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Abstract 

 
We address the problem of selecting and extracting key 

features by using singular value decomposition and latent 
semantic analysis. As a consequence, we are able to 
discover latent information which allows us to design 
signatures for forensics and in a dual approach for real-
time intrusion detection systems. The validity of this 
method is shown by using several automated 
classification algorithms (Maxim, SVM, LGP). Using the 
original data set we classify 99.86% of the calls correctly. 
After feature extraction we classify 99.68% of the calls 
correctly, while with feature selection we classify 99.78% 
of the calls correctly, justifying the use of these techniques 
in forensics. The signatures obtained after feature 
selection and extraction using LSA allow us to classify 
95.69% of the calls correctly with features that can be 
computed in real time. We use Support Vector Decision 
Function and Linear Genetic Programming for feature 
selection on a real data set generated on a live 
performance network that consists of probe and denial of 
service attacks. We find that the results reinforce our 
feature selection method. 
 
1. Introduction 
 

atent Semantic Analysis (LSA) has been successfully 
used in applications such as speech recognition, 

natural language processing, cognitive modeling, 
document classification and cross language information 
retrieval [1-7]. 

LSA is based on Singular Value Decomposition (SVD) 
which has many applications [8-12]. 

 In particular an early and major use of SVD is in noise 
removal and dimension reduction. This approach has also 
been applied to intrusion detection, for instance it is 
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shown that substantial dimension reduction can be 
achieved while maintaining the performance of a kNN 
classifier [8]. 

Therefore it is natural to see how we can extend the 
latent semantic analysis capabilities of SVD to the case of 
intrusion detection. 

In the next section we give examples of latent relations 
between calls and features such as synonymy, polysemy, 
hypernymy and hyponymy by analyzing the principal 
directions. These relations give us information such as 
potentially redundant or undesirable features, detection of 
calls susceptible to create false positives or obfuscation. 
In the third section, we perform feature selection and 
extraction by using the notions of Latent Semantic 
Analysis. We select features relying on the principal 
direction of the calls. This allows us to rank the features 
in accordance to their contribution. From the principal 
directions of calls we are able to find signatures for each 
class. Such signatures can form the basis of a real-time 
intrusion detection system. We then perform feature 
extraction by using the principal directions of the features. 
These directions can be used for forensics. Validation of 
the signatures, features selected and extracted is seen in 
the fourth section using automated classification 
algorithms. We use SVDF and LGP for feature selection 
and on a real data set generated from a live performance 
network. 
 
2. Discovery of Latent Relations 
 
The DARPA intrusion detection data set is used for 
offline analysis. In the DARPA intrusion detection 
evaluation program, an environment was set up to acquire 
raw TCP/IP dump data for a network by simulating a 
typical U.S. Air Force LAN.  The LAN was operated like 
a real environment, but being blasted with multiple 
attacks [14,15]. The data consists of vectors, representing 
network connections, for which numerical measures have 
been collected. For each TCP/IP connection, 41 various 
quantitative and qualitative features were extracted [16] 
for intrusion analysis. Attacks are classified into the 
following categories: DOS (denial of service), R2L 
(unauthorized access from a remote machine), U2Su 
(unauthorized access to local super user privileges) and 
Probing (surveillance). 

From the forty-one features of the data set, the first 
eight are basic features of TCP connections and are  
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computed in real-time [10]. The remaining features that 
are not computed in real-time can be used for forensics.  

 
Features 

1. Duration 
2. protocol type 
3. service 
4. flag 
5. src_bytes 
6. dst_bytes 
7. land 
8. wrong_fragment 
9. urgent 
10. hot 
11. num_failed_logins 
12. logged_in 
13. num_compromised 
14. root_shell 
15. su_attempted 
16. num_root 
17. num_file_creations 
18. num_shells 
19. num_access_files 
20. num_outbound_cmds 
21. is_host_login 

22. is_guest_login 
23. count 
24. srv_count 
25. serror_rate 
26. srv_serror_rate 
27. rerror_rate 
28. srv_rerror_rate 
29. same_srv_rate 
30. diff_srv_rate 
31. srv_diff_host_rate 
32. dst_host_count 
33. dst_host_srv_count 
34. dst_host_same_srv_rate 
35. dst_host_diff_srv_rate 
36. dst_host_same_src_port_rate 
37. dst_host_srv_diff_host_rate 
38. dst_host_serror_rate 
39. dst_host_srv_serror_rate 
40. dst_host_rerror_rate 
41. dst_host_srv_rerror_rate 

Table 1. Features of the DARPA data set. 
 

