transition Matrix: The random walk on a

graph W weighted by motif counts has transition probabilities

Pi j =
Wi j

wi
(4)

where wi =
∑
jWi j is the motif degree of node i . The random

walk motif transition matrix P for an arbitrary weighted motif

graph W is defined as:

P = D−1W (5)

where D = diag(We) = diag(w1,w2, . . . ,wN) is a N ×N diago-

nal matrix with the motif degree wi =
∑
jWi j of each node

on the diagonal called the diagonal motif degree matrix and

e =
[

1 1 · · · 1

]T
is the vector of all ones. P is a row-stochastic

matrix with

∑
j Pi j = pTi e = 1 where pi ∈ R

N
is a column vector

corresponding to the i-th row of P. For directed graphs, the motif

out-degree is used. However, one can also leverage the motif in-

degree or total motif degree (among other quantities). The motif

transition matrix P represents the transition probabilities of a

non-uniform random walk on the graph that selects subsequent

nodes with probability proportional to the connecting edge’s mo-

tif count. Therefore, the probability of transitioning from node i
to node j depends on the motif degree of j relative to the total

sum of motif degrees of all neighbors of i . The probability of

transitioning from node i to j in k-steps is given by

(Pk)i j =
(
P · · · P︸ ︷︷ ︸

k

)
i j (6)

• WeightedMotif Laplacian: Themotif Laplacian for aweighted

motif graph W is defined as:

L = D −W (7)

whereD = diag(We) is the diagonal motif degreematrix defined

as Dii =
∑
jWi j . For directed graphs, we can use either in-motif

degree or out-motif degree.

• Normalized Weighted Motif Laplacian: Given a graph W
weighted by the counts of an arbitrary network motif Ht ∈ H ,

the normalized motif Laplacian is defined as

L̂ = I − D−1/2WD−1/2
(8)

where I is the identity matrix and D = diag(We) is the N × N
diagonal matrix of motif degrees.

• RandomWalk NormalizedWeightedMotif Laplacian: For-
mally, the random walk normalized motif Laplacian is

L̂rw = I − D−1W (9)

where I is the identity matrix, D is the motif degree diagonal

matrix with Dii = wi ,∀i = 1, . . . ,N , and W is the weighted

motif adjacency matrix for an arbitrary motif Ht ∈ H . Observe

that L̂rw = I − P where P = D−1W is the motif transition matrix

of a random walker on the weighted motif graph.

Notice that all variants are easily formulated as functionsΨ in terms

of an arbitrary motif weighted graphW.

(a) Initial graph

(b) Weighted
H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

-graph

(c) Weighted
H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

-graph

Figure 2: Motif graphs differ in structure and weight. Size
(weight) of nodes and edges in the triangle

H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

and 4-star
H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

graphs correspond to the frequency of triangles and 4-stars.

2.4 K-Step Motif-based Structural Embeddings
We describe the local higher-order structural node embeddings

learned for each network motif Ht ∈ H and k-step where k ∈
{1, . . . ,K}. The term local refers to the fact that structural node

embeddings are learned for each individual motif and k-step inde-

pendently. We define k-step motif-based matrices for all T motifs

and K steps as follows:

S(k)t = Ψ(Wk
t), for k = 1, . . . ,K and t = 1, . . . ,T (10)

where

Ψ(Wk
t) = Ψ(Wt · · · Wt︸ ︷︷ ︸

k

) (11)

These k-stepmotif-basedmatrices can densify quickly and therefore

the space required to store the k-step motif-based matrices can grow

fast as K increases. For large graphs, it is often impractical to store

the k-step motif-based matrices for any reasonable K . To overcome

this issue, we avoid explicitly constructing the k-step motif-based

matrices entirely. Hence, no additional space is required and we

never need to store the actual k-step motif-based matrices for k > 1.

We discuss and show this for any k-step motif-based matrix later

in this subsection.

Given a k-step motif-based matrix S(k)t for an arbitrary network

motif Ht ∈ H , we find an embedding by solving the following

optimization problem:

arg min

U(k)t ,V(k)t ∈C
D
(
S(k)t ∥ Φ⟨U

(k)
t V(k)t ⟩

)
, ∀k=1,...,K and t =1,...,T (12)

where D is a generalized Bregman divergence (and quantifies ≈

in the HONE embedding model S(k)t ≈ Φ⟨U(k)t V(k)t ⟩) with match-

ing linear or non-linear function Φ and C is constraints (e.g., non-
negativity constraints U ≥ 0, V ≥ 0, orthogonality constraints

UTU = I,VTV = I). The above optimization problem finds low-rank

embedding matrices U(k)t and V(k)t such that S(k)t ≈ Φ⟨U(k)t V(k)t ⟩.

The function Φ allows non-linear relationships between U(k)t V(k)t
and S(k)t . Different choices of Φ and D yield different HONE embed-

ding models and depend on the distributional assumptions on S(k)t .

For instance, minimizing squared loss with an identity link function

Φ yields singular value decomposition corresponding to a Gauss-

ian error model [18]. Other choices of Φ and D yield other HONE

embedding models with different error models including Poisson,

Gamma, or Bernoulli distributions, see [14] for more details.

