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(57) ABSTRACT

A system and a method perform matrix factorization. Accord-
ing to the system and the method, at least one matrix is
received. The at least one matrix is to be factorized into a
plurality of lower-dimension matrices defining a latent fea-
ture model. After receipt of the at least one matrix, the latent
feature model is updated to approximate the at least one
matrix. The latent feature model includes a plurality of latent
features. Further, the update performed by cycling through
the plurality of latent features at least once and alternatingly
updating the plurality of lower-dimension matrices during
each cycle.
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PARALLEL COLLECTIVE MATRIX
FACTORIZATION FRAMEWORK FOR BIG
DATA

BACKGROUND

[0001] The present exemplary embodiments disclosed
herein relate generally to matrix factorization. They find par-
ticular application in conjunction with real-time recommen-
dation systems, and will be described with particular refer-
ence thereto. However, it is to be appreciated that the present
exemplary embodiments are also amenable to other like
applications.

[0002] Matrix factorization is the decomposition of a
matrix into a product of matrices. Hence, matrix factorization
is also known as matrix decomposition. Matrix factorization
is commonly used in real-time recommendation systems,
which need to be fast, scalable, and accurate. Such recom-
mendation systems train a model to predict the preferences of
users using matrix factorization.

[0003] Supposing a user-by-item matrix ae R 7 (m users
by n items), the matrix factorization problem for a typical
recommendation systems is as follows.

M

UeRM<d
y eR X4

argming > (A —ulv)" + AUl + IVIlF)
ijely

The goal of the above optimization problem is to approximate
A=UV7, where Ue R " and Ve R *“. This may also be inter-
preted as a low rank-d approximation in which a useru, and an
item v, are mapped to a latent feature space R 4 such that the
interaction of the ith users with the jth product is uiVjT .

[0004] To solve the optimization problem, a cyclic coordi-
nate descent (CCD) based approach is typically used. A CCD
based approach cyclically updates a single variable at a time
while leaving the others fixed. Such approaches have two
main stages: (i) using an update rule to solve each variable
subproblem; and (ii) selecting the order in which the variables
are updated. A commonly used CCD based approach to solv-
ing the optimization problem is the so called CCD++
approach.

[0005] In the past, recommendation systems have trained
models based on only past user-item data (e.g., user i pur-
chased an item j). However, more recently, some work has
used other data in order to provide better recommendations to
users.

[0006] The present application provides new and improved

methods and systems for matrix factorization and real-time
recommendation systems.

BRIEF DESCRIPTION

[0007] In accordance with one aspect of the present appli-
cation, a system for matrix factorization is provided. The
system includes at least one processor programmed to receive
at least one matrix to be factorized into a plurality of lower-
dimension matrices defining a latent feature model. The at
least one processor is further programmed to update the latent
feature model to approximate the at least one matrix, the
latent feature model including a plurality of latent features.
The update performed by cycling through the plurality of
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latent features at least once and alternatingly updating the
plurality of lower-dimension matrices during each cycle.
[0008] In accordance with another aspect of the present
application, a method for matrix factorization is provided.
The method includes receiving at least one matrix to be fac-
torized into a plurality of lower-dimension matrices defining
a latent feature model. The method further includes updating
by the at least one processor the latent feature model to
approximate the at least one matrix, the latent feature model
including a plurality of latent features. The updating is per-
formed by cycling through the plurality of latent features at
least once and alternatingly updating the plurality of lower-
dimension matrices during each cycle.

[0009] In accordance with another aspect of the present
application, a system for providing recommendations is pro-
vides. The system includes a matrix factorization module
configured to update a latent feature model approximating at
least one matrix. The update is performed by alternatingly
updating a plurality of lower-dimension matrices defining the
latent feature model. The system further includes an executor
module configured to generate recommendations from the
plurality of lower-dimension matrices without use of the at
least one matrix. Even more, the system includes an incre-
mental computation module configured to receive a stream of
updates to the at least one matrix in real time and project a new
column or row of the at least one matrix into a latent feature
space of the latent feature model. The column or row is newly
added to the at least one matrix by the updates. The incre-
mental computation module is further configured to add the
projection to the plurality of lower-dimension matrices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIGS. 1A & B illustrate a user-by-item bipartite
graph and a matrix representation of the graph, respectively.
[0011] FIGS. 2A & B illustrate a user-by-user graph and a
matrix representation of the graph, respectively.

[0012] FIG. 3 illustrates a table of notation used to describe
CCD? and Collective CCD>.

[0013] FIG. 4 illustrates pseudo code for implementing
CCD?++.

[0014] FIG. 5 illustrates pseudo code for parallelizing
CCD?++.

[0015] FIG. 6 illustrates a flowchart of Collective CCD*++
for the matrices of FIGS. 1B and 2B.

[0016] FIG. 7 illustrates pseudo code for implementing
Collective CCD?++.

[0017] FIG. 8 illustrates a table of statistics regarding the
datasets used for experimental analysis of CCD? and Collec-
tive CCD?,

[0018] FIGS. 9A-Cillustrates plots of the run time for both
CCD? and CCD++ as a function of the number of processing
cores for the training dataset of Dataset2 and for latent feature
spaces of size 10, 20 and 40, respectively.

[0019] FIGS. 10A-C illustrate plots of the run time for
CCD?, Collective CCD? and CCD++ as a function of the
number of processing cores for the training dataset of
Datasetl and for latent feature spaces of size 10, 20 and 40,
respectively.

[0020] FIGS. 11A & B illustrate plots of the efficiency and
speedup, respectively, for CCD? Collective CCD? and CCD
as a function of the number of processing cores for the train-
ing dataset of Datasetl and for a latent feature space of size
10.
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[0021] FIGS.12A & B illustrates plots of the efficiency and
speedup, respectively, for CCD? Collective CCD? and
CCD++ as a function of the number of processing cores for
the training dataset of Datasetl and for a latent feature space
of size 40.

[0022] FIG. 13A illustrates a table of Root Mean Squared
Error (RMSE) for varying o and varying A values.

[0023] FIG.13B illustrates a plot of RMSE as a function of
a for CCD?, Collective CCD? and CCD++.

[0024] FIG. 13C illustrates a plot of run time as a function
of a for CCD?, Collective CCD? and CCD++.

[0025] FIG. 14 illustrates a matrix factorization system
implementing CCD? and/or Collective CCD?.

[0026] FIG.15illustrates a real-time recommendation sys-
tem using CCD? and/or Collective CCD?.

DETAILED DESCRIPTION

[0027] This present application describes an approach to
matrix factorization based on cyclic coordinate descent
(CCD). This approach to matrix factorization, herein referred
to as CCD?, is faster and more accurate than other approaches
to matrix factorization based on CCD, such as CCD++. Typi-
cally, CCD? is more specifically based on CCD++, and hence
more specifically referred to as CCD?++, but it can also be
based on other CCD based approaches to matrix factoriza-
tion.

[0028] The present application further describes a more
general approach to matrix factorization for factorizing an
arbitrary number of matrices and attributes using CCD?,
herein referred to as Collective CCD?. Collective CCD? fuses
two or more datasets together by representing datasets as
matrices and factorizing them. For instance, given a user-by-
item matrix (e.g., users purchased a product or rated a movie)
and a user-by-user matrix (e.g., a social network), Collective
CCD? fuses these two data sources into a single factorization.
[0029] Both CCD? and Collective CCD? find particular
application in real-time recommendations systems. CCD?
can be used within traditional recommendation systems in
place of other CCD based approaches to matrix factorization.
Traditional recommendation systems use only a user-by-item
matrix for generating recommendations. Collective CCD?
can be used in non-traditional recommendations making use
of multiple data sources, such as user-by-item and user-by-
user matrices.

[0030] Because CCD* and Collective CCD? are particu-
larly suited for real-time recommendation systems, the fol-
lowing discussion focuses on such systems. The traditional
recommendation system makes use of a user-by-item matrix,
and the non-traditional recommendation makes use of both
the user-by-item matrix and a user-by-user matrix. Despite
focusing on recommendation systems, it is to be appreciated
that CCD? and Collective CCD? find application anywhere
CCD based approaches to matrix factorization find applica-
tion. For example, CCD? and Collective CCD? can be simply
employed to compress large datasets into lower dimensional
approximations.

