
Signature Based Intrusion Detection using Latent Semantic Analysis

Jean-Louis Lassez, Ryan Rossi, Stephen Sheel, and Srinivas Mukkamala

Abstract

We address the problem of selecting and extracting key

features by using singular value decomposition and latent
semantic analysis. As a consequence, we are able to
discover latent information which allows us to design
signatures for forensics and in a dual approach for real-
time intrusion detection systems. The validity of this
method is shown by using several automated
classification algorithms (Maxim, SVM, LGP). Using the
original data set we classify 99.86% of the calls correctly.
After feature extraction we classify 99.68% of the calls
correctly, while with feature selection we classify 99.78%
of the calls correctly, justifying the use of these techniques
in forensics. The signatures obtained after feature
selection and extraction using LSA allow us to classify
95.69% of the calls correctly with features that can be
computed in real time. We use Support Vector Decision
Function and Linear Genetic Programming for feature
selection on a real data set generated on a live
performance network that consists of probe and denial of
service attacks. We find that the results reinforce our
feature selection method.

1. Introduction

atent Semantic Analysis (LSA) has been successfully
used in applications such as speech recognition,

natural language processing, cognitive modeling,
document classification and cross language information
retrieval [1-7].

LSA is based on Singular Value Decomposition (SVD)
which has many applications [8-12].

 In particular an early and major use of SVD is in noise
removal and dimension reduction. This approach has also
been applied to intrusion detection, for instance it is

Manuscript received November 20, 2007. This work was supported in
part by the National Science Foundation under Grant ATM-0521002.

J-L. Lassez is retired from IBM T.J. Watson Research Center and
currently with Coastal Carolina University, Conway, SC 29526 USA (e-
mail: jlassez@ coastal.edu).

R. A. Rossi is with Coastal Carolina University, Conway, SC 29526
USA (email: raross@coastal.edu).

S. J. Sheel is with Coastal Carolina University, Conway, SC 29526
USA (email: steves@coastal.edu).

S. Mukkamala is with ICASA a research division of New Mexico
Tech, Socorro, NM 87801 USA (email: srinivas@cs.nmt.edu).

shown that substantial dimension reduction can be
achieved while maintaining the performance of a kNN
classifier [8].

Therefore it is natural to see how we can extend the
latent semantic analysis capabilities of SVD to the case of
intrusion detection.

In the next section we give examples of latent relations
between calls and features such as synonymy, polysemy,
hypernymy and hyponymy by analyzing the principal
directions. These relations give us information such as
potentially redundant or undesirable features, detection of
calls susceptible to create false positives or obfuscation.
In the third section, we perform feature selection and
extraction by using the notions of Latent Semantic
Analysis. We select features relying on the principal
direction of the calls. This allows us to rank the features
in accordance to their contribution. From the principal
directions of calls we are able to find signatures for each
class. Such signatures can form the basis of a real-time
intrusion detection system. We then perform feature
extraction by using the principal directions of the features.
These directions can be used for forensics. Validation of
the signatures, features selected and extracted is seen in
the fourth section using automated classification
algorithms. We use SVDF and LGP for feature selection
and on a real data set generated from a live performance
network.

2. Discovery of Latent Relations

The DARPA intrusion detection data set is used for
offline analysis. In the DARPA intrusion detection
evaluation program, an environment was set up to acquire
raw TCP/IP dump data for a network by simulating a
typical U.S. Air Force LAN. The LAN was operated like
a real environment, but being blasted with multiple
attacks [14,15]. The data consists of vectors, representing
network connections, for which numerical measures have
been collected. For each TCP/IP connection, 41 various
quantitative and qualitative features were extracted [16]
for intrusion analysis. Attacks are classified into the
following categories: DOS (denial of service), R2L
(unauthorized access from a remote machine), U2Su
(unauthorized access to local super user privileges) and
Probing (surveillance).

From the forty-one features of the data set, the first
eight are basic features of TCP connections and are

L

computed in real-time [10]. The remaining features that
are not computed in real-time can be used for forensics.