Recall from above that we avoid explicitly computing and storing

the k-step motif-based matrices from Eq. 10 as they can densify

quickly as K increases and therefore are impractical to store for any

large graph and reasonable K . This is accomplished by defining a

linear operator corresponding to the K-step motif-based matrices

that can run in at most K times the linear operator corresponding

to the (1-step) motif-based matrix. In particular, many algorithms

used to compute low-rank approximations of large sparse matri-

ces [20, 38] do not need access to the explicit matrix, but only the

linear operator corresponding to action of the input matrix on vec-

tors. For a matrix A, let TA denote the upper bound on the time

required to compute Ax for any vector x. We note TA = O(M)
whereM = nnz(A) always holds and is a useful bound when A is

sparse. Therefore, the time required to compute a rank-Dℓ approxi-

mation of A is O(TADℓ logN + ND2

ℓ
logN) where N = |V |. Note

the log term is the number of iterations when Krylov methods are

used, see [29] for more details.

Now, we can define a linear operator corresponding to the K-
step motif-based matrices that can run in at most K times the

linear operator corresponding to the (1-step) motif-based matrix.

We show this for the case of any weighted motif adjacency matrix

W. Let TW be the time required to compute Wx, for any vector

x. Then, to compute WKx, we can do the following. Let x0 ← x
and iteratively compute xi =Wxi−1 for i = 1, . . . ,K . This shows
that TWK = O(KTW). This implies that we can compute a rank-Dℓ

embedding of the K-step motif adjacency matrix in time at most

O(KTWDℓ logN + ND2

ℓ
logN) which is at most

O(KMDℓ logN + ND2

ℓ logN) (13)

whereM = nnz(W). This implies that the time to compute the rank-

Dℓ embedding grows only linearly with K . Therefore, no additional
space is required and we never need to derive/store the actual k-step

motif-based matrices for k > 1. Moreover, as shown above, the time

complexity grows linearly with K and is therefore efficient. The

time complexity in Eq. 13 is for singular value decomposition/eigen-

decomposition and hence finds the best rank-Dℓ approximation [18].

However, linear operators can also be defined for other optimization

techniques that can be used to find a rank-Dℓ approximation such

as stochastic gradient descent, block/cyclic coordinate descent, or

alternating least squares. Thus, the time complexity for computing

rank-Dℓ embeddings using these optimization techniques will also

only increase by a factor of K .

2.5 Learning Global Higher-Order Embeddings
How can we learn higher-order structural node embeddings for

an arbitrary graph G that automatically captures the important

motifs? Simply concatenating the previous motif embeddings into a

single matrix and using this for prediction assumes that each motif

is equally important. However, it is obvious that some motifs are

more important than others and the choice depends on the graph

structure and its properties [1, 35]. Therefore, instead of assuming

all motifs contribute equally to the embedding, we learn a global
higher-order embedding that automatically captures the important

motifs in the embedding without requiring an expert to hand select

the most important motifs to use. This effectively allows the overall

model to learn a combination of latent features using the local

motif-based embeddings from different network motifs and from

different steps (motif graph scales).

For this, we first normalize the columns of U(k)t by a function

д : RN×N→ RN×N as follows:

U(k)t ← д(U(k)t), for t = 1, . . . ,T and k = 1, . . . ,K (14)

In this work, д is a function that normalizes each column of U(k)t
using the Euclidean norm. Afterwards, we concatenate the k-step

node embedding matrices for all T motifs and all K steps:

Y =
[
U(1)

1
· · · U(1)T︸ ︷︷ ︸

1-step

· · · U(K)
1
· · · U(K)T︸ ︷︷ ︸

K -steps

]
(15)

where Y is a N ×TKDℓ matrix. Notice that at this stage, we could

simply output Y as the final motif-based node embeddings and use

it for a downstream prediction task. However, using Y directly es-

sentially treats all motifs equally while it is known that some motifs

are more important than others and the specific set of important

motifs widely depends on the underlying graph structure. There-

fore, by learning node embeddings from Y, we can automatically

capture the important structure in the data pertaining to certain

motifs and avoid trying to specify the important motifs by hand.

Given Y from Eq. 15, we learn a global higher-order network
embedding by solving the following:

arg min

Z,H∈C
D
(
Y ∥ Φ⟨ZH⟩

)
(16)

where Z is a N ×D matrix of higher-order node embeddings and H
is a D ×TKDℓ matrix of the latent k-step motif embeddings. Each

row of Z is a D-dimensional embedding of a node. Similarly, each

column of H is an embedding of a latent k-step motif feature (i.e.,
column of Y) in the same D-dimensional space. In Eq. 16 we use

Frobenius norm which leads to the minimization problem:

min

Z,H

1

2

Y − ZH

2

F =
1

2

∑
i j

(
Yi j − (ZH)i j

)
2

(17)

A similar minimization problem is solved for Eq. 12.

2.6 Attribute Diffusion
Attributes can also be diffused and incorporated into the higher-

order structural node embeddings. One approach is to use the motif

transition probability matrix as follows:

X̄(0)t ← X, Pt = D−1

t Wt

X̄(k)t = Pt X̄
(k−1)
t , for k = 1, 2, . . . ,K (18)

where X is an N × F attribute matrix and X̄(k)t ∈ RN×F is the

diffused feature matrix after k-steps. Here Pt can be replaced by

any of the previous motif-based matrices derived from any motif

matrix formulation in Section 2.3. More generally, we define linear
attribute diffusion for HONE as:

X̄(0)t ← X

X̄(k)t = Ψ
(
W(k)t

)
X̄(k−1)
t , for k = 1, 2, . . . ,K (19)

More complex attribute diffusion processes can also be formulated

such as the normalized motif Laplacian attribute diffusion. The re-
sulting diffused attributes are effectively smoothed by the attributes

of related nodes governed by the particular diffusion process. Af-

terwards, we concatenate the diffused attributes for all T motifs

X̄ =
[
X̄1 · · · X̄T

]
and incorporate them into the node embed-

dings given as output in Eq. 16 by replacing Y in Eq. 15 with:

Y =
[
U(1)

1
· · · U(1)T︸ ︷︷ ︸

1-step

· · · U(K)
1
· · · U(K)T︸ ︷︷ ︸

K -steps

X̄
]

(20)

Alternatively, we can concatenate X̄ to Z,
[
Z X̄

]
. The columns of

X̄ are normalized using Eq. 14 with the same norm as before.