[0031] It is to be understood that the approach is flexible
and can be easily adapted to factorize both matrices and
tensors.

[0032] 1. Preliminaries

[0033] LetAbe asparsely populated mxn matrix, where m
represents users and n represents items, and let S be a sparsely
populated mxm matrix. FIGS. 1A & B illustrate a user-by-
item bipartite graph and a matrix representation of the graph,
respectively. FIGS. 2A & B illustrate a user-by-user graph
and a matrix representation of the graph, respectively. €2, and

Jan. 14, 2016

€, are sets of indexes indicating the nonzero columns of row
i and nonzero rows of column j, respectively, in one of A and
S. Further, 1Q,] and 1Y are the number of nonzeros in row i
and column j, respectively, in one of A and S.

[0034] Let UeR™“ VeR"™ and Ze R™ be matrices
representing the lower-dimensional latent user feature space,
the lower-dimensional latent item feature space, and the
lower-dimensional latent social network feature space,
respectively. For convenience, the ith row of U is denoted as
the vector u,”e R ¢ and the kth column of U is denoted as the
vector u,e R™.

@

Whenever more clear, the kth column of U can alternatively
be denoted as U.,. Further, the kth element of u,” or the ith
element of u, is denoted as the scalar U,,. Similar notation is
used for V and Z.

[0035] With reference to FIG. 3, a table summarizes the
foregoing notation, as well as provides additional notation.
Matrices are bold, uppercase roman letters. Vectors are bold,
lowercase roman letters. Scalars are unbolded roman or greek
letters. Indexed elements are vectors or matrices if bolded and
scalars if unbolded.

[0036] The optimization to be solved by CCD? can be for-
mulated as follows.

argmin £L'(A, U, V) ©)
uy
A~UV7. A common example of L' is as follows.

LAU V= 3 Ay —ulv)’ + MU+ VIl @
ijefy

The optimization to be solved by Collective CCD? can be
formulated as follows.

argmin £7(A, S, U, V,Z) 5)
uyv.z

A=~UV7Tand S~UZ”. A common example of L" is as follows.
LA S, UV, Z) = (6)
D Ag—ulvt e 3 (Sy-ulzp)" +allZllp + AUl + VIl

= i,jeg

Another example of L" is as follows.

LA S UV, 2Z) = (@)

2 2
> Ay—ulvp)t e Y Sy —ul )"+ MR +IVIE +11ZIE
ijefy i, jeQg
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With Equation (7), user latent features u, and u; become more
similar as a increase. Yet another example of L" is as follows.

LA,S, UV, Z)= (3)
2
2
> ay-dfvp +w§ Y )| +FAAUIE + VIR
ijeQy 7 weﬂx(‘-)

Equation (8) ensures latent feature v, of the ith user is similar
to the weighted average of the latent features u,, of the friends
of the ith user.

[0037] Equations (4) and (6)-(8) return nonzero squared
loss, since nonzero squared loss is used for recommendation
systems. Assuming no regularization parameters A and a,
Equations (4) and (6) simplify to L'=(A,~[UV’],)? and L"=
(Aij—[UVT ]U)2+(SU—[UZT ]l.j)z, respectively. Alternatives to
Equations (4) and (6)-(8) can also be employed.

[0038] 1.1 Graph Regularization and Sparsification

[0039] Graph regularization can be used on user-by-user,
user-by-items, word-document, similarity graphs, and many
others. Graph sparsification is used for speeding up the CCD?
and Collective CCD?. Outside of CCD, it has been used for
many other applications.

[0040] In some embodiments, graph regularization and
sparsification is applied to Equation (4) by replacing the
regularization terms with A(Z, =1 [W|P+X1<Y1-V|).

LA U V)= )

D A=l vl A 310l + D101l |
J

ijef, i

Similarly, graph regularization and sparsification can be
applied to Equation (6) by replacing the regularization terms
with AEIQ, 1 [ufP+Z1Q, 1V |P)+02,1 Q. iz .

LAS UV, 2= Y Ag—ulvit+ > Sy-ulz)’ + 10
ijefy ijeQg

@) 1|zl + 2 D 1O el + 3 19111
i i

i

As seen, each regularization term is essentially weighted by
the degree (in/out).

[0041] 1.2 Model Selection

[0042] The model typically varies from dataset to dataset.
Further, the size of the model can be selected arbitrarily, as is
typically done, in prior art systems. However, as described
herein, the model parameters (e.g., model size d) are typically
user selected or optimized by minimizing an objective func-
tion. The objective function L=M+E balances the model
description cost M and the cost of correcting the errors of the
model E. The model description cost M is typically deter-
mined using the Minimum Description Length (MDL).
[0043] To determine the optimal model size, CCD? or Col-
lective CCD? are run on a dataset (e.g., A) for an arbitrary d.
Insome embodiments, this can be sped up by sampling jLrows
from the dataset and using this much smaller dataset with
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CCD? or Collective CCD?. After running CCD? or Collective
CCD?, the objective function is computed and used to deter-
mine whether to increase or decrease d. The foregoing then
repeats until k is optimized according to the objective func-
tion or other stopping criteria are met.

[0044] Automated model selection as described is particu-
larly important for dynamic recommendation system. Select-
ing d is usually difficult and non-intuitive, with the optimal
value varying for each dataset. Further, since the dynamic
recommendation system will adapt based on a stream of data,
the optimal size of the model will also vary and require
automatic online tuning. Even more, learning the model size
dynamically will typically reduce overhead and increase par-
allel performance

[0045]

[0046] CCD?or Collective CCD can be augmented in some
embodiments to use multiple models. In that regard, multiple
models are trained, typically simultaneously in parallel, using
CCD? or Collective CCD. The trained models are then com-
bined to get a single model representing the matrix factoriza-
tion.

[0047] More specifically, p different bootstrap datasets are
generated by dividing a dataset (e.g., A) into the p datasets.
For example, two bootstrap datasets can be generated from
even and odd numbered rows of the training dataset, respec-
tively. A model is then trained using each of the p bootstrap
datasets, and an ensemble is created by combining the models
to obtain a more accurate model. Given a set P of n models,
the models can be combined as follows:

1.3 Learning Ensembles

1
Pr=-Lp,
n

where P* corresponds to the combined model, and P, corre-
sponds to the ith model. Each P, corresponds to a U and a V.
In some embodiments, weights for the ensemble of models
are determined such that the regularization factor can be
intelligently determined and the relative importance of each
individual model is automatically calibrated.

[0048] Typically, each model is trained in parallel by treat-
ing the corresponding bootstrap dataset as a job and assigning
the job to some fraction of the available processors, cores, or
threads. The intuition for assigning the training of a model to
a fraction of the available workers (i.e., processors, cores, or
threads) is the law of diminishing returns with respect to
memory. Notably, a decrease in the speedup can be observed
when using more than 8 workers.

[0049] 2.CCD>

[0050] CCD? builds on the well-known CCD approach to
matrix factorization. CDD? updates all components of U and
V in a cyclic fashion starting at some initial point. This initial
point can be any anything. In some embodiments, initializa-
tion is performed by randomly initializing Ue R ™ and Ve
R, and then applying a sparsification technique to U and
V. The sparsification technique sets a few entries of U and V
to zero. This approach to initialization was found to not only
speed up convergence, but also improve accuracy of the
model.

[0051] After initialization, CCD? alternatingly updates U
and V for the d latent features in the following order.

VU, ..., Vi Uso - - Vo Usg
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V..and U, are vectors of length n and m, respectively, for the
kth latent feature. In contrast, traditional implementations of
CCD typically order the updates to U and V as follows.

ViV o Ve U, U Usyg
Hence, in contrast to CCD?, traditional implementations of
CCD completely update U before updating V.
[0052] 2.1 Update Rules for a Single Element
[0053] To update a single element U,, in U, allow U,, to

change with x and fix all other variables to solve the following
one-variable subproblem.

¥ e argminf(0) = > (A = U V] = UpVi) = V)" + 202 an
* jefy;

Observe that f(x) is a univariate quadratic function. Hence,
the unique solution is as follows.

Zjen; Ay = (Up V] + U ViV 12

A+ o Vi

*

This computation takes O(1€2,1) time if the residual matrix R
is maintained.