Features

1. Duration
2. protocol type
3. service
4. flag
5. src_bytes
6. dst_bytes
7. land
8. wrong_fragment
9. urgent
10. hot
11. num_failed_logins
12. logged_in
13. num_compromised
14. root_shell
15. su_attempted
16. num_root
17. num_file_creations
18. num_shells
19. num_access_files
20. num_outbound_cmds
21. is_host_login

22. is_guest_login
23. count
24. srv_count
25. serror_rate
26. srv_serror_rate
27. rerror_rate
28. srv_rerror_rate
29. same_srv_rate
30. diff_srv_rate
31. srv_diff_host_rate
32. dst_host_count
33. dst_host_srv_count
34. dst_host_same_srv_rate
35. dst_host_diff_srv_rate
36. dst_host_same_src_port_rate
37. dst_host_srv_diff_host_rate
38. dst_host_serror_rate
39. dst_host_srv_serror_rate
40. dst_host_rerror_rate
41. dst_host_srv_rerror_rate

Table 1. Features of the DARPA data set.

The rows in the data set represent network connections
or calls and the columns represent features of the network
connections [8, 10].

 Let nxmM ℜ∈ , we decompose M into three matrices
using Singular Value Decomposition:

TVSUM =

where nxmU ℜ∈ , mxmS ℜ∈ and mxmTV ℜ∈ . The
matrix S contains the singular values located in the
[i,i]1,..,n cells in decreasing order of magnitude and all
other cells contain zero. The eigenvectors of MMT make
up the columns of U and the eigenvectors of MTM make
up the columns of V. The matrices U and V are
orthogonal, unitary and span vector spaces of dimension n
and m, respectively. The inverses of U and V are their
transposes.

The columns of U are the principal directions of the

features and the rows of VT are the principal directions of
the calls. The principal directions are ordered according
to the singular values and therefore according to the
importance of their contribution to M.

The singular value decomposition is used by setting
some singular values to zero, which implies that we
approximate the matrix M by a matrix:

T
kkkk VSUM =

A fundamental theorem by Eckart and Young states
that Mk is the closest rank-k least squares approximation
of M. This theorem can be used in two ways. To reduce
noise by setting insignificant singular values to zero or by
setting the majority of the singular values to zero and
keeping only the few influential singular values in a
manner similar to principal component analysis.

In latent semantic analysis we extract information
about the relationships between calls and features as they
change when we set all, but the most significant, singular
values to zero. The singular values in S provide
contribution scores for the principal directions in U and
VT.

We use the terminology “principal direction” for the
following reason. In zoomed clusters it was shown that
(assuming unit vectors) the principal eigenvector is an
“iterated centroid” that is a version of the notion of
centroid, where outliers are given a lower weight [17].
Furthermore, in text analysis it is usual to consider that
the main information is provided by the direction of the
vectors rather than by their length.

The similarities between calls and features are
measured by the cosine of the angle between vectors
representing calls or features, as is done in Information
Retrieval [5]. Similarities that do not appear in M but
appear in Mk are called latent relations. They appear in
Mk either because the noise has been removed or because
major components were hidden by less important ones.
Therefore in order to find synonymy, polysemy,
hypernymy and hyponymy relations between calls or
features, we use cosine scoring in M and Mk.

Finding synonymy between the features is important as
it identifies redundancy. As an example, using the normal
calls, we find that the tenth feature is not similar to any
other. However, when we use Mk where k = 3, we find
that the vectors of the tenth and sixteenth features have a
cosine of .95, which suggests potential redundancy.

This relation was hidden in M, but when we reduce the
dimensionality, the latent structure of the data becomes
visible. The validation of this method to find synonymous
features is seen in section 5 where we select a minimal
number of features while keeping a very high accuracy of
classification.

We can also find polysemy relations between the
features in Mk that are not apparent in M. For instance, the
sixteenth and seventeenth feature have a cosine of .90
while the seventeenth and tenth feature have a cosine of
.75.

171610 ≈≈
1710 ≠

The sixteenth feature is seen to be more general than
the tenth and seventeenth features as it can replace both
features, while the tenth and seventeenth features cannot
replace each other. This shows a case of hypernymy and
hyponymy.