3 ANALYSIS
Define ρ(A) as the density of A.

Claim 3.1. Let W denote an arbitrary k-vertex motif adjacency
matrix where k > 2, then ρ(A) ≥ ρ(W).

This is straightforward to see as the motif adjacency matrix con-

structed from the edge frequency of any motif H with more than

k > 2 nodes can be viewed as an additional constraint over the

initial adjacency matrix A. Therefore, in the extreme case, if every

edge contains at least one occurrence of motifH then ρ(A) = ρ(W).
However, if there exists at least one edge that does not contain an

instance of H then ρ(A) > ρ(W). Therefore, ρ(A) ≥ ρ(W).

3.1 Time Complexity
Let M = |E |, N = |V |, ∆ = the maximum degree, T = the number

of motifs, K = the number of steps, Dℓ = number of dimensions for

each local motif embedding (Section 2.4), and D = dimensionality

of the final node embeddings (Section 2.5).

Lemma 3.1. The time complexity of HONE is linear in the number
of edgesM whenM ≫ N , and specifically,

O(M∆
ub
+MKTDℓ + NDKTDℓ) (21)

Hence, HONE is fast and efficient for large networks.

Proof. The time complexity of each step is provided below. For the

specific HONE embedding model, we assume D is squared loss, Φ
is the identity link function, and no hard constraints are imposed

on the objective function in Eq. 12 and Eq. 16.

Network motif frequencies: Fast and efficient algorithms for

counting network motifs/graphlets in very large graphs have be-

come common place (e.g., PGD [1] takes a few seconds to count

graphlets in very large networkswith hundreds ofmillions of edges).

To derive the network motif frequencies, we use recent provably

accurate estimation methods [4]. These methods achieve estimates

within a guaranteed level of accuracy and time by setting a few sim-

ple parameters in the estimation algorithm. The time complexity to

estimate the frequency of all network motifs with {2, 3, 4}-nodes is

O(M∆
ub
) in the worst case where ∆

ub
is a small constant. Hence,

∆
ub

represents the maximum sampled degree and can be set by the

user. See [4] for more details.

Weighted motif graphs: After obtaining the frequencies of the

network motifs, we derive a sparse weighted motif adjacency ma-
trix for each of the network motifs. The time complexity for each

weighted motif adjacency matrix is at most O(M) and this is re-

peated T times for a total time complexity of O(MT) where T is a

small constant. This gives a total time complexity of O(M(T +∆
ub
))

for this step and thus linear in the number of edges.

Structural motif matrix functions: The time complexity of all

motif matrix functions Ψ in Section 2.3 is O(M). Since Ψ(Wt) for

t = 1, . . . ,T , the total time complexity is O(MT) in the worst case.

By Claim 3.1,M ≥ Mt , ∀t whereMt = nnz(Wt) and thus the actual

time is likely to be much smaller especially given the rarity of some

network motifs in sparse networks such as 4-cliques and 4-cycles.

Embedding each k-step motif graph: For a single weighted

motif-basedmatrix, the time complexity per iteration of cyclic/block

coordinate descent [24] and stochastic gradient descent (SGD) [32,

54] is at most O(MDℓ)where Dℓ ≪ M . Recall from Section 2.4 that

we avoid explicitly computing and storing the k-step motif-based

matrices by defining a linear operator corresponding to the K-step
motif-based matrices with a time complexity that is at mostK times

the linear operator corresponding to the 1-step motif-based matrix.

Therefore, the total time complexity for learning structural node

embeddings for all k-step motif-based matrices is:

O

(
TMDℓ︸ ︷︷ ︸
k=1

+ 2(TMDℓ)︸ ︷︷ ︸
k=2

+ · · · + K(TMDℓ)︸ ︷︷ ︸
k=K

)
= O

(
KTMDℓ

)
(22)

Global higher-order structural node embeddings: Afterwards,
all k-step motif embedding matrices are horizontally concatenated

to obtainY (Eq. 15). Each node embeddingmatrix isN×Dℓ and there

are K · T of them. Thus, it takes O(NKTDℓ) time to concatenate

them to obtain Y. Notice that N ≫ KTDℓ and therefore this step

is linear in the number of nodes N = |V |. Furthermore, the time

complexity for normalizing all columns of Y is O(NKTDℓ) for any

normalization function д.
Given a dense tall-and-skinny matrix Y of size N ×KTDℓ where

N ≫ KTDℓ , we learn the higher-order node embedding matrix Z
and the latent motif embedding matrix H. The time complexity per

iteration of cyclic/block coordinate descent [24] and SGD [32, 54]

is O(DNKTDℓ) and thus linear in the number of nodes.

3.2 Space Complexity
Lemma 3.2. The total space complexity of HONE is

O(T (M + NKDℓ) + D(N +TKDℓ)) (23)

Proof. The weighted motif adjacency matricesW1, . . . ,WT take

at most O(MT) space. Similarly, the motif-based matrices derived

from any motif matrix function Ψ is at most O(MT). Recall that
the space required for some motif-based matrices where the motif

being encoded is rare will be much less than O(MT) (Claim 3.1).