Ry=4,~U. VIV )eQy 13)

Rewriting Equation (12) in terms of R, yields the following.

Zjen; (Ryj + U Vi)V 14
A+ Sen, Vi

i

This allows U, and R;; to be updated in O(1€2,1) time using the
following.

Rij<_Rij_(x*_ Uz lenVEQi (1s)
Uyx* 16)
[0054] To update a single element V,, in 'V, the foregoing is

similarly applied. More specifically, y* is first computed.

Zjeﬂ- (R + Uy Vi DUy, amn

A+ Yo, U

*

Thereafter, V. and R, are updated in O(I€2)|) time using the
following.

Rij<_Rij_(y*_ ij)UianE"j (18)
Vieey® 19
[0055] Updating each U, and 'V, takes O(1€2,1) and O(I€2,1)

time, respectively. This is essentially the number of nonzeros
(or edges from the perspective of a graph) in the ith row and
jth column, and is thus linear in the number of nonzeros.
[0056] 2.2 Implementation

[0057] According to one implementation of CCD?, the
foregoing concepts are applied to CCD++. This implementa-
tion is termed CCD?*++ and described by FIG. 4, which pro-
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vides pseudo code for implementing CCD?*++. With refer-
ence to FIG. 4, U and V are first initialized randomly with
sparsification, as described above. After initialization, U and
V are alternatingly updated using column-wise updates. The
order in which the updates are performed impacts complexity
and convergence properties. Further, column-wise updates
have been found to converge faster than row-wise updates.

[0058] Factorization using a column-wise update sequence
corresponds to the summation of outer-products.

d 20)
AUV =ZU.kv_§
k=1

U., and V., are the kth columns (also denoted the kth latent
feature) of U and V, respectively. To perform such factoriza-
tion, let T,,,,,.,. and T be the number of inner and outer
iterations, respectively. The number of outer iterations corre-
sponds to the number of times the kth latent feature is updated
by the T,,,,,., iterations, and the number of inner iterations
corresponds to the number of times the kth latent feature is
updated before updating the k+1 latent feature.

[0059] ForeachoftheT,,,,, iterations, the d latent features
are updated in the following order.

outer

VU, ..., Vi Uso - - Vo Usg

For a tth outer iteration, each of the d latent features are
updated. For a kth latent feature, U, and V., are updated for
eachoftheT,,,,., inner iterations. For a tth inner iteration, U.,
and V., are updated in the following order.

VieVoso oo VuoUlplop - U

In other words, for a tth inner iteration, U., is fixed and a
rank-one update is performed on V.., and thereafter V., is
fixed and a rank-one update is performed on U,,.

[0060] Note that U, and V, are updated in place. For
instance, VandU, ;*',..., U,_, /" U, /..., U, canbe
fixed to solve for U, . Updating U, and V i inplace avoids
the need to copy the updated vectors back into the original
matrix, which saves both the time required to do so and the
space required to store the intermediate results.

[0061] To update a kth latent feature, the following is per-
formed.
Vo v* (21)
Ul <—u* (22)

v* and u* are computed as follows.

. 2
argmin > (R + UV =) + Al + M) @3
ueR

=
veR™ A

To solve Equation (23), let R s RAULV L, V(0,j)eQ .
Through application of this to Equation (23), Equation (23)
simplifies to a rank-one matrix factorization in which v is first

updated, followed by u.
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. ~ 2
argu;nrjnZ (Ry =)+ A1l + IR @4
Hel

veR™ l=g

The rank-one matrix factorization is performed by the T,,,....
iterations and returns both v* and u*. v* is a vector of y*
values, and u* is a vector of x* values. The x* and y* values
are directly obtained during the T,,,,., iterations. After the
T, iterations complete, u* and v* are available and used to
update U, and V., according to Equations (21) and (22).
Further, R is updated as follows.

Ry—Ru vV (i,)eQ @5

V. eyt (253)

U beu* (25b)
[0062] 2.2.1 Early Stopping Condition

[0063] In some embodiments, the T, . iterations can be
terminated early and the residual matrix R can be updated.
More specifically, given a small positive ratio € (typically
€=107%), the inner iterations can be terminated early if the
current inner-iteration reduces the localized objective func-
tionto lessthan €A, .. A, . is the maximum function reduc-
tion for the past inner iterations of the current outer iteration.
[0064] To determine a function reduction for an inner itera-
tion, all the function value reductions from the single variable
updates are summed.

Z (u — u;)z . (/\ + Z vj] 26)

; J€0 4

This value represents the total objective function reduction
from all users and represents a complete update of u for a
single CCD iteration.

[0065] 2.2.2 Column-Wise Memory Optimization

[0066] The dense matrix of U is stored in memory as a dxm
matrix, and the dense matrix of V is stored in memory as a dxn
matrix. Thus the latent variables of the kth feature are stored
as a contiguous memory block. This memory scheme is opti-
mized for column-wise updates where the kth latent feature of
V and U are updated via T iterations before moving on to
the k+1 latent feature.

[0067] 2.3 Parallelization

[0068] CCD? can be parallelized across p workers (i.e.,
processors, cores or threads) by splitting each vertex set into
blocks ofa fixed size b and assigning the blocks to the workers
for processing in parallel. The approach to parallelizing
CCD? is hereafter referred to as a block partition scheme.
Since A is bipartite, there are two vertex sets to split: a user
vertex set U ; and an item vertex set V. The user vertex set
U issplitas {U |,..., U,,..., U ,,q}, and the item vertex
set V issplitas {V,,...,V,, ..., V,,}. Typically, the blocks
are based on the initial ordering of the vertices as given by the
input graph, but other orders of the vertices can be employed.
[0069] One specific approach to parallelizing CCD?++ is
shown by the pseudo code of FIG. 5. With reference to FIG.
5, when updating U., and V., for an inner iteration, each of the
p workers are initially assigned a block of vertices from the
item vertex set V. The p workers then update the vertices for
the corresponding blocks in V.. After a worker completes its

inner
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block (e.g., updating all vertices in its assigned block), it is
dynamically assigned the next available block of vertices
from the item vertex set V. This dynamic scheduling pro-
vides reasonable load balancing.

[0070] Once all of the p workers complete the updating of
all of the blocks of the item vertex set V, the foregoing is
repeated for the user vertex set U to update U,,. Alterna-
tively, once all of the blocks of the item vertex set Vare
assigned to workers, workers proceed immediately to process
the blocks ofthe user vertex set U toupdate U., regardless of
whether other workers are still updating V... While there is a
slight chance of a conflict, in practice it is hardly ever a
problem. Further, even if a vertex gets an old update, then it is
fixed within the next iteration.

[0071] Once all of the work for an inner iteration is
assigned, the p workers complete their assigned work and
wait for all of the workers to complete their assigned work for
the inner iteration. The foregoing then repeats for the next
inner iteration, starting with the initial assignment of blocks
from the item vertex set ¥V to the workers. Alternatively, once
all of the work for an inner iteration is assigned, workers
proceed immediately to the next iteration, which is handled as
described above starting with the blocks of the item vertex set
V. In this way, workers are never waiting for work while
performing the inner iterations.

[0072] Afterupdating U., and V., and completing all of the
inner iterations, R is updated in parallel. Any approach for
updating R parallel can be employed, but typically each of the
p workers updates those elements of R corresponding to the
assigned blocks for the last iteration.

[0073] The block partition scheme generalizes to distrib-
uted architectures, multi-core shared-memory architectures,
or hybrid architectures. Further, when applied to CCD?++, it
advantageously allows the inner-iteration to be completed
asynchronously. That is to say, the rank-one updates for U and
V are done asynchronously, and when there is no more work
to be assigned to a worker, the worker can immediately grab
more work from the next update. As an example, suppose
there is no more work for a worker when updating V, then this
worker can immediately grab work pertaining to updating U,
while the other workers finish their final jobs when updating
V.

[0074] 3. Collective CCD?

[0075] Collective CCD? is a general framework for collec-
tive matrix factorization based on CCD. The proposed
approach fuses multiple data sources into a single factoriza-
tion. This includes both edge attributes in the form of addi-
tional matrices and vertex attributes in the form of vectors.
Collective CCD? uses the additional data sources to learn
more accurate weights which appropriately capture the influ-
ence between data sources.