The rows in the data set represent network connections 
or calls and the columns represent features of the network 
connections [8, 10]. 

 Let nxmM ℜ∈ , we decompose M into three matrices 
using Singular Value Decomposition: 

TVSUM =  

where nxmU ℜ∈ , mxmS ℜ∈ and mxmTV ℜ∈ . The 
matrix S contains the singular values located in the 
[i,i]1,..,n cells in decreasing order of magnitude and all 
other cells contain zero. The eigenvectors of MMT make 
up the columns of U and the eigenvectors of MTM make 
up the columns of V. The matrices U and V are 
orthogonal, unitary and span vector spaces of dimension n 
and m, respectively. The inverses of U and V are their 
transposes. 

 

         
The columns of U are the principal directions of the 

features and the rows of VT are the principal directions of 
the calls. The principal directions are ordered according 
to the singular values and therefore according to the 
importance of their contribution to M. 

The singular value decomposition is used by setting 
some singular values to zero, which implies that we 
approximate the matrix M by a matrix: 

T
kkkk VSUM =  

A fundamental theorem by Eckart and Young states 
that Mk is the closest rank-k least squares approximation 
of M. This theorem can be used in two ways. To reduce 
noise by setting insignificant singular values to zero or by 
setting the majority of the singular values to zero and 
keeping only the few influential singular values in a 
manner similar to principal component analysis.  

In latent semantic analysis we extract information 
about the relationships between calls and features as they 
change when we set all, but the most significant, singular 
values to zero. The singular values in S provide 
contribution scores for the principal directions in U and 
VT. 

We use the terminology “principal direction” for the 
following reason. In zoomed clusters it was shown that 
(assuming unit vectors) the principal eigenvector is an 
“iterated centroid” that is a version of the notion of 
centroid, where outliers are given a lower weight [17]. 
Furthermore, in text analysis it is usual to consider that 
the main information is provided by the direction of the 
vectors rather than by their length. 

The similarities between calls and features are 
measured by the cosine of the angle between vectors 
representing calls or features, as is done in Information 
Retrieval [5]. Similarities that do not appear in M but 
appear in Mk are called latent relations. They appear in 
Mk either because the noise has been removed or because 
major components were hidden by less important ones. 
Therefore in order to find synonymy, polysemy, 
hypernymy and hyponymy relations between calls or 
features, we use cosine scoring in M and Mk. 

Finding synonymy between the features is important as 
it identifies redundancy. As an example, using the normal 
calls, we find that the tenth feature is not similar to any 
other. However, when we use Mk where k = 3, we find 
that the vectors of the tenth and sixteenth features have a 
cosine of .95, which suggests potential redundancy. 

This relation was hidden in M, but when we reduce the 
dimensionality, the latent structure of the data becomes 
visible. The validation of this method to find synonymous 
features is seen in section 5 where we select a minimal 
number of features while keeping a very high accuracy of 
classification. 

We can also find polysemy relations between the 
features in Mk that are not apparent in M. For instance, the 
sixteenth and seventeenth feature have a cosine of .90 
while the seventeenth and tenth feature have a cosine of 
.75. 

171610 ≈≈  
1710 ≠  



The sixteenth feature is seen to be more general than 
the tenth and seventeenth features as it can replace both 
features, while the tenth and seventeenth features cannot 
replace each other. This shows a case of hypernymy and 
hyponymy. 

Finding polysemy between calls is important to 
identify obfuscation. As an example of polysemy, we find 
that in M, a normal call and U2R call are similar with a 
cosine of .91. However, when we use Mk with k = 4, we 
find that the normal call and U2R call are not similar with 
a cosine of .76. This example indicates obfuscation in M, 
but when we use Mk the obfuscation becomes more 
evident and we might be able to catch the attack. 