The space complexity of each k-step motif embedding is O(NDℓ)

and therefore it takes O(NTKDℓ) space for all k = 1, . . . ,K and t =

Table 1: Network statistics (M=million).
Tasks Graph |V | |E | davg

Visitor Stitching
Comp-A (web logs) 8.9M 55.2M 6.2

Comp-B (web logs) 22.8M 61.3M 2.7

Link Prediction

soc-hamster 2426 33260 13.7

rt-twitter-cop 761 2058 2.7

soc-wiki-Vote 889 5828 6.6

tech-routers-rf 2113 13264 6.3

facebook-PU 7315 89733 12.3

infra-openflights 2939 31354 10.7

soc-bitcoinA 7604 28248 3.7

1, . . . ,T embedding matrices. Storing the higher-order structural

node embedding matrix Z takes O(ND) space and the k-step motif

embedding matrix H is O(D · TKDℓ). Therefore, the total space

complexity for Z and H is O(ND + DTKDℓ) = O(D(N +TKDℓ)).

4 EXPERIMENTS
This section demonstrates the effectiveness of the proposed frame-

work for a number of important real-world tasks.

4.1 Experimental Setup
We compare the proposed HONE variants to five baseline methods

including node2vec [19], DeepWalk [34], LINE [47], GraRep [9], and

Spectral clustering [48]. All methods output (D = 128)-dimensional

node embeddings Z =
[
z1 · · · zN

]T
where zi ∈ RD . For LINE,

we use 2nd-order-proximity and the number of samples T = 60

million [47]. For GraRep, we set D = 128 and perform a grid search

over K ∈ {1, 2, 3, 4} [9]. For DeepWalk, we use R = 10, L = 80,

and ω = 10 [34]. For node2vec, we use the same hyperparameters

(D = 128, R = 10, L = 80, ω = 10) and grid search over p,q ∈
{0.25, 0.50, 1, 2, 4} as mentioned in [19]. For the HONE variants, we

set D = 128 and select the number of steps K automatically via a

grid search over K ∈ {1, 2, 3, 4} using 10% of the labeled data. We

use all graphlets with 2-4 nodes and set Dℓ = 16 for the local motif

embeddings unless otherwise mentioned. All methods use logistic

regression (LR) with an L2 penalty. The model is selected using

10-fold cross-validation on 10% of the labeled data. Experiments

are repeated for 10 random seed initializations. All data is from

NetworkRepository [39]. Data statistics are provided in Table 1.

4.2 Link Prediction
Given a partially observed graphG with a fraction of missing edges,

the link prediction task is to predict these missing edges. We gener-

ate a labeled dataset of edges. Following [19, 43], we obtain positive

examples by removing 50% of edges randomly, whereas negative
examples are generated by randomly sampling an equal number

of node pairs that are not connected with an edge (i, j) < E. For
each method, we learn embeddings using the remaining graph that

consists of only positive examples. Using the embeddings from each

method, we then learn a model to predict whether a given edge in

the test set exists in E or not. To construct edge features from the

node embeddings, we use the mean operator defined as (zi + zj)
/

2.

The AUC results are provided in Table 2. In all cases, the HONE

methods outperform the other embedding methods with an overall

mean gain of 19.19% (and up to 75.21% gain). In all cases, the gain

achieved by the proposed HONE variants is significant at p < 0.01.

We also derive a total ranking of the embedding methods over all

Table 2: Prediction Results (AUC). See text for discussion.

so
c-
ha

m
st
er

rt
-t
w
itt
er
-c
op

so
c-
w
ik
i-V

ot
e

te
ch
-r
ou

te
rs
-r
f

fa
ce
bo

ok
-P
U

in
f-
op

en
fl
ig
ht
s

so
c-
bi
tc
oi
nA

R
a
n
k

HONE-W (Eq. 2) 0.841 0.843 0.811 0.862 0.726 0.910 0.979 1
HONE-P (Eq. 5) 0.840 0.840 0.812 0.863 0.724 0.913 0.980 2
HONE-L (Eq. 7) 0.829 0.841 0.808 0.858 0.722 0.906 0.975 3
HONE-̂L (Eq. 8) 0.829 0.836 0.803 0.862 0.722 0.908 0.976 5

HONE-̂Lrw (Eq. 9) 0.831 0.834 0.808 0.863 0.723 0.909 0.976 4

Node2Vec [19] 0.810 0.635 0.721 0.804 0.701 0.844 0.894 6
DeepWalk [34] 0.796 0.621 0.710 0.796 0.696 0.837 0.863 7

LINE [47] 0.752 0.706 0.734 0.800 0.630 0.837 0.780 8
GraRep [9] 0.805 0.672 0.743 0.829 0.702 0.898 0.559 9

Spectral [48] 0.561 0.699 0.593 0.602 0.516 0.606 0.629 10

graph problems based on average gain. Results are provided in the

last column of Table 2. Among the five HONE variants in Table 2,

we find that HONE-W and HONE-P perform the best overall.