[0076] As described above, Collective CCD? is described
in conjunction with the factorization of a user-by-item matrix
with a user-by-user matrix. This allows the user-by-user con-
nections to influence the user-by-item matrix. The underlying
intuition is that a user’s behavior is influenced by their social
interactions and behavior (i.e., clickstream).

[0077] Collective CCD* builds on CCD? approach to
matrix factorization. All components of U, V, and Z are
updated in a cyclic fashion starting at some initial point. As
above, this initial point can be set to any anything. In some
embodiments, initialization is performed by randomly initial-
izing UeR™“ Ve R™“ and Ze R™*“, and then applying a
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sparsification technique to U, V, and Z. The sparsification
technique sets a few entries of U, V, and Z to zero.

[0078] After initialization, Collective CCD* alternatingly
updates U, V, and Z for the d latent features in the following
order.

VZoo U, - .., ViZasUsy - - VeaZogy Uy

[0079] V.. U, and Z,, are vectors of length n, m, and m,
respectively, for the kth latent feature. FIG. 6 illustrates Col-
lective CCD? for the matrices of FIGS. 1B and 2B.

[0080] 3.1 Update Rules for a Single Element

[0081] To update asingle element U,, in U, a single element
V. inV, and a single element Z,; in Z, the update rules are as
follows.

Z (Ryj + U Vi ) Uy @7
ieQA(j)
Viey =
oy 1 3 U3
ieQA(j)
Z (Cy + UnZj YU, (28)
P . jEQS(i)
ke =
& a+ Y UZ
jeQS(‘-)
Z (R + U Vi) Vi Z (Cy + U Zp)Zjy 29
. jeQA(‘-) jeQS(‘-)
Uy «x" = = >
A+ ¥ VR a+ Y Zy
jeQA(‘-) jEQS(i)
[0082] 3.2 Implementation

[0083] According to one implementation of Collective
CCD?, the foregoing concepts are applied to CCD++. This
implementation is termed Collective CCD?++ and described
by the pseudo code of FIG. 6. With reference to FIG. 7, U, V,
and 7 are first initialized randomly with sparsification, as
described above. After initialization, U, V, and Z are alternat-
ingly updated using column-wise updates. The order in which
the updates are performed impacts complexity and conver-
gence properties. Further, column-wise updates have been
found to converge faster than row-wise updates.

[0084] Factorization using a column-wise update sequence
corresponds to the summation of outer-products.

d 30)
AUV =Zu.kv_§
k=1

d 3D
S=UZ = Z U Zh
k=1

U.;, V.., and Z_, are the kth columns (also denoted the kth
latent feature) of U, V, and Z, respectively. To perform such
factorization, let T, and T . be the number of inner and
outer iterations, respectively. The number of outer iterations
corresponds to the number of times the kth latent feature is
updated by the T,,,,., iterations, and the number of inner
iterations corresponds to the number of times the kth latent
feature is updated before updating the k, 1 latent feature.
[0085] ForeachoftheT,,,,, iterations, the d latent features
are updated in the following order.

Vi ZorUets o Vo ZnUniy o Ve Zoa U
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For a tth outer iteration, each of the d latent features are
updated. For a kth latent feature, U.,, V.,, and Z., are updated
for each of the T,, ..., inner iterations. For a tth inner iteration,
U.,, V.., and Z, are updated in the following order.

Vi Vaso oo s Vous Ziss Zogs oo s Zongs Ui U oo s U

v z 3

In other words, for a tth inner iteration, U., and Z., are fixed
and a rank-one update is performed on V., thereafter V., and
U., are fixed and a rank-one update is performed on Z.,, and
finally V., and Z., are fixed and a rank-one update is per-
formed on U,,.

[0086] To update a kth latent feature, the following is per-
formed.
Vasv® (32)
Zopee (33
Up—u* (34)

v* z*, and u* are obtained by the inner iterations and com-
puted as follows.

) (35)
argmin { Z (Ryj + U er,( —u;vj-)2+
ucR™ yeR" zeR™ iie,
> (Cy+ URZ —uiz ) + Ml + I + IIzIIZ}
ijeQyg
To solve Equation (35), let f{ij and Cij be defined as.
Ry=Ry+UnVa N ()€ (36)
Cy=Ci U Zy N ())eQg (37N

Through application of Equations (36) and (37) to Equation
(35), Equation (35) simplifies to a rank-one matrix factoriza-
tion in which v is first updated, followed by z, and then u.

argmin (38)

#eR™ veR”" zeR™

{ S Ry =) v @ D (& - ) + A + P+ IIzIIZ)}

ey ijeQyg

[0087] The rank-one matrix factorization is performed by
the T,,,,,., iterations and returns both v¥*, u*, and z*. v* is a
vector of y* values, u* is a vector of x* values, and z* is a
vector of z* values. The x*, y*, and z* values are directly
obtained during the T,,,,.,. iterations. After the T,,,,., itera-
tions, v¥, u*, and z* are available and used to update U_,, V_,,
and 7., according to equations (32), (33), and (34). Further, R
and C are updated as follows.

Ry—Ryuvx V(i j)eQ, (39)
Cyeéy.—ui*zj*mV(i,j)eQS (40)

Note that in this implementation, three sparse residual matri-
ces for V, U, and Z, respectively, are maintained.
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[0088] 3.2.1 Complexity Analysis

[0089] Giventhat 1€2,] and |€24| denote the number of non-
zeros in the user-by-item matrix A and the user-by-user
matrix S, respectively, Collective CCD? takes O(d(IQ_l+
1Q4) time. If ®=max(I€2,,1, |Q24l), then it takes O(Pd) time.
As previously mentioned, d is the number of latent features in
the factorization. Note that 1€ | usually dominates |82l as it
is usually more dense than the user-by-user matrix S.

[0090] To arrive at the foregoing, observe that each inner
iteration that updates U, V, and Z takes O(d(1Q2,1+1Ql)),
O(dIQ, 1) time, respectively. Hence, the total computational
complexity in one inner iteration is O(d(1Q,1+Q4l)). This
indicates that the runtime of Collective CCD? is linear with
respect to the number of nonzeros in A and S and that Col-
lective CCD? is efficient for billion edge graphs.

[0091] 3.3 Parallelization

[0092] Collective CCD? can be parallelized across p work-
ers (i.e., processors, cores or threads) according to the block
partition scheme described above. Alternatively, the approach
to Collective CCD? described in Algorithm 3 can be parallel-
ized across p workers by splitting the T,,,,., iterations into
contiguous blocks of size b and dynamically assigning the
blocks to the workers for processing in parallel. The parallel-
ization scheme generalizes to distributed architectures, multi-
core shared-memory architectures, or hybrid architectures.
[0093] More specifically, when updating U.,, V.., and Z.,,
each of the p workers are initially assigned a block. The p
workers then update U.,, V.., and Z., in parallel for their
respective iterations. After a worker completes its block (e.g.,
completing all iterations in its assigned block), it is dynami-
cally assigned the next available block of iterations.

[0094] Once all of the blocks are assigned, the p workers
complete their assigned work and wait for all of the workers
to complete their assigned work. After updating U.,, V.., and
7., and completing all of the inner iterations, R and C are
updated in parallel. Any approach for updating R and C in
parallel can be employed, such as dividing the vertices of R
and C into blocks and processing the blocks of vertices in
parallel as done above for the blocks of inner iterations.
[0095] By parallelizing Collective CCD*++ as described
above, memory is allocated to processors in a round-robin
fashion. This advantageously helps avoid cache misses and
thereby improves performance.

[0096] 4. Alternatives Models

[0097] As an alternative to using the foregoing models,
various other models can be employed with CCD? and Col-
lective CCD?. These alternative models can be neighborhood
based or similarity based. Similarity based models blend
given a similarity matrix M.

[0098] Regarding neighborhood based models, after train-
ing U and V (e.g., using CCD?), a prediction or recommen-
dation is made using the user-by-user matrix S (e.g., a social
network or an interaction/similarity matrix) with the follow-
ing.

Ro=ouVT+1-0) Y S0V @0
G, j)jeP;
[0099] P, is the set of products that user i’s friends bought.