These remarks warrant a more systematic study. 
 
3. Feature Selection and Extraction by 
Principal Directions 
      

We now analyze the features to find which contribute 
to each category of attacks. 

For each class, we consider the first two principal 
directions (rows of VT). There are 41 columns which 
represent the features. If a feature has very similar values 
in the two principal directions for all classes we discard 
that feature. Indeed, the values in an arbitrary principal 
direction that are very similar cannot be used to 
discriminate features. 

There are two types of features, useless and redundant. 
Useless features are features which appear useful in M, 
but in Mk they are found to have no impact on the data 
and thus can be thrown out. However with 
synonymous/redundant features, we have to keep at least 
one of the features. In Table 2 below we find that the 
twenty-third and twenty-fourth features are synonmous, 
so we only keep one of them. This also applies to the 
thirty-second and thirty-third features. This leads to 
selecting only the 1, 5, 6, 23 and 33 features which can be 
found in Table 2.  

 
 Features 

Class PD 1 5 6 23 33 
1 0 0.01 1.00 0 0 Norm 2 0 1.00 -0.01 0 0 
1 0 -0.99 -0.14 -0.02 -0.01 DOS 2 0 0.01 0.17 -0.63 -0.33 
1 -0.01 -0.05 -1.00 0 0 U2R 2 -0.04 -1.00 0.05 0 -0.01 
1 0 -1.00 0 0 0 R2L 
2 0 0 -1.00 0 0 
1 0 -1.00 0 0 0 Probe 2 -1.00 0 0 0 0.01 

Table 2. Signatures of the classes using the first two 
principal directions. 
 

Each row can be used as a signature for its 
corresponding class. For instance, we can choose as 
signature for the normal class: 

 

0 0.01 1.00 0 0 
 

as it is significantly different from all potential signatures 
of the other classes.  
 

In another experiment we use the principal directions 
to select and rank the features of the classes according to 
feature contribution. We look at the first four principal 
directions of each class. From this, we chose the feature in 
every direction whose absolute value is substantially 
higher than the others. As an example, in the first 
principal direction of the Normal class we find that the 
highest absolute value is in the sixth feature. We can tell 
how significant this feature is by looking at the 
corresponding singular values. For example, in DOS the 
thirty-second feature is not considered significant because 
the singular value associated to the third principal 
direction is relatively smaller than the others. In Table 3, 
we have italicized/bolded the most significant features for 
each class. 
 
 

Feature Ranking Principal 
Directions Normal DOS U2R R2L Probe 

1 6 5 6 5 5 
2 5 23 5 6 1 
3 1 32 32 1 23 
4 33 6 1 32 32 

Table 3. Feature selection and ranking by the first four 
principal directions 
 

Feature Ranking Principal 
Directions Normal Attacks 

1 6 5 
2 5 6 
3 1 24 
4 33 1 

Table 4. Feature selection and ranking by grouping the 
attacks and using the first four principal directions 
 
From Table 4, we see that the fifth and sixth features 
contribute the most to the attacks and normal calls, 
respectively. 

We have used the principal direction of the calls to 
find signatures which can form the basis of a real-time 
intrusion detection system. However, the singular value 
decomposition also provides us with a dual approach. 
That is we now consider the principal directions of the 
features; those can be used for forensics.  



Therefore, we perform feature extraction by only 
considering the matrices Uk and Sk of the singular value 
decomposition. 

kkk SUA =  

We use the first k columns of US as the new features 
since these are the principal directions of the features with 
the scaling in S applied to the directions. In section 5, we 
use a simple machine learning algorithm called Maxim to 
validate our feature extraction and selection results. 
 
3.1 Support Vector Based Feature Selection 
 

It is of great interest and use to find exactly which 
features underline the nature of connections of various 
classes.  This is precisely the goal of data visualization in 
data mining.  The problem is that the high-dimensionality 
of data makes it hard for human experts to gather any 
knowledge.  If we knew the key features, we could greatly 
reduce the dimensionality of the data and thus help human 
experts become more efficient and productive in learning 
about network intrusions [19].  

The information about which features play key roles 
and which are more neutral is “hidden” in the SVM 
decision function [19,20]. The formula below is the 
formulation of the decision function in the case of using 
linear kernels. 