4.3 Diffusion Variants
Now we investigate HONE variants that use diffusion (Section 2.6).

These methods perform attribute diffusion using the k-step mo-

tif matrices (Section 2.6) and concatenate the resulting diffused

features. Unless otherwise mentioned, we use linear diffusion de-

fined in Eq. 19 with the default hyperparameters (Section 4.1). Note

the initial matrix X described in Section 2.6 represents node motif

counts derived by applying relational aggregates (sum, mean, and

max) over each nodes local neighborhood and then scaled using

Euclidean norm. We compare the HONE methods with attribute
diffusion to the HONE methods without diffusion for link predic-

tion. Results are reported in Table 3. The relative gain between each

pair of HONE methods is computed for each graph and Table 3

reports the mean gain for each pair of HONE methods. Overall,

we observe that HONE with attribute diffusion improves predic-

tive performance in general. We also investigated other attribute

diffusion variants from Section 2.6 and noticed similar results.

32 64 96 128 160 192 224 256

Dimensions (D)

0.89

0.9

0.91

0.92

0.93

A
U

C

HONE-W

HONE-P

HONE-L

(a) infra-openflights

32 64 96 128 160 192 224 256

Dimensions (D)

0.7

0.71

0.72

0.73

0.74

A
U

C

HONE-W

HONE-P

HONE-L

(b) facebook-PU

32 64 96 128 160 192 224 256

Dimensions (D)

0.81

0.82

0.83

0.84

0.85

A
U

C

HONE-W

HONE-P

HONE-L

(c) soc-hamsterster

32 64 96 128 160 192 224 256

Dimensions (D)

0.89

0.9

0.91

0.92

0.93

A
U

C

HONE-W+X

HONE-P+X

HONE-L+X

(d) infra-openflights

32 64 96 128 160 192 224 256

Dimensions (D)

0.71

0.72

0.73

0.74

0.75

A
U

C HONE-W+X

HONE-P+X

HONE-L+X

(e) facebook-PU

32 64 96 128 160 192 224 256

Dimensions (D)

0.81

0.82

0.83

0.84

0.85

A
U

C HONE-W+X

HONE-P+X

HONE-L+X

(f) soc-hamsterster

Figure 3: Experiments varying the dimensionality D of the
node embeddings. See text for discussion.

Table 3: Mean gain of the HONEmethods with attribute dif-
fusion relative to each of the original HONE methods.

HONE-W HONE-P HONE-L HONE-̂L HONE-̂Lrw

HONE-W + X̄ 0.76% 1.30% 1.38% 1.24% 1.08%

HONE-P + X̄ 1.58% 2.12% 2.20% 2.06% 1.90%

HONE-L + X̄ 0.62% 1.15% 1.23% 1.09% 0.93%

HONE-̂L + X̄ 1.37% 1.91% 1.99% 1.85% 1.69%

HONE-̂Lrw + X̄ 1.27% 1.81% 1.88% 1.74% 1.58%

4.4 Visitor Stitching fromWeb Logs
We also evaluate HONE for the visitor stitching problem [25]. Given

large-scale web log data, the visitor stitching task is to infer the

web sessions that correspond to the same user/individual and stitch

them. The resulting stitched data is often used in many important

downstream applications and therefore accurately associating web

sessions to the appropriate user helps reduce noise and avoid is-

sues with sparisty while allowing for better personalization and

recommendations [25]. We use two real-world visitor stitching data

sets (web logs) from large companies (with known ground-truth).

For each, we construct a network where nodes represent web ses-

sions (of users) that are linked to IPs used in that session, web

pages visited, and user agent information (device, O/S, browser).

Company-A network has 8.9M nodes and 55.2M edges between

them whereas Company-B has 22.8M nodes and 61.3M edges (Ta-

ble 1). This data has known ground-truth node pairs. These are

included as positive node pair examples. We also randomly sample

the same number of negative examples. Afterwards, embeddings

for each node pair are computed by taking the mean: (zi + zj)/2.
We then learn a logistic regression (LR) model from the embed-

dings derived from the node pairs in the training set, and use it to

predict the web sessions (nodes) that correspond to the same user

in the held-out test set. We evaluate the methods using precision,

recall, F1 score, and AUC. A good visitor stitching method should

have very high precision (e.g., 0.95-0.99) to avoid inappropriately

stitching sessions from different users. However, it should also have

good recall since a method that does not make many predictions

is not very useful, even if they are accurate. We compare HONE

to the previous baseline methods and use the same experimental

setup described in Section 4.1. Experiments were performed on a

MacBook Pro laptop with a 3.1 GHz Intel Core i7 processor and

16GB of memory. We report results for HONE-P and HONE-P+X̄
(with diffusion). Similar results were observed using other HONE

Table 4: Visitor stitching results for two real company data
sets. ETL = Exceeded Time Limit (6 hours).

N2V DW LINE GraRep Spec. HONE HONE+X̄

C
o
m
p
.-
A

Prec. ETL ETL 0.8947 0.9924 0.7404 0.9999 0.9810

Rec. ETL ETL 0.6254 0.4388 0.4907 0.6676 0.8777
F1 ETL ETL 0.7362 0.6085 0.5902 0.8007 0.9265

AUC ETL ETL 0.7968 0.7215 0.5730 0.8572 0.9304

C
o
m
p
.-
B

Prec. ETL ETL 0.8362 0.9945 0.7731 0.9923 0.9885

Rec. ETL ETL 0.3985 0.0937 0.2768 0.7336 0.7736
F1 ETL ETL 0.5397 0.1713 0.4077 0.8249 0.8534

AUC ETL ETL 0.6843 0.5447 0.5259 0.8626 0.8811
∗
N2V=Node2Vec, DW=DeepWalk

1 2 3 4

K

0.89

0.9

0.91

0.92

0.93

A
U

C

HONE-W

HONE-P

HONE-L

(a) infra-openflights

1 2 3 4

K

0.7

0.71

0.72

0.73

0.74

A
U

C

HONE-W

HONE-P

HONE-L

(b) facebook-PU

1 2 3 4

K

0.81

0.82

0.83

0.84

0.85

A
U

C

HONE-W

HONE-P

HONE-L

(c) soc-hamsterster

Figure 4: Experiments comparing the predictive perfor-
mance as the number of steps K changes.