A friend is simply an edge in the user-by-user matrix (i.e.,

(i,j)eEs). In other embodiments, the set P, can be replaced
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with the users in the same cluster of user i (using k-means or
another approach). The 6 parameter weighs the influence of
the social network.
[0100] As analternative, after training U and V, a prediction
or recommendation is made using the user-by-user matrix S
with the following:

R = Z SiUn Vi “2)
. f)jeP;

This approach has the advantage of being faster, since the

computation is only over the set of products in P ,.

[0101] 5. Experimental Analysis

[0102] Experimental results describing the performance,
accuracy and data sparsity of CCD? and Collective CCD? are
hereafter described. Performance pertains to how well CCD?
and Collective CCD? scale. Accuracy pertains to how well
CCD? and Collective CCD* compare to CCD++ in terms of
approximating A and S. Data Sparsity pertains to how well
CCD? and Collective CCD? solve the data sparsity problem
(i.e., the problem of generating recommendations for users
with no or very little data).

[0103] 5.1 Datasets

[0104] The datasets used for experimental analysis are
described below and statistics are shown in the table of FIG.
8. Thousand is abbreviated as the numerical suffix “K”, and
million is abbreviated as the numerical suffix “M”. For brev-
ity, some statistics are excluded from the table.

[0105] Each of the datasets includes a user-by-item matrix
being a directed bipartite graph, and Dataset1 further includes
a user-by-user matrix being a directed graph. Datasetl was
used as the benchmark since both user-by-item and user-by-
user matrices were available. The user-by-item matrix
includes product ratings between 1 and 5, and the user-by-
user matrix describes the level of trust users have for one
another by 1 or -1 for friend or foe, respectively. In contrast
with many of the other datasets, Dataset1 is sparsely popu-
lated. Dataset3 represents a community’s preferences for
various songs. Dataset3 includes 717 million ratings of 136
thousand songs given by 1.8 million users. Dataset5 contains
reviews for a metropolitan area where users have rated busi-
nesses from 1 to 10.

[0106] During analysis, each of the datasets was split into
training and testing datasets. Further, whenever possible,
cross-validation was employed with the splits for reproduc-
ibility. For Dataset3, the training and testing datasets were
also combined and used to test scalability. Unless otherwise
specified, only the bipartite user-by-item graph was used.
Moreover, in all experiments, A=0.1, o=1, and
T ositer=T ssmer=3, unless otherwise noted

[0107] After splitting the datasets, CCD?* and Collective
CCD? were applied to the training datasets, as described
above. The trained model (i.e., U and V for CCD?, and U, V
and Z for Collective CCD?) was then evaluated using the
testing datasets. That is to say, the trained model was used to
make predictions and compared to the known results.

[0108] With Reference to FIGS. 9A-C, the run time for both
CCD? and CCD++ are plotted as a function of the number of
processing cores for the training dataset of Dataset2 and for
latent feature spaces of size 10, 20 and 40, respectively. With
reference to FIGS. 10A-C, the run time for CCD?, Collective
CCD? and CCD++ are plotted as a function of the number of
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processing cores for the training dataset of Datasetl and for
latent feature spaces of size 10, 20 and 40, respectively. The
training dataset of Datasetl is 20% of the samples.

[0109] With reference to FIGS. 11A & B, the efficiency and
speedup, respectively, for CCD? Collective CCD? and
CCD++ are plotted as a function of the number of processing
cores for the training dataset of Datasetl and for a latent
feature space of size 10. Speedup is as follows.

T 43)
S, = T,

T, is the start time and T, is the finish time for p processing
cores. Efficiency is as follows.

- @4
P pr

With reference to FIGS. 12A & B, the efficiency and speedup,
respectively, for CCD?, Collective CCD? and CCD++ are
plotted as a function of the number of processing cores for the
training dataset of Datasetl and for a latent feature space of
size 40. For FIGS. 11A & B and 12A & B, the training dataset
of Dataset1 is 20% of the samples.

[0110] Asseenin FIGS.9A-C,10A-C, 11A & B, and 12A
& B, CCD? and Collective CCD? scale better than CCD++.
Relative to CCD? and Collective CCD?, CCD++ does not
scale well for more than 8 processing cores. With more than
8 processing cores, CCD++ actually takes longer than CCD?
and Collective CCD?. In contrast with CCD++, the runtimes
of CCD? and Collective CCD? montonically decrease with
additional processing cores. The slowdown of CCD++ is
likely due to the time the processing cores are required to wait
between parallel sections, which becomes greater as d
increases.

[0111] 5.2 Evaluation Metrics

[0112] Two metrics were used to evaluate the effectiveness
of CCD? and Collective CCD?: root mean squared error
(RMSE); and mean absolute error (MAE). Other metrics that
could be used include normalized root-mean-square error
(NRMSE), symmetric mean absolute percentage error
(SHAPE), etc. The RMSE is used for evaluating the predic-
tion quality of the model against other recommendation sys-
tems.

[0113] Suppose a stream of incoming updates in which
each update includes a user i, a product j, and an actual rating.
Given this, the rating is predicted as follows.

FULIE @s)

[0114] U,eR“is the row for user i in the user-by-feature
matrix and V,.eR 4 is the row for product j in the item-by-
feature matrix.

[0115]
follows.

The RMSE of a prediction can be calculated as

(46)
RMSE =
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N is the number of test instances in the test set, and r,, and t,,
are the actual and predicted values, respectively. More spe-
cifically, r,, may indicate the specific rating user i gave to
product j, or simply indicate that user i purchased product j,
whereas f,, is the value predicted by the model.

[0116] The MAE of a prediction can be calculated as fol-

lows:

1 . @7
MAE = WZ Iry — Py
ij

[0117] 5.3 Varying Effects of Social Interaction

[0118] Collective CCD? allows for additional information
to be used in the factorization. During experimental analysis,
the o regularization parameter in Collective CCD? and the
effects were measured. In the model, the o regularization
parameter controls the amount of influence given to the user-
by-user matrix (i.e., a matrix describing social interactions
between users) in the model. In particular, if =0 then the
social interactions are ignored and only the user-by-item
matrix is used in the factorization. Conversely, if o= (or
becomes large enough), then only the social interactions are
used (as these dominate).

[0119] With reference to FIGS. 13A-C, the effects of o are
illustrated using Datasetl. FIG. 13A illustrates a table of
RMSE for varying a and varying A values. FIGS. 13B & C
illustrates RMSE and run time plotted as a function of c for
CCD?, Collective CCD? and CCD++, where A=0.1, d=20,
and o=1. CCD? and CCD++ are included as baselines. Since
Collective CCD? is derived from CCD?, o significantly infiu-
ences performance. This indicates that incorporating infor-
mation from the user-by-user matrix improves performance
over what is obtainable using only the user-by-item matrix. In
particular, the prediction accuracy increases as a increases,
but then begins to decrease as a becomes larger. Hence, the
optimal accuracy is achieved when the user-by-item and user-
by-user matrices are used. However, if only one is used, then
the performance is worse.

[0120] Note that if A=0 then V becomes useless. Thus, any
prediction of the ith user’s preferences via u,”V becomes
impossible, even if the user-by-user matrix is used (since it
only influences U directly).

[0121] 6. System

[0122] With reference to FIG. 14, a matrix factorization
system 10 includes a CCD?*/Collective CCD? module 12
(hereafter referred to as the CCD? module). The CCD?* mod-
ule 12 receives one or more datasets 14 to be fused and
factorized together into a model 16. The datasets 14 share at
least one dimension (e.g., a user dimension) and are, for
example, graphs represented as adjacency matrices or tradi-
tional data in the form of rows and columns. The rows are
typically user information and the columns are typically fea-
tures/attributes.

[0123] The CCD? module 12 can be hardware, software or
a combination of both. Where the CCD? module 12 includes
software, the system 10 includes one or more digital process-
ing devices 18, such as computers. Each of the digital pro-
cessing devices 18 includes or has access to digital storage
(e.g., via the Internet or a local area network). Further, each of
the digital processing devices 18 includes one or more digital
processors, such as a microprocessor (typically having mul-
tiple processing cores), a microcontroller, a graphic process-
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ing unit (GPU), etc., to execute the software. Typically, the
storage stores the software and the digital processors execute
the software.