F(X) = <W, X> + b 
 

The point X is predicted to be in class A or “positive 
class” if the F(X) is positive, and class B or “negative 
class” if F(X) is negative.  We can rewrite the formula 
above to expand the dot product of W and X. 

 

F(X) = ΣWiXi + b 
 

One can see that the value of F(X) depends on the 
contribution of each factor, WiXi.  Since Xi can take only b 
≥ 0, the sign of Wi indicates whether the contribution is 
towards positive classification or negative classification.  
The absolute size of Wi measures the strength of this 
contribution.  In other words if Wi is a large positive 
value, then ith feature is a key factor of “positive class” or 
class A.  Similarly if Wi is a large negative value then ith 
feature is a key factor of the “negative class” or class B.  
Consequently the Wi, which is close to zero, either 
positive or negative, carries little weight. The feature, 
which corresponds to this Wi , is said to be neutral feature 
and removing it has very little effect on the classification. 

Having retrieved this information directly from SVMs' 
decision function, we rank the Wi, from largest positive to 
largest negative.  This essentially provides the soft 
partitioning of the features into the key features of class 
A, neutral features, and key features of class B.  We say 
soft partitioning, as it either depends on a threshold on the 
value of Wi, which will define the partitions, or the 
proportions of the features, which we want to allocate to 

each of the partitions.  Both the threshold and the value of 
proportions can be set by the human expert.  

 
Support Vector Decision Function Ranking: 

The input ranking is done as follows: First the original 
data set is used for the training of the classifier. Then the 
classifier’s decision function is used to rank the 
importance of the features. The procedure is:  
1. Calculate the weights from the support vector 

decision function; 
2. Rank the importance of the features by the absolute 

values of the weights; 
SVDF feature ranking results are presented in Table 5. 
Classification accuracies using 6 most important features 
are presented in Table 4 [21]. 
 

Feature Ranking SVM Normal DOS U2R R2L Probe 
1 6 23 5 32 5 
2 32 24 1 3 33 
3 12 39 2 1 23 
4 34 25 12 23 2 
5 4 36 4 24 24 
6 29 38 29 29 4 

Table 5. Feature selection and ranking using SVMs’ 
linear   kernel 
 
3.2 Linear Genetic Programming (LGP) 
Based Feature Selection 
 

The performance of each of the selected input feature 
subsets is measured by invoking a fitness function with 
the correspondingly reduced feature space and training set 
and evaluating the intrusion detection accuracy. Once the 
required number of iterations is completed, the evolved 
high ranked programs are analyzed for how many times 
each input appears in a way that contributes to the fitness 
of the programs that contain them. The best feature subset 
found is then output as the recommended set of features to 
be used in the actual input for the classifier. 

In the feature selection problem the main interest is in 
the representation of the space of all possible subsets of 
the given input feature set.  Each feature in the candidate 
feature set is considered as a binary gene and each 
individual consists of fixed-length binary string 
representing some subset of the given feature set. An 
individual of length d corresponds to a d-dimensional 
binary feature vector Y, where each bit represents the 
elimination or inclusion of the associated feature. Then, yi 
= 0 represents elimination and yi = 1 indicates inclusion 
of the ith feature. Fitness F of an individual program p is 
calculated as the mean square error (MSE) between the 
predicted output ( pred

ijO ) and the desired output ( des
ijO ) 

for all n training samples and m outputs [22].  
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Classification Error (CE) is computed as the number of 

misclassifications. Mean Classification Error (MCE) is 
added to the fitness function while its contribution is 
proscribed by an absolute value of Weight (W). 
 

Feature Ranking LGP Normal DOS U2R R2L Probe 
1 10 23 14 22 35 
2 6 13 39 19 27 
3 5 8 17 6 31 
4 13 7 25 11 12 
5 40 12 36 12 3 
6 3 30 1 3 5 

Table 6. Feature selection and ranking using Linear 
Genetic Programming 

 
LGP feature ranking results are presented in Table 6. 

We find that the features selected using LGP and SVM 
are similar to the features selected using the first four 
principal directions. These results reinforce our feature 
selection method [21]. 
 