Finding polysemy between calls is important to
identify obfuscation. As an example of polysemy, we find
that in M, a normal call and U2R call are similar with a
cosine of .91. However, when we use Mk with k = 4, we
find that the normal call and U2R call are not similar with
a cosine of .76. This example indicates obfuscation in M,
but when we use Mk the obfuscation becomes more
evident and we might be able to catch the attack.

These remarks warrant a more systematic study.

3. Feature Selection and Extraction by
Principal Directions

We now analyze the features to find which contribute
to each category of attacks.

For each class, we consider the first two principal
directions (rows of VT). There are 41 columns which
represent the features. If a feature has very similar values
in the two principal directions for all classes we discard
that feature. Indeed, the values in an arbitrary principal
direction that are very similar cannot be used to
discriminate features.

There are two types of features, useless and redundant.
Useless features are features which appear useful in M,
but in Mk they are found to have no impact on the data
and thus can be thrown out. However with
synonymous/redundant features, we have to keep at least
one of the features. In Table 2 below we find that the
twenty-third and twenty-fourth features are synonmous,
so we only keep one of them. This also applies to the
thirty-second and thirty-third features. This leads to
selecting only the 1, 5, 6, 23 and 33 features which can be
found in Table 2.

 Features

Class PD 1 5 6 23 33
1 0 0.01 1.00 0 0 Norm 2 0 1.00 -0.01 0 0
1 0 -0.99 -0.14 -0.02 -0.01 DOS 2 0 0.01 0.17 -0.63 -0.33
1 -0.01 -0.05 -1.00 0 0 U2R 2 -0.04 -1.00 0.05 0 -0.01
1 0 -1.00 0 0 0 R2L
2 0 0 -1.00 0 0
1 0 -1.00 0 0 0 Probe 2 -1.00 0 0 0 0.01

Table 2. Signatures of the classes using the first two
principal directions.

Each row can be used as a signature for its
corresponding class. For instance, we can choose as
signature for the normal class:

0 0.01 1.00 0 0

as it is significantly different from all potential signatures
of the other classes.

In another experiment we use the principal directions
to select and rank the features of the classes according to
feature contribution. We look at the first four principal
directions of each class. From this, we chose the feature in
every direction whose absolute value is substantially
higher than the others. As an example, in the first
principal direction of the Normal class we find that the
highest absolute value is in the sixth feature. We can tell
how significant this feature is by looking at the
corresponding singular values. For example, in DOS the
thirty-second feature is not considered significant because
the singular value associated to the third principal
direction is relatively smaller than the others. In Table 3,
we have italicized/bolded the most significant features for
each class.

Feature Ranking Principal
Directions Normal DOS U2R R2L Probe

1 6 5 6 5 5
2 5 23 5 6 1
3 1 32 32 1 23
4 33 6 1 32 32

Table 3. Feature selection and ranking by the first four
principal directions

Feature Ranking Principal
Directions Normal Attacks

1 6 5
2 5 6
3 1 24
4 33 1

Table 4. Feature selection and ranking by grouping the
attacks and using the first four principal directions

From Table 4, we see that the fifth and sixth features
contribute the most to the attacks and normal calls,
respectively.

We have used the principal direction of the calls to
find signatures which can form the basis of a real-time
intrusion detection system. However, the singular value
decomposition also provides us with a dual approach.
That is we now consider the principal directions of the
features; those can be used for forensics.

Therefore, we perform feature extraction by only
considering the matrices Uk and Sk of the singular value
decomposition.

kkk SUA =

We use the first k columns of US as the new features
since these are the principal directions of the features with
the scaling in S applied to the directions. In section 5, we
use a simple machine learning algorithm called Maxim to
validate our feature extraction and selection results.

3.1 Support Vector Based Feature Selection

It is of great interest and use to find exactly which
features underline the nature of connections of various
classes. This is precisely the goal of data visualization in
data mining. The problem is that the high-dimensionality
of data makes it hard for human experts to gather any
knowledge. If we knew the key features, we could greatly
reduce the dimensionality of the data and thus help human
experts become more efficient and productive in learning
about network intrusions [19].