[0124] The digital processing devices 18 can execute the
software in parallel using both microprocessors and GPUs.
Further, the digital processing devices 18 can execute the
software in parallel over, for example, a communications
network, such as a local area network.

[0125] The digital processing devices 18 suitably include
or are operatively connected with one or more user input
devices 20, such as an illustrated keyboard, for receiving user
input to control the CCD? module 12. In other embodiments,
the input for controlling the CCD? module 12 is received from
another program running prior to or concurrently with the
CCD? module 12 on the digital processing devices 18, or from
a network connection, or so forth.

[0126] Further, the digital processing devices 18 suitably
include or are operatively connected with one or more display
devices 22, such as an illustrated cathode ray tube (CRT)
monitor, for displaying output generated based on the output
of the CCD? module 12. In other embodiments, the output
may serve as input to another program running subsequent to
or concurrently with the CCD? module 12 on the digital
processing devices 12, or may be transmitted via a network
connection, or so forth.

[0127] 7. Applications

[0128] Matrix factorization according to CCD? and Collec-
tive CCD? has a number of applications, including: matrix
completion; data mining; data fusion; regression/link
strength analysis; link existence prediction; ensemble use/
preprocessing; dimensionality/noise reduction; forecasting;
feature selection/extraction; graph roles and clustering; and
recommendation generation.

[0129] Matrix completion allows any missing entry of a
matrix Ae R " to be accurately filled in using U and V since
A~UV7, Similarly, matrix completion allows any missing
entry of a matrix Se R """ to be filled in using U and Z since
S~UZ~.

[0130] Data mining describes the arbitrary analysis of U, V,
and 7 to extract useful data. For example, since the d columns
of UandV correspond to the main directions (i.e., main latent
features), then the rows of these matrices may be ordered to
retrieve the top k users and products. As another example,
k-means clustering can be applied to find interesting groups
or trends.

[0131] Data fusion fuses two or more arbitrary matrices,
typically sparsely populated matrices, sharing common
dimensions using Collective CCD?. For example, consider an
online retail dataset stored in a relational database (or any
arbitrary data type), and including many columns and rows. If
only a user column is considered, this column can be merged
with purchases or other parameters to get a matrix for which
Collective CCD? can be applied. This matrix can then be
fused with a user-by-user matrix representing a social net-
work.

[0132] Regression/link strength analysis describes arbi-
trary regression analysis. For example, CCD? or Collective
CCD? can be used for predicting the rating of a movie for a
given user, for predicting the number of items a user will
purchase, or for predicting the total revenue of a product.
[0133] Link existence prediction can be used to predict
links between arbitrary people, web pages, products, events,
interactions, etc. For example, links for only products that
users have not bought can be predicted by filling in all the
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missing entries for a useri as U,*V7e, where ee R” is a vector
with element e,=1 if user i did not buy product j. Afterwards,
the predicted link strengths can be sorted, and the top-k can be
displayed.

[0134] Ensemble use/preprocessing applies CCD? or Col-
lective CCD? to several different models or an ensemble of
models, and then combines the trained models. For example,
nearest neighbor techniques can be used ontop of Uand V. As
another example, CCD? or Collective CCD? can be used with
a variety of other models, such Hypergraph Clustering.
[0135] Dimensionality/noise reduction factorizes a matrix
A or S, which is typically large, dense and/or noisy, into two
smaller matrices U and V, or U and Z, respectively. U, V, and
Z may then be used directly as they capture the significant
directions of the data, or as an approximation of AxUV7=A"
and S~UZ”=S". The new matrices A' and S' are more mean-
ingful since noise has been removed and it only represents the
significant features of the data.

[0136] Forecasting describes the prediction of the product a
user will buy at t+1 by treating a user-by-product matrix as a
continuous, dynamic system and using the current data at
time t with exponentially weighted past data from t-1. For
example, exponential weighting based on time can be applied
by replacing A in the foregoing equations with the following.

(1-0)4, +04, (48)

0 is typically 0.7 and represents the weighting factor.

[0137] Feature selection/extraction pertains to selecting or
extracting features from a large, possibly dense, matrix A.
The matrix A can include billions of rows and possibly col-
umns. Feature extraction is performed picking a model size d
and then computing U and V, which represent the main latent
features of the data. The columns of U and V represent more
informative latent features of the users and items, respec-
tively, since CCD? and Collective CCD? perform the best
rank-d approximation of A where noise and possibly redun-
dant features are removed. Note these features may also be
included in various tasks, like classification, clustering, etc.
[0138] Graphroles and clustering receives a large, possibly
dense, matrix A that is tall and skinny (i.e., the number of
columns is insignificant compared to the number of rows) and
that represent features of the graph (degree, wedges, cores,
egonets, etc.). Roles are then computed by finding the best
rank-d approximation of A~A'=UVZ where U corresponds to
the roles and V represents the influence of the features given
to each role.

[0139] Recommendation generation generates recommen-
dations of items (e.g., products, businesses, etc.) by learning
weights of items for a user based on user preferences in a
user-by-item matrix. Social preferences can also be taken into
account. These weights can then be binned in linear time by
applying a hash function (or vertical binning) and the top-k
recommendations can be served to that user.

[0140] 7.1 Real-Time Recommendations

[0141] CCD?and Collective CCD? can be used in a variety
ofreal-time recommendation systems. For a real-time recom-
mendation system, three types of computations are assumed
with various computational limitations: real-time; incremen-
tal; and batch.

[0142] 7.1.1 Real-Time Computations

[0143] A real-time computation includes quickly (i.e.,
within a few milliseconds) computing a recommendation
from U and V for a user i, where the user may or may not have
purchased anything in the past. The recommendations can be
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computed as +=U,.V7, where T is a vector of weights. The
weights can be computed in approximately O(nd) time. Once
the weights are computed, the weights are sorted and the
top-q are presented to the user.

[0144] In some embodiments, the number of products the
user 1 shares with other users can be combined with the
prediction given by CCD? or Collective CCD?. For example,
a prediction given by Collective CCD? can be normalized by
combining the weight of the prediction with the number of
shared products.

[0145] Instead of computing t=U,.VZ using the entire V7,
the set of items to compute ratings for can be constrained
based on select criteria, such as clusters, neighborhood,
friends, similarity, etc. For example, heuristics may be used to
only search over q entries, where q is much less than n (e.g.,
using simple similarity, social network, etc.). As another
example, using k-means, the users and products could be
clustered into groups. Then, with C(i) being products belong-
ing to the cluster of user 1, the above can be rewritten as
follows.

f:Ui-VC(i)T 49)

t is of length IC()!I.

[0146] One approach to approach to constrain the set of
items is using common neighbors to select a subset of the n
products. This improves the scalability since a score is com-
puted for only a fraction of the total n products for each user.
In terms of accuracy, it also may help. Note that in this case,
the weights from the common neighbors are not used.
Instead, only the prediction given by CCD? or Collective
CCD? is used.

[0147] In some embodiments, the preceding approach is
implemented by computing the purchased products of a select
user U . Let N (U ) be the set of products purchased by the
user U . Further, the set of unique users who also purchased
the products in N (U ) is computed. Let W be the set of
unique users.

[0148] With W and N (U ) computed, the products that the
users in W have purchased, but that the user u has not pur-
chased, are computed. This is a set difference between N ,(
U ) and N (W), where N (W) is the products purchased by
the users in W. The runtime is as follows.

O Ui () (50

[0149] Another approach to approach to constrain the set of
items is using friends to select a subset of the n products. In
some embodiments, this is implemented by calculating the
friends of a select user U . Let Ny(‘U ) be the set of friends of
the user U . With No(U ) computed, the products purchased
by each friend in Ny(U ) are computed. Let N (w) be the
products purchased by the wth friend in N¢( U ). The runtime
is as follows.

OWNS U, e U N 001 (1)

[0150] 7.1.2 Incremental Computations

[0151] Incremental computations incrementally update U,
V, and Z. An incremental update adds new users or new
products to U, V, and Z, and/or removes old/stale information
from A or Z. The updates can be performed periodically or in
response to events, such as the addition of new users or
products. The former is typically used to add new users or new
products and the latter is typically used to remove old/stale
information.