4. Validation of Signatures 
 

Here we use a simple machine learning algorithm 
called Maxim to verify our results and show the benefits 
of dimension reduction. It is a conceptually simpler and a 
more efficient alternative to Support Vector Machines for 
an arbitrary number of classes. Maxim has proven to 
perform essentially as well as or better than SVM for 
these types of problems [23].  

We are interested in classifying a call X by comparing 
its similarity to a set of previously classified training calls. 
The call X will be assigned to the class whose calls are 
most similar to X. Given a set of I class-labeled training 
calls {Xi, ξ(Xi)}, i = 1..I, where ξ(Xi) is the class of Xi, 
and for an unclassified call X, we define the class 
similarity of X with respect to a class C as 

 

( ) ( )XXsXS kk
CX

C
k

,α∑
∈

=  

Where s is the similarity function and αk ≥ 0 reflects 
the relative importance given to each Xk with respect to 
the classification. We can therefore predict the class of X 
using the following decision function: 

 

( ) ( )( ){ }XScX cmaxarg=ξ  
 

The classification results were striking. When using 
Maxim with the RBF kernel against the DARPA data set, 
we classify 99.86% of the calls correctly. When using 
only the first four principal directions of the features, we 

classify 99.68% of the calls correctly. We see that the 
reduction of dimensionality only affects the accuracy 
minimally. 

 
Feature 

Extraction 
Time 
(Sec) Sigma False 

Positives Accuracy 

41 17295 .003 ≤ 0.14% 99.86% 
4 10273 .003 ≤ 0.32% 99.68% 
2 8738 .003 ≤ 1.76% 98.24% 

Table 7. Classification results of the dimension and data 
reduction compared with the original data. 
 

Feature 
Selection 

Time 
(Sec) Sigma False 

Positives Accuracy 

5,6,1,23,33 10872 .003 ≤ 0.22% 99.78% 
5,6,1,23 10664 .003 ≤ 0.44% 99.56% 

5,6 9847 .003 ≤ 1.98% 98.02% 
Table 8. Classification results of the feature selection 
using the principal directions of the calls. 

 
In Table 8 it is shown that by using our feature ranking 

method, one can select optimal features for classification. 
One can clearly see the fifth and sixth features play a 
significant role in the data set as we classify 98.02% of 
the calls correctly using simply these features. We 
demonstrate the twenty-third/twenty-fourth and the thirty-
second/thirty-third features are redundant as it is shown 
that by selecting only one feature from either group, we 
can essentially achieve the accuracy of classification that 
was achieved using the entire data set. The fact that we 
have striking results by using the principal directions of 
the calls for selecting the features also validates our 
signatures found by using these directions. The principal 
directions can be seen as legitimate representatives of the 
classes. 

These results verify our feature extraction, selection 
and signatures as we achieve a very high accuracy of 
classification while maintaining a low false positive & 
false negative rate. 

We propose a signature based intrusion detection 
system by using the principal direction of the calls. Any 
incoming call c can be processed by using the cosine 
between the call and the signature. To simplify matters 
even further, one could simply use the principal direction 
of the normal calls such that if a threshold t is less than 
the cosine between the call and the signature, one can 
classify the call as an attack. 
 

We use the signatures from Table 2 and compute the 
cosine between an incoming call, where we only consider 
the features that correspond to the signature. The features 
we used from the original data set are 1, 5, 6, 23 and 33.  

 
 
 



Signature Thre. False 
Positives 

False 
Negatives Accuracy 

Normal .1 0.53% 3.77% 95.69% 
DOS .455 0.67% 1.26% 98.07% 
U2R .001 23.33% 0% 76.67% 
R2L .001 23.36% 0.22% 76.42% 

Probe .8 0.90% 0.81% 98.29% 
Table 9. Signature validation 
 

We used the first signature in Table 2 for Normal, R2L 
and U2R and the second signature for DOS and Probe. 
The calls from U2R and R2L are classified incorrectly 
between both classes. 