variants. In Table 4, we observe that HONE outperforms all other

methods across the evaluation metrics. Notably, both HONE vari-

ants have very high precision (an important requirement for visitor

stitching) with good recall. Hence, both methods accurately stitch

a good amount of users while making only a very small number of

mistakes (high precision). In comparison, the other baseline meth-

ods make significantly fewer predictions (lower recall) that are

mostly of much lower quality. Both Node2Vec (N2V) and DeepWalk

(DW) did not terminate within the 6 hour time limit. The results in

Table 4 demonstrate the effectiveness of HONE for visitor stitching.

4.5 Parameter Sensitivity
Effect of the dimensionality D of the embedding: To under-

stand the effect of the number of embedding dimensions D on

predictive performance, we set K=2 and vary the number of di-

mensions D. Results are reported in Figure 3. In general, predictive

performance increases as a function of the embedding dimension

D as observed in Figure 3. For small values of D, the predictive

performance tends to increase more rapidly and then slows as D
becomes large. For large values ofD, the predictive performance for

most graphs stabilizes reaching a near-plateau. As the embedding

dimension D becomes large, the higher-order node embeddings get

richer and the model parameter space expands becoming capable

of capturing weaker signals/structural properties of nodes, at the

risk of overfitting.

Effect of the number of steps K: To understand the effect of the

number of steps K on predictive performance, we set D=128 and
vary the number of steps K ∈ {1, 2, 3, 4} used in the higher-order

node embeddings. Results are shown in Figure 4. In general, the

appropriate number of steps K appears to depend on the specific

graph/structural properties and method used (Figure 4). For in-

stance, the choice of K for HONE-L appears to be more important

compared to the other HONE variants. Overall, we observe that

HONE is relatively robust to changes inK . Due to space constraints,
many results and plots had to be removed.

4.6 Runtime & Scalability
To evaluate the runtime performance and scalability of the proposed

framework, we learn node embeddings for Erdös-Rényi graphs

of increasing size (from 100 to 10 million nodes) such that each

graph has an average degree of 10. In Figure 5, we observe that

HONE is fast and scales linearly as the number of nodes increases.

In addition, we also compare the runtime performance of HONE

against node2vec [19] and LINE [47]. For the HONE variant, we use

HONE-P with K=2. Default parameters are used for each method.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

nodes

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

ti
m

e
 (

s
e

c
o

n
d

s
)

HONE

node2vec

LINE

Figure 5: Runtime comparison. See text for discussion.

In Figure 5, HONE is shown to be significantly faster and more

scalable than node2vec and LINE as the number of nodes increases.

In particular, node2vec takes 1.8 days (45.3 hours) for 10 million

nodes, while HONE finishes in only 19 minutes as shown in Figure 5.

Strikingly, this is 143 times faster than node2vec. Alternatively,

LINE takes 26.35 hours and thus HONE is 83x faster than LINE.

4.7 Visualization
In these experiments, we validate the ability of HONE to learn

embeddings that capture roles (based on structural characteris-

tics) [40] as opposed to communities (based on proximity/closeness,

density) [17]. Given a node embedding matrix from some method,

we use k-means to assign nodes to clusters, repeat this 1000 times

and take the minimum distance clustering identified. The num-

ber of clusters is selected using MDL. We then visualize the graph

structure and color nodes by their cluster assignments.

To validate the ability of HONE to embed nodes with similar

structural characteristics/behavior, we first use the well-studied

Borgatti-Everett graph [8]. This graph is notable since there is a

known exact role assignment and two obvious communities [40].

Furthermore, all nodes in this graph have the same degree. In Fig-

ure 6(a), HONE partitions nodes into three structurally equivalent

classes (roles) whereas in Figure 6(b) node2vec partitions nodes into

two communities based on proximity. Notably, the role assignment

given by HONE is the known exact role assignment that has been

extensively studied in the literature [8].

(a) HONE (b) node2vec

Figure 6: Validation of HONE’s ability to capture roles on
graphs with known ground-truth. See text for discussion.

We also investigate another network (diseasome) in Figure 7.

Notably, HONE captures roles (groups of nodes with similar struc-

tural characteristics) [40] as shown in Figure 7(a) whereas node2vec

reveals three clear communities as shown in Figure 7(b). Notably,

the roles given by HONE in Figure 7(a) are intuitive and make sense.

For instance, nodes assigned to the red role are peripheral nodes at

the edge of the network whereas nodes assigned to the blue role

act as hubs or gate-keepers connecting different groups of nodes.

(a) HONE (b) node2vec

Figure 7: Application of HONE for role discovery [40] in the
diseasome network. See text for discussion.

5 RELATEDWORK
Higher-order network motifs: This paper introduces the prob-
lem of higher-order network (motif-based) embedding and proposes a
general framework for learning such embeddings based on higher-

order connectivity patterns called graphlets. There has been one re-

cent approach that used networkmotifs as base features for network

representation learning [43]. However, that approach is different

from the proposed framework as it focuses on learning inductive

relational functions that represent compositions of relational op-

erators applied to a base feature. Other methods use high-order

network properties (such as graphlet frequencies) as features for

graph classification [49], community detection [5, 6], and visualiza-

tion and exploratory analysis [1]. However, this work focuses on

network representation learning using network motifs. Recently,

HOPE [33] was proposed based on the Katz index tomeasure higher-

order node proximity. However, HOPE is fundamentally different

since it is proximity-based and does not leverage motifs.