[0152] To remove old/stale information, note that each user
has a fixed-sized reservoir containing the most recent pur-
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chases/rating. Purchases or ratings are removed over time as
they become old/stale. Old/stale information is purchase or
ratings information older than a predetermined temporal
threshold.

[0153] To add a new user i who has purchased product j, a
vector ae R” of length n is created. The purchased products
are marked in the vector with a nonzero value or a rating if
available. Next, a is projected into the latent user feature space
as follows.

a=a’Vv (52)

0, can now be inserted into U either at the end by increasing
the size (m+1) or at the location of an inactive user.

[0154] The foregoing is similarly performed to add a new
user i who has friended another user k, or to add anew product
jpurchased by a user i. To carry out the latter, a vector be R™
of length m is created and projected into the latent product
feature space as follows: ¥,=b”U, where v, is inserted into V
according to one of the foregoing approaches. To carry out the
former, a vector ce R™ of length m is created and projected
into the latent social network feature space as follows:
2~c"U, where z, is inserted into Z according to one of the
foregoing approaches.

[0155] After performing an incremental update, a few itera-
tions of CCD? or Collective CCD? can be run to get a better
approximation. The number of iterations are chosen by the
user. The iterations can be performed immediately after add-
ing a new user or product, for example, in response to a new
user or product event. Alternatively, the iterations can be
performed periodically regardless of when the new user or
product is added. The period can also be chosen by the user.

[0156] Inapplying periodic iterations, the system is treated
as a dynamic system. The time-scale of the system is denoted
T and the time-scale of the application is denoted t. Each
iteration of the dynamic system corresponds to some time
period in the application time. For example, if T=5 and t=1
hour, then a single iteration is performed every 12 minutes.

[0157] 7.1.3 Batch Computations

[0158] Batch computations recompute U, V, and Z from
scratch. This includes performing model selection and train-
ing the model on A and S periodically and less frequently than
done for the incremental computations. For example, every
evening at midnight, the batch computations can be per-
formed. The model selection suitably adapts parameters of
the model, such as model size d and/or regularization param-
eters o and A. Advantageously, by recomputing U, V, and Z
from scratch, new users, updates/new purchases, new friend-
ships, etc. are incorporated into the model.

[0159]

[0160] With reference to FIG. 15, a real-time recommen-
dation system 50 is provided. The recommendation system 50
is typically employed in conjunction with a directory system
52, such as an electronic commerce system, a movie rental
system, a music streaming system, or the like, generating one
or more datasets to be factorized for recommendations.

[0161] Initially, the recommendation system 50 receives
one or more initial datasets 54 from which to base the recom-
mendations. This initial datasets 54 are typically received
from the directory system 52. The initial datasets 54 include
a user-by-item matrix, and optionally a user-by-user matrix
(e.g., a social network). The item can be, for example, a
product, a movie, a business, or any other item known to be
recommended to users.

7.1.4 Implementation
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[0162] The initial datasets 54 are used to select and train a
model, as described above, approximating the initial datasets
54. The initially selection and training can be performed upon
receipt of the initial datasets or by a batch computation mod-
ule 56 periodically performing batch computations. To select
and train the model, the recommendation system 50 makes
use of, or includes, the matrix factorization system 10 of F1G.
14. The lower dimensional matrices approximating the initial
datasets 54 are suitably stored in one or more memories 58 of
the recommendation system 50.

[0163] After the initial training, the recommendation sys-
tem 50 can be employed to provide users of the directory
system 52 with recommendations from the lower-dimen-
sional matrices. In that regard, an executor module 60 of the
recommendation system 50 performs real-time computations
to provide users with recommendations on request and within
afew milliseconds. The requests are received from users (e.g.,
browsing a directory of the directory system 52) by way of
user computing devices 62. The recommendations are
returned to the user by way of the user computing devices 62.

[0164] At periodic intervals (e.g., at midnight or every few
days), the batch computation module 56 performs batch com-
putations. In that regard, the batch computation module 56
coordinates with the matrix factorization system 10 of FIG.
14 to select and train the model on current datasets. The
current datasets are initially the initial datasets 54 and
updated over time with a stream of updates to the initial
dataset 54 from the directory system 52. These updates can
include, for example, the addition of new users and/or items.
The current datasets can also be maintained in the memories
58 of the recommendation system 50. In some embodiments,
model selection is performed based on stream characteristics.

[0165] Upon receipt of new users or items from the stream,
or at periodic intervals, an incremental computation module
64 performs incremental computations to remove old/stale
data is removed from the current datasets. Additionally, or
alternatively, the incremental computation module 64 per-
forms incremental computations to project the new users or
items into the lower-dimensional matrices. After performing
an incremental update to the current datasets, or projecting
into the lower-dimensional matrices, the matrix factorization
system 10 of FIG. 14 performs a predetermined number of
iterations to refine the lower dimensional matrices. The
period with which incremental computations are performed is
less than the period for batch computations.

[0166] The incremental computation, executor and batch
computation modules 56, 60, 64 can each be one of hardware,
software, or a combination of both. Where these modules 56,
60, 64 include software, the software is executed by one or
more digital processing devices 66, such as the digital pro-
cessing devices 18 of FIG. 14. Where the recommendation
system 50 includes multiple digital processing devices, the
execution of the software can be distributed across the digital
processing devices and performed in parallel.

[0167] As seen above, the recommendation system 50
dynamically adapts to the changing characteristics of the
stream. This includes adapting the model parameters based
on the stream. For example, the model size d and/or the
regularization parameters A and o can be dynamically
adapted in real-time. This is advantageous for data that is
bursty or has various other temporal properties (e.g., cycles,
spikes, etc.).
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[0168] 8. Summary

[0169] The framework can be used to build many commer-
cial applications and tools. As described herein, the frame-
work is applied to recommendation, but it also has other use
cases, such as predicting correlations among objects or pre-
dicting links between people. In addition, the framework may
be viewed as a system for compression, since large matrices
may be factorized into much smaller matrices that approxi-
mate the original large matrix. It has many other applications
as well.

[0170] While CCD?or Collective CCD? were described for
auser-by-item matrix and a user-by-user matrix, those skilled
in the art will appreciate that other matrices can be employed.
The matrices need only share a common dimension (e.g.,
users). Further, while Collective CCD? was described for
fusing and factorizing only two matrices, those skilled in the
art will appreciate that Collective CCD? can be extended to
fusing and factorizing more than two matrices.

[0171] Advantageously, the framework is flexible, scalable
in streaming environments, efficient/fast, and accurate. The
framework can fuse an arbitrary number of edge attributes
(matrices) or vertex attributes (vectors), and the computa-
tional complexity of the framework is linear in the number of
nonzeros in the matrices. Further, the framework is incremen-
tal and scalable for the streaming environment. Moreover, the
framework is efficient/fast for “big data” with billions or more
edges.

[0172] The framework is also accurate and solves data spar-
sity issues (e.g., users with few or no item/purchase history).
More specifically, the framework improves accuracy and per-
formance relative to known CCD based approaches to matrix
factorization, such as CCD++. This is achieved by using
improved parallel constructs, which allow threads to perform
more work while waiting less, and by using additional data
sources. For example, a social network can be used for prod-
uct recommendations, which improves accuracy of recom-
mendations since users are more likely to have similar pref-
erences with friends than arbitrary people.

[0173] The above-described subject matter has a variety of
applications and advantages, including but not limited to the
following.

[0174] Providing a general parallel matrix factorization
framework suitable for factorizing many types of datasets
such as graphs (represented as adjacency matrices) or tradi-
tional data in the form of rows and columns where the rows
may be user information and the columns might be features/
attributes, among many other datasets;

[0175] Providing afactorization approach (CCD?++) based
on cyclic coordinate descent, which is shown to be faster and
more accurate than recent methods.

[0176] Providing a general parallel framework for factor-
izing arbitrary number of matrices and attributes called Col-
lective CCD*++, which fuses multiple data sources (edge
attributes=matrices, vertex attributes=vectors) into a single
matrix factorization that is fast for big data and general
enough for a wide range of applications.