The information about which features play key roles
and which are more neutral is “hidden” in the SVM
decision function [19,20]. The formula below is the
formulation of the decision function in the case of using
linear kernels.

F(X) = <W, X> + b

The point X is predicted to be in class A or “positive
class” if the F(X) is positive, and class B or “negative
class” if F(X) is negative. We can rewrite the formula
above to expand the dot product of W and X.

F(X) = ΣWiXi + b

One can see that the value of F(X) depends on the
contribution of each factor, WiXi. Since Xi can take only b
≥ 0, the sign of Wi indicates whether the contribution is
towards positive classification or negative classification.
The absolute size of Wi measures the strength of this
contribution. In other words if Wi is a large positive
value, then ith feature is a key factor of “positive class” or
class A. Similarly if Wi is a large negative value then ith
feature is a key factor of the “negative class” or class B.
Consequently the Wi, which is close to zero, either
positive or negative, carries little weight. The feature,
which corresponds to this Wi , is said to be neutral feature
and removing it has very little effect on the classification.

Having retrieved this information directly from SVMs'
decision function, we rank the Wi, from largest positive to
largest negative. This essentially provides the soft
partitioning of the features into the key features of class
A, neutral features, and key features of class B. We say
soft partitioning, as it either depends on a threshold on the
value of Wi, which will define the partitions, or the
proportions of the features, which we want to allocate to

each of the partitions. Both the threshold and the value of
proportions can be set by the human expert.

Support Vector Decision Function Ranking:

The input ranking is done as follows: First the original
data set is used for the training of the classifier. Then the
classifier’s decision function is used to rank the
importance of the features. The procedure is:
1. Calculate the weights from the support vector

decision function;
2. Rank the importance of the features by the absolute

values of the weights;
SVDF feature ranking results are presented in Table 5.
Classification accuracies using 6 most important features
are presented in Table 4 [21].

Feature Ranking SVM Normal DOS U2R R2L Probe
1 6 23 5 32 5
2 32 24 1 3 33
3 12 39 2 1 23
4 34 25 12 23 2
5 4 36 4 24 24
6 29 38 29 29 4

Table 5. Feature selection and ranking using SVMs’
linear kernel

3.2 Linear Genetic Programming (LGP)
Based Feature Selection

The performance of each of the selected input feature
subsets is measured by invoking a fitness function with
the correspondingly reduced feature space and training set
and evaluating the intrusion detection accuracy. Once the
required number of iterations is completed, the evolved
high ranked programs are analyzed for how many times
each input appears in a way that contributes to the fitness
of the programs that contain them. The best feature subset
found is then output as the recommended set of features to
be used in the actual input for the classifier.

In the feature selection problem the main interest is in
the representation of the space of all possible subsets of
the given input feature set. Each feature in the candidate
feature set is considered as a binary gene and each
individual consists of fixed-length binary string
representing some subset of the given feature set. An
individual of length d corresponds to a d-dimensional
binary feature vector Y, where each bit represents the
elimination or inclusion of the associated feature. Then, yi
= 0 represents elimination and yi = 1 indicates inclusion
of the ith feature. Fitness F of an individual program p is
calculated as the mean square error (MSE) between the
predicted output (pred

ijO) and the desired output (des
ijO)

for all n training samples and m outputs [22].

MCEwMSECE
n
wOO

mn
pF des

ij
pred
ij

m

j

n

i

⋅+=+−
⋅

= ∑∑
==

2

11

)(1)(

Classification Error (CE) is computed as the number of

misclassifications. Mean Classification Error (MCE) is
added to the fitness function while its contribution is
proscribed by an absolute value of Weight (W).

Feature Ranking LGP Normal DOS U2R R2L Probe
1 10 23 14 22 35
2 6 13 39 19 27
3 5 8 17 6 31
4 13 7 25 11 12
5 40 12 36 12 3
6 3 30 1 3 5

Table 6. Feature selection and ranking using Linear
Genetic Programming

LGP feature ranking results are presented in Table 6.

We find that the features selected using LGP and SVM
are similar to the features selected using the first four
principal directions. These results reinforce our feature
selection method [21].