Node embeddings: There has been a lot of interest recently in

learning node (and edge [2]) embeddings from large-scale networks

automatically [3, 10, 19, 34, 37, 42, 43, 47]. Many node embedding

methods [10, 19, 34, 37, 47] have leveraged the popular skip-gram

model [13, 28]. These methods all use random walks to gather a

sequence of node ids which are then used to learn node embed-

dings [10, 19, 34, 37, 47]. Other methods are based on “implicit

walks" such as GraRep [9] (a generalization of LINE [47]) that incor-

porates node neighborhood information beyond 2-hops. However,

these methods are all based on “higher-order” proximity/distance

(and thus learn community-based embeddings as shown in [41]) as

opposed to being based on higher-order network motifs for learning

structural role-based embeddings. Graph Convolutional Networks

(GCNs) adapt CNNs to graphs using Laplacian and spectral convolu-

tions with a form of aggregation over the neighbors [15, 21, 26, 31].

These node embedding methods may also benefit from ideas devel-

oped in this work including the weighted motif Laplacian matrices

described in Section 2.3. Other work has focused on incremental

methods for spectral clustering [12].

Heterogeneous networks [46] have also been recently consid-

ered [11, 16] as well as attributed networks with labels [22, 23].

Huang et al. [23] proposed an approach for attributed networks with
labels whereas Yang et al. [52] used text features to learn node rep-

resentations. Liang et al. [27] proposed a semi-supervised approach

for networks with outliers. Bojchevski et al. [7] proposed an unsu-

pervised rank-based approach. There has also been some recent

work on semi-supervised network embeddings [26, 53] andmethods

for improving the learned representations [45, 50, 51]. A few work

have begun to explore the problem of learning node embeddings

from temporal networks [30, 36, 44]. This work is different from the

problem discussed in this paper. More recently, an approach called

role2vec was proposed that learns role-based node embeddings by

first mapping each node to a type via a function and then uses the

proposed notion of attributed (feature-based/labeled/typed) random

walks to derive role-based embeddings for the nodes that capture

structural similarity [3]. This approach was shown to generalize

many existing random walk-based methods.

6 CONCLUSION
This work proposed Higher-Order Network Embeddings (HONE), a
new class of structural node embedding methods that use higher-

order network motifs to learn structural role-based embeddings. We

described a general computational framework for learning higher-

order (role-based) network embeddings that is flexible with many

interchangeable components. The experiments demonstrated the

effectiveness of HONE for a number of important tasks including

link prediction and visitor stitching. Future work will investigate

the framework using other useful motif-based matrix formulations.

REFERENCES
[1] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. 2015.

Efficient Graphlet Counting for Large Networks. In ICDM. 10.

[2] Nesreen K. Ahmed, Ryan A. Rossi, Theodore L. Willke, and Rong Zhou. 2017.

Edge Role Discovery via Higher-Order Structures. In PAKDD. 291–303.
[3] Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou, John Boaz Lee, Xiangnan Kong,

Theodore L. Willke, and Hoda Eldardiry. 2018. Learning Role-based Graph

Embeddings. In arXiv:1802.02896.
[4] Nesreen K. Ahmed, Theodore L. Willke, and Ryan A. Rossi. 2016. Estimation of

Local Subgraph Counts. In BigData. 586–595.
[5] Alex Arenas, Alberto Fernandez, Santo Fortunato, and Sergio Gomez. 2008. Motif-

based communities in complex networks. J Phys A Math Theor. 41, 22 (2008).
[6] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016), 163–166.
[7] Aleksandar Bojchevski and Stephan Günnemann. 2017. Deep Gaussian Em-

bedding of Attributed Graphs: Unsupervised Inductive Learning via Ranking.

arXiv:1707.03815 (2017).
[8] S.P. Borgatti and M.G. Everett. 1992. Notions of position in social network

analysis. Sociological methodology 22, 1 (1992), 1–35.

[9] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning graph repre-

sentations with global structural information. In CIKM. ACM, 891–900.

[10] Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang,

and Erik Cambria. 2017. Learning community embedding with community

detection and node embedding on graphs. In CIKM. 377–386.

[11] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and

Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-

tectures. In SIGKDD. 119–128.
[12] Pin-Yu Chen, Baichuan Zhang, Mohammad Al Hasan, and Alfred OHero. 2015. In-

cremental method for spectral clustering of increasing orders. In arXiv:1512.07349.
[13] Winnie Cheng, Chris Greaves, and Martin Warren. 2006. From n-gram to skip-

gram to concgram. Int. J. of Corp. Linguistics 11, 4 (2006), 411–433.
[14] Michael Collins, Sanjoy Dasgupta, and Robert E Schapire. 2002. A generalization

of principal components analysis to the exponential family. In NIPS. 617–624.
[15] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. In NIPS.
3844–3852.

[16] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable Representation Learning for Heterogeneous Networks. In SIGKDD.
[17] S. Fortunato. 2010. Community detection in graphs. Phy. Rep. 486, 3-5 (2010).
[18] Gene H Golub and Charles F Van Loan. 2012. Matrix computations. JHU Press.

[19] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In SIGKDD. 855–864.
[20] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. 2011. Finding structure

with randomness: Probabilistic algorithms for constructing approximate matrix

decompositions. SIAM review 53, 2 (2011), 217–288.