[0177] Providing a method for improving the prediction/
accuracy problems with sparse data/graphs. These problems
arise when rows or columns of the matrix or data have only a
few number of nonzero values. This makes it almost impos-
sible to obtain good predictions. The method proposed
herein, utilizes additional matrices, and combines this infor-
mation in order to improve predictions.
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[0178] Providing a method for solving the data sparsity
problem by leveraging additional information in the factor-
ization of a matrix or multiple matrices.

[0179] Providing a real-time matrix factorization system
that is fast, scalable, and accurate and that is applicable for a
variety of applications such as recommendation.

[0180] Providing a lock-free method for factorizing matri-
ces which also is wait-free between updating U, V, or other
matrices, meaning that the workers (i.e., threads, processing
units) that perform parallel updates to U, do not have to wait
until all workers are finished, before starting to update V, or
any other matrix. If a worker finishes before the others, then
it moves immediately to updating the other matrices, without
the need to wait until all workers finish updating U before
starting on updating V.

[0181] Providing a parallel method for factorizing big data
and fast with a runtime of O(IE(G)I+IE(S)l) where G and S are
graphs, thus linear in the number of edges in the graphs.
[0182] Providing a method for reducing the dimensionality
or compressing a dataset (e.g., a graph) that is flexible in the
sense that the number of dimensions k may be specified by the
user, hence, if space and speed is of importance, then a small
k may be selected, while if accuracy is more important than
space and speed, then the user may specify a larger k.
[0183] Providing a method for learning a model for predic-
tion of user preferences (i.e., items such as those found in a
retail store). The system learns a much smaller, more compact
representation of the original dataset, which can then be used
for a variety of applications. This has the benefit of only
requiring the much smaller model to be loaded into memory,
and does not require the original data, etc. . . ..

[0184] Providing a method for adjusting the matrix factor-
ization and the resulting model using either user-defined
parameters given as input, or learned automatically through
cross-validation.

[0185] Providing a system for evaluating and tuning a
model for a particular prediction or factorization task. The
system may be configured with a wide variety of error mea-
sures such as root mean square error (RMSE), normalized
root mean square error (NRMSE), mean absolute error
(MAE), and symmetric mean absolute percentage error
(SMAPE), among others.

[0186] Providing a method for performing updates to a
matrix in-place, which avoids the need to copy the updated
vectors back into the original matrix. Saving both the time
required to do so and the space required to store the interme-
diate results.

[0187] Providing a method for computing the top-k predic-
tions in an online streaming manner, which requires storing
only k values. The method has constant O(1) for checking if
a prediction is in the top-k and an insertion time O(k) in the
worst-case.

[0188] Providing a method for processing recommenda-
tions (and other applications) in a streaming real-time setting.
The method is completely parallel able to handle bursts in
streams where many users would make requests simulta-
neously. In this case, the method would simply divide such
requests among the p processing units, and use the smaller
model learned from the matrix factorization framework to
obtain predictions independently of one another.

[0189] Providing a system for real-time recommendations
consisting of three main computations: batch, incremental,
and real-time.
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[0190] It will be appreciated that variants of the above-
disclosed and other features and functions, or alternatives
thereof, may be combined into many other different systems
or applications. Various presently unforeseen or unantici-
pated alternatives, modifications, variations or improvements
therein may be subsequently made by those skilled in the art
which are also intended to be encompassed by the following
claims.

What is claimed is:

1. A system for matrix factorization, said system compris-
ing:

at least one processor programmed to:

receive at least one matrix to be factorized into a plural-
ity of lower-dimension matrices defining a latent fea-
ture model; and
update the latent feature model to approximate the at
least one matrix, the latent feature model including a
plurality of latent features, and the update performed
by:
cycling through the plurality of latent features at least
once; and
alternatingly updating the plurality of lower-dimen-
sion matrices during each cycle.

2. The system according to claim 1, wherein the update is
performed based on cyclic coordinate descent (CCD).

3. The system according to claim 1, wherein the at least one
matrix represents a graph or a dataset of rows and columns.

4. The system according to claim 1, wherein the at least one
matrix includes a plurality of matrices, and wherein the at
least one processor is further programmed to fuse and factor-
ize the plurality of matrices by the update.

5. The system according to claim 4, wherein the plurality of
matrices include a user-by-item matrix and a user-by-user
matrix, the user-by-item matrix describing user interactions
with items, and the user-by-user matrix describing user inter-
actions with other users.

6. The system according to claim 1, wherein the at least one
processor is further programmed to:

automatically optimize parameters of the latent feature

model based on the at least one matrix before the update
to minimize an objective function.

7. The system according to claim 1, wherein the plurality of
lower-dimension matrices are alternatingly updated in place
during each cycle.

8. The system according to claim 1, wherein the at least one
processor includes a plurality of workers, and wherein the
update includes:

partitioning first and second matrices of the plurality of

lower-dimension matrices into blocks;

dynamically assigning the blocks to the plurality of work-

ers to alternatingly update the plurality of lower-dimen-

sion matrices during each cycle, wherein the assigning

includes:

assigning the blocks of the first matrix to the plurality of
workers as the plurality of workers become free to
update the first matrix in parallel; and

once all of the blocks of the first matrix are assigned, and
regardless of whether a worker of the plurality of
workers is processing a block of the first matrix,
assigning the blocks of the second matrix to the plu-
rality of workers as the plurality of workers become
free to update the second matrix in parallel.

9. The system according to claim 1, wherein the at least one
processor is further programmed to:
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generate recommendations from the plurality of lower-
dimension matrices without use of the at least one
matrix.

10. The system according to claim 1, wherein the at least
one processor is further programmed to:

receive a stream of updates to the at least one matrix in real

time;

update the at least one matrix with the updates of the

stream;

project a new column or row of the at least one matrix into

a latent feature space of the latent feature model, the
column or row newly added to the at least one matrix by
the updates; and

add the projection to the plurality of lower-dimension

matrices.

11. A method for matrix factorization, said method com-
prising:

receiving by at least one processor at least one matrix to be

factorized into a plurality of lower-dimension matrices
defining a latent feature model; and

updating by the at least one processor the latent feature

model to approximate the at least one matrix, the latent

feature model including a plurality of latent features, and

the updating performed by:

cycling through the plurality of latent features at least
once; and

alternatingly updating the plurality of lower-dimension
matrices during each cycle.

12. The method according to claim 11, wherein the updat-
ing is performed based on cyclic coordinate descent (CCD).

13. The method according to claim 11, wherein the at least
one matrix includes a plurality of matrices, and wherein the
method further includes fusing and factorizing the plurality of
matrices by the updating.

14. The method according to claim 13, wherein the plural-
ity of matrices include a user-by-item matrix and a user-by-
user matrix, the user-by-item matrix describing user interac-
tions with items, and the user-by-user matrix describing user
interactions with other users.

15. The method according to claim 11, further including:

automatically optimizing parameters of the latent feature

model based on the at least one matrix before the updat-
ing to minimize an objective function.

16. The method according to claim 11, wherein the plural-
ity of lower-dimension matrices are alternatingly updated in
place during each cycle.

17. The method according to claim 11, wherein the updat-
ing further includes:

partitioning first and second matrices of the plurality of

lower-dimension matrices into blocks;
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dynamically assigning the blocks to a plurality of workers
of the at least one processors to alternatingly update the
plurality of lower-dimension matrices during each
cycle, wherein the assigning includes:
assigning the blocks of the first matrix to the plurality of
workers as the plurality of workers become free to
update the first matrix in parallel; and

once all of the blocks of the first matrix are assigned, and
regardless of whether a worker of the plurality of
workers is processing a block of the first matrix,
assigning the blocks of the second matrix to the plu-
rality of workers as the plurality of workers become
free to update the second matrix in parallel.

18. The method according to claim 11, further including:

generating recommendations from the plurality of lower-
dimension matrices without use of the at least one
matrix.

19. The method according to claim 11, further including:

receiving a stream of updates to the at least one matrix in
real time;

updating the at least one matrix with the updates of the
stream;

projecting a new column or row of the at least one matrix
into a latent feature space of the latent feature model, the
column or row newly added to the at least one matrix by
the updates; and

adding the projection to the plurality of lower-dimension
matrices.

20. A system for providing recommendations, said system

comprising:
a matrix factorization module configured to update a latent
feature model approximating at least one matrix, the
update performed by alternatingly updating a plurality
of lower-dimension matrices defining the latent feature