4. Validation of Signatures

Here we use a simple machine learning algorithm
called Maxim to verify our results and show the benefits
of dimension reduction. It is a conceptually simpler and a
more efficient alternative to Support Vector Machines for
an arbitrary number of classes. Maxim has proven to
perform essentially as well as or better than SVM for
these types of problems [23].

We are interested in classifying a call X by comparing
its similarity to a set of previously classified training calls.
The call X will be assigned to the class whose calls are
most similar to X. Given a set of I class-labeled training
calls {Xi, ξ(Xi)}, i = 1..I, where ξ(Xi) is the class of Xi,
and for an unclassified call X, we define the class
similarity of X with respect to a class C as

() ()XXsXS kk
CX

C
k

,α∑
∈

=

Where s is the similarity function and αk ≥ 0 reflects
the relative importance given to each Xk with respect to
the classification. We can therefore predict the class of X
using the following decision function:

() ()(){ }XScX cmaxarg=ξ

The classification results were striking. When using
Maxim with the RBF kernel against the DARPA data set,
we classify 99.86% of the calls correctly. When using
only the first four principal directions of the features, we

classify 99.68% of the calls correctly. We see that the
reduction of dimensionality only affects the accuracy
minimally.

Feature

Extraction
Time
(Sec) Sigma False

Positives Accuracy

41 17295 .003 ≤ 0.14% 99.86%
4 10273 .003 ≤ 0.32% 99.68%
2 8738 .003 ≤ 1.76% 98.24%

Table 7. Classification results of the dimension and data
reduction compared with the original data.

Feature
Selection

Time
(Sec) Sigma False

Positives Accuracy

5,6,1,23,33 10872 .003 ≤ 0.22% 99.78%
5,6,1,23 10664 .003 ≤ 0.44% 99.56%

5,6 9847 .003 ≤ 1.98% 98.02%
Table 8. Classification results of the feature selection
using the principal directions of the calls.

In Table 8 it is shown that by using our feature ranking

method, one can select optimal features for classification.
One can clearly see the fifth and sixth features play a
significant role in the data set as we classify 98.02% of
the calls correctly using simply these features. We
demonstrate the twenty-third/twenty-fourth and the thirty-
second/thirty-third features are redundant as it is shown
that by selecting only one feature from either group, we
can essentially achieve the accuracy of classification that
was achieved using the entire data set. The fact that we
have striking results by using the principal directions of
the calls for selecting the features also validates our
signatures found by using these directions. The principal
directions can be seen as legitimate representatives of the
classes.

These results verify our feature extraction, selection
and signatures as we achieve a very high accuracy of
classification while maintaining a low false positive &
false negative rate.

We propose a signature based intrusion detection
system by using the principal direction of the calls. Any
incoming call c can be processed by using the cosine
between the call and the signature. To simplify matters
even further, one could simply use the principal direction
of the normal calls such that if a threshold t is less than
the cosine between the call and the signature, one can
classify the call as an attack.

We use the signatures from Table 2 and compute the
cosine between an incoming call, where we only consider
the features that correspond to the signature. The features
we used from the original data set are 1, 5, 6, 23 and 33.

Signature Thre. False
Positives

False
Negatives Accuracy

Normal .1 0.53% 3.77% 95.69%
DOS .455 0.67% 1.26% 98.07%
U2R .001 23.33% 0% 76.67%
R2L .001 23.36% 0.22% 76.42%

Probe .8 0.90% 0.81% 98.29%
Table 9. Signature validation

We used the first signature in Table 2 for Normal, R2L
and U2R and the second signature for DOS and Probe.
The calls from U2R and R2L are classified incorrectly
between both classes.