[21] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks

on graph-structured data. arXiv:1506.05163 (2015).

[22] Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated attributed network

embedding. In SDM.

[23] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network

embedding. In WSDM.

[24] Jingu Kim, Yunlong He, and Haesun Park. 2014. Algorithms for nonnegative

matrix and tensor factorizations: A unified view based on block coordinate

descent framework. Journal of Global Optimization 58, 2 (2014), 285–319.

[25] Sungchul Kim, Nikhil Kini, Jay Pujara, Eunyee Koh, and Lise Getoor. 2017. Prob-

abilistic visitor stitching on cross-device web logs. In WWW. 1581–1589.

[26] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[27] Jiongqian Liang, Peter Jacobs, and Srinivasan Parthasarathy. 2017. SEANO: Semi-

supervised Embedding in Attributed Networks with Outliers. In arXiv:1703.08100.
[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. In ICLR Workshop. 10.
[29] CameronMusco and ChristopherMusco. 2015. Randomized block krylovmethods

for stronger and faster approximate singular value decomposition. In Advances
in Neural Information Processing Systems. 1396–1404.

[30] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.

In WWW BigNet.
[31] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

Convolutional Neural Networks for Graphs. In arXiv:1605.05273.
[32] Jinoh Oh, Wook-Shin Han, Hwanjo Yu, and Xiaoqian Jiang. 2015. Fast and robust

parallel SGD matrix factorization. In SIGKDD. ACM, 865–874.

[33] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric transitivity preserving graph embedding. In SIGKDD. 1105–1114.
[34] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In SIGKDD. 701–710.
[35] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distri-

bution. Bioinfo. 23, 2 (2007), e177–e183.
[36] Mahmudur Rahman, Tanay Kumar Saha, Mohammad Al Hasan, Kevin S Xu, and

Chandan K Reddy. 2018. DyLink2Vec: Effective Feature Representation for Link

Prediction in Dynamic Networks. arXiv:1804.05755 (2018).
[37] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. 2017.

Struc2Vec: Learning Node Representations from Structural Identity. In SIGKDD.
[38] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. 2009. A randomized algorithm

for principal component analysis. SIAM J. Matrix Anal. Appl. 31, 3 (2009).
[39] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository

with Interactive Graph Analytics and Visualization. In AAAI. 4292–4293. http:
//networkrepository.com

[40] Ryan A. Rossi and Nesreen K. Ahmed. 2015. Role Discovery in Networks. Trans-
actions on Knowledge and Data Engineering 27, 4 (April 2015), 1112–1131.

[41] Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed, Danai Koutra, and

John Boaz Lee. 2019. From Community to Role-based Graph Embeddings. In

arXiv:1908.08572.
[42] Ryan A. Rossi, Luke K. McDowell, David W. Aha, and Jennifer Neville. 2012.

Transforming graph data for statistical relational learning. Journal of Artificial
Intelligence Research 45, 1 (2012), 363–441.

[43] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2018. Deep Inductive Graph

Representation Learning. In IEEE Transactions on Knowledge and Data Engineering
(TKDE). 14.

[44] Tanay Kumar Saha, Thomas Williams, Mohammad Al Hasan, Shafiq Joty, and

Nicholas K Varberg. 2018. Models for Capturing Temporal Smoothness in Evolv-

ing Networks for Learning Latent Representation of Nodes. In arXiv:1804.05816.
[45] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2009. The graph neural network model. TNNLS 20, 1 (2009), 61–80.
[46] Chuan Shi, Xiangnan Kong, Yue Huang, S Yu Philip, and Bin Wu. 2014. HeteSim:

A General Framework for Relevance Measure in Heterogeneous Networks. TKDE
26, 10 (2014), 2479–2492.

[47] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale Information Network Embedding. InWWW. 1067–1077.

[48] Lei Tang and Huan Liu. 2011. Leveraging social media networks for classification.

Data Mining and Knowledge Discovery 23, 3 (2011), 447–478.

[49] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M

Borgwardt. 2010. Graph kernels. JMLR 11 (2010), 1201–1242.

[50] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-

ding. In SIGKDD. 1225–1234.
[51] Jason Weston, Frédéric Ratle, and Ronan Collobert. 2008. Deep learning via

semi-supervised embedding. In ICML. 1168–1175.
[52] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.

Network Representation Learning with Rich Text Information.. In IJCAI.
[53] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting

semi-supervised learning with graph embeddings. arXiv:1603.08861 (2016).
[54] Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, SVN Vishwanathan, and Inderjit

Dhillon. 2014. NOMAD: Non-locking, stOchastic Multi-machine algorithm for

Asynchronous and Decentralized matrix completion. VLDB 7, 11 (2014), 975–986.

http://networkrepository.com
http://networkrepository.com

	Abstract
	1 Introduction
	2 Higher-Order Network Embeddings
	2.1 Network Motifs
	2.2 Weighted Motif Graphs
	2.3 Structural Motif Matrix Functions
	2.4 K-Step Motif-based Structural Embeddings
	2.5 Learning Global Higher-Order Embeddings
	2.6 Attribute Diffusion

	3 Analysis
	3.1 Time Complexity
	3.2 Space Complexity

	4 Experiments
	4.1 Experimental Setup
	4.2 Link Prediction
	4.3 Diffusion Variants
	4.4 Visitor Stitching from Web Logs
	4.5 Parameter Sensitivity
	4.6 Runtime & Scalability
	4.7 Visualization

	5 Related Work
	6 Conclusion
	References