 
4.1 Real-Time Data Collection and Feature 
Selection for Probe and DoS 

 
Experiments are performed on a real network using 

two clients and the server that serves the New Mexico 
Tech Computer Science Department network. The clients 
had CIA (computational intelligent agent) installed on 
them to identify or detect probes that are targeted to the 
server we are protecting. Our primary goal in these 
experiments is to detect probes targeting the server we are 
trying to protect. Our network parser gives the summary 
of each connection made from a host to the server and 
constructs a feature set to input into a classifier for 
classification. The output from a classifier is either 
normal or probe for each connection. Nmap an open 
source tool is used to collect probe data [13]. Probing is a 
class of attacks where an attacker scans a network to 
gather information or find known vulnerabilities. An 
attacker with a map of machines and services that are 
available on a network can use the information to look for 
exploits. There are different types of probes: some of 
them abuse the computer’s legitimate features; some of 
them use social engineering techniques. This class of 
attacks is the most commonly heard and requires very 
little technical expertise. Nmap is installed on the clients 
that have CIA installed. A variety of probes SYN stealth, 
FIN stealth, ping sweep, UDP scan, null scan, xmas tree, 
IP scan, idle scan, ACK scan, window scan, RCP scan, 
and list scan with several options are targeted at the 
server. Normal data included multiple sessions of ftp, 
telnet, SSH, http, SMTP, pop3 and imap. Network data 
originating from a host to the server that included both 
normal and probes is collected for analysis; for proper 
labeling of data for training the classifiers normal data 
and probe data are collected at different times.  

We used the RBF (radial basis function) kernel 
function that defines the feature space in which the 
training set examples will be classified. Table 10 
summarizes the results of probe detection on a real data 
set using SVMs and LGPs. 

 

Class SVM LGP 
Normal 99.75% 100% 
Probe 99.99% 100% 

Table 10.  Probe detection accuracies on a real data set 
 

A passive sniffer can be placed at the router to collect 
data for detecting DoS attacks. The architecture comprises 
of three components: a packet parser, classifier and a 
response module. The network packet parser uses the 
WINPCAP library to capture packets and extracts the 
relevant features required for DoS detection. The output 
of the parser includes the twelve DoS-relevant features as 
selected by SVDF described in section 3.1 [21]. 

The output summary of the parser includes the eleven 
features of duration of the connection to the target 
machine, protocol used to connect, service type, status of 
the connection (normal or error), number of source bytes, 
number of destination bytes, number of connections to the 
same host as the current one during a specified time 
window (in our case .01seconds), number of connections 
to the same host as the current one using same service 
during the past 0.01 seconds,  percentage of connections 
that have SYN errors during the past .01 seconds, 
percentage of connections that have SYN errors while 
using the same service during the past .01 seconds, and 
percentage of connections to the same service during the 
past .01 seconds. 

We experimented with more than 24 types of DoS 
attacks. In the experiments performed we used different 
types of DoS attacks: SYN flood, SYN full, MISFRAG, 
SYNK, Orgasm, IGMP flood, UDP flood, Teardrop, Jolt, 
Overdrop, ICMP flood, FIN flood, and Wingate crash, 
with different service and port options. Normal data 
included multiple sessions of http, ftp, telnet, SSH, http, 
SMTP, pop3 and imap. Network data originating from a 
host to the server that included both normal and DoS is 
collected for analysis; for proper labeling of data for 
training the classifier normal data and DoS data are 
collected at different times. Table 11 summarizes the 
results of DoS detection on a real data set using SVMs 
and LGPs. 

 
Class SVM LGP 

Normal 99.48% 95.26% 
DOS 79.91% 94.28% 

Table 11.  DoS detection accuracies on a real data set 
 
5. Conclusion 
 

We showed how one can perform feature selection and 
extraction using the singular value decomposition paired 
with the notion of latent semantic analysis. From this, we 
can discover hidden information that allows us to design 
signatures for forensics and eventually real-time intrusion 
detection systems. Furthermore, it is shown that by using 



Maxim, one can achieve stunning accuracy with low false 
positives and false negatives which also validates our 
feature selection, extraction and signatures. We use SVDF 
and LGP for feature selection and on a real data set 
generated from a live performance network. We find that 
the results reinforce our feature selection method. Finally, 
we give insight on how one can use signatures for a real-
time signature based intrusion detection system. 
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