4.1 Real-Time Data Collection and Feature
Selection for Probe and DoS

Experiments are performed on a real network using

two clients and the server that serves the New Mexico
Tech Computer Science Department network. The clients
had CIA (computational intelligent agent) installed on
them to identify or detect probes that are targeted to the
server we are protecting. Our primary goal in these
experiments is to detect probes targeting the server we are
trying to protect. Our network parser gives the summary
of each connection made from a host to the server and
constructs a feature set to input into a classifier for
classification. The output from a classifier is either
normal or probe for each connection. Nmap an open
source tool is used to collect probe data [13]. Probing is a
class of attacks where an attacker scans a network to
gather information or find known vulnerabilities. An
attacker with a map of machines and services that are
available on a network can use the information to look for
exploits. There are different types of probes: some of
them abuse the computer’s legitimate features; some of
them use social engineering techniques. This class of
attacks is the most commonly heard and requires very
little technical expertise. Nmap is installed on the clients
that have CIA installed. A variety of probes SYN stealth,
FIN stealth, ping sweep, UDP scan, null scan, xmas tree,
IP scan, idle scan, ACK scan, window scan, RCP scan,
and list scan with several options are targeted at the
server. Normal data included multiple sessions of ftp,
telnet, SSH, http, SMTP, pop3 and imap. Network data
originating from a host to the server that included both
normal and probes is collected for analysis; for proper
labeling of data for training the classifiers normal data
and probe data are collected at different times.

We used the RBF (radial basis function) kernel
function that defines the feature space in which the
training set examples will be classified. Table 10
summarizes the results of probe detection on a real data
set using SVMs and LGPs.

Class SVM LGP
Normal 99.75% 100%
Probe 99.99% 100%

Table 10. Probe detection accuracies on a real data set

A passive sniffer can be placed at the router to collect
data for detecting DoS attacks. The architecture comprises
of three components: a packet parser, classifier and a
response module. The network packet parser uses the
WINPCAP library to capture packets and extracts the
relevant features required for DoS detection. The output
of the parser includes the twelve DoS-relevant features as
selected by SVDF described in section 3.1 [21].

The output summary of the parser includes the eleven
features of duration of the connection to the target
machine, protocol used to connect, service type, status of
the connection (normal or error), number of source bytes,
number of destination bytes, number of connections to the
same host as the current one during a specified time
window (in our case .01seconds), number of connections
to the same host as the current one using same service
during the past 0.01 seconds, percentage of connections
that have SYN errors during the past .01 seconds,
percentage of connections that have SYN errors while
using the same service during the past .01 seconds, and
percentage of connections to the same service during the
past .01 seconds.

We experimented with more than 24 types of DoS
attacks. In the experiments performed we used different
types of DoS attacks: SYN flood, SYN full, MISFRAG,
SYNK, Orgasm, IGMP flood, UDP flood, Teardrop, Jolt,
Overdrop, ICMP flood, FIN flood, and Wingate crash,
with different service and port options. Normal data
included multiple sessions of http, ftp, telnet, SSH, http,
SMTP, pop3 and imap. Network data originating from a
host to the server that included both normal and DoS is
collected for analysis; for proper labeling of data for
training the classifier normal data and DoS data are
collected at different times. Table 11 summarizes the
results of DoS detection on a real data set using SVMs
and LGPs.

Class SVM LGP

Normal 99.48% 95.26%
DOS 79.91% 94.28%

Table 11. DoS detection accuracies on a real data set

5. Conclusion

We showed how one can perform feature selection and
extraction using the singular value decomposition paired
with the notion of latent semantic analysis. From this, we
can discover hidden information that allows us to design
signatures for forensics and eventually real-time intrusion
detection systems. Furthermore, it is shown that by using

Maxim, one can achieve stunning accuracy with low false
positives and false negatives which also validates our
feature selection, extraction and signatures. We use SVDF
and LGP for feature selection and on a real data set
generated from a live performance network. We find that
the results reinforce our feature selection method. Finally,
we give insight on how one can use signatures for a real-
time signature based intrusion detection system.

6. Acknowledgements

 We would like to acknowledge many insightful
discussions with Dr. Andrew Sung that helped clarify our
ideas and Madhukumar Shankarapani.

7. References

[1] T. K. Landauer, P. W, Foltz, D. Laham, “Introduction to
Latent Semantic Analysis,” Discourse Processes, 25,
1998, 259-284.

[2] T. K. Landauer, M. L. Littman, “Fully automatic cross
language document retrieval using latent semantic
indexing,” Proc. of the Sixth Annual Conference of the
UW Centre for the New Oxford English Dictionary and
Text Research., 1990, 31-38.

[3] B. Lemaire, “Tutoring Systems Based on Latent Semantic
Analysis,” In S.P. Lajoie and M. Vivet (Eds.), Artificial
Intelligence in Education, 1999, 527-534.

[4] J. R. Bellegarda, “Large vocabulary speech recognition
with multispan statistical language models,” IEEE
Transactions on Speech and Audio Processing, 8(1), 2000,
76–84.

[5] T. K. Landauer, T. S. Dumais, "A Solution to Plato's
Problem: The Latent Semantic Analysis Theory of the
Acquisition, Induction, and Representation of
Knowledge," Psychological Review, 104, 1997, 211-240.

[6] W. Kintsch, Comprehension: A Paradigm for Cognition.
Cambridge University Press, 1998.

[7] S. Deerwester, T. S. Dumais, T. K. Landauer, G. W.
Furnas, R. A. Harshman, "Indexing by latent semantic
analysis," JSIS, 41(6), 1990, 391-407.

[8] S. Rawat, A. Pujari, V. Gulati, “On the Use of Singular
Value Decomposition for a Fast Intrusion Detection
System,” Electrical. Notes Theory Computer Science 142,
2006, 215-228.

[9] O. Alter, P. O. Brown, D. Botstein, “Singular value
decomposition for genome-wide expression data
processing and modeling,” Proceedings of National
Academy of Sciences. USA, 97, 2000, 10101–10106.

[10] Y. Melnikov, A. Tarakanov, “Immunocomputing model of
intrusion detection,” LNCS, 2776, Springer, 2003, 453–
456.

[11] D. V. S. Chandra, “Digital image watermarking using
singular value decomposition,” IEEE Midwest Symposium
on Circuits and Systems, 2002, 264-267.

[12] M. Vasilescu and D. Terzopoulos, “Multilinear image
analysis for facial recognition,” ICPR, 2002, 511-514.

[13] A. H. Sung, S. Mukkamala, “The Feature Selection and
Intrusion Detection Problems,” Proc. of the 9th Asian
Computing Science Conference, LNCS, 3321, Springer,
2004, 468-483.

[14] K. Kendall, “A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems,” Master's
Thesis, MIT, 1998.

[15] S. E. Webster, “The Development and Analysis of
Intrusion Detection Algorithms,” S.M. Thesis, MIT, 1998.

[16] J. Stolfo, F. Wei, W. Lee, A. Prodromidis, and P. K. Chan,
“Cost-based Modeling and Evaluation for Data Mining
with Application to Fraud and Intrusion Detection,”
DARPA Information Survivability Conference &
Exposition, 1999, 130-144.

[17] J. Lassez, T. Karadeniz, and S. Mukkamala , “Zoomed
Clusters,” Proceedings of The Thirteen International
Conference on Neural Information Processing (ICONIP),
LNCS, 4233, Springer, 2006, 824-830.

[18] S. Mukkamala, A. H. Sung “A Framework for Countering
Denial of Service Attacks (Knowledge Discovery
Approach),” Proc. of IEEE International Conference
Systems, Man, and Cybernetics, 2004, 3273-3278.

[19] V. N. Vapnik, “The Nature of Statistical Learning
Theory,” Springer, 1995.

[20] T. Joachims, “Making Large-Scale SVM Learning
Practical,” LS8-Report, University of Dortmund, LS VIII-
Report, 2000.

[21] S. Mukkamala, A. H. Sung, “Significant Feature Selection
Using Computational Intelligent Techniques for Intrusion
Detection,” Advanced Methods for Knowledge Discovery
from Complex Data, S. Bandyopadhyay, U. Maulik, L.
Holder and D. Cook (Eds.) Springer, 2005, 285-306.

[22] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone,
“Genetic Programming: An Introduction on the Automatic
Evolution of Computer Programs and its Applications,”
Morgan Kaufmann Publishers, Inc, 1998.

[23] A. E. Bernal, T. Karadeniz, K. Hospevian, J-L. Lassez,
“Similarity Based Classification,” Advances in Intelligent
Data Analysis V, LNCS, 2810, Springer, 2003, 187-197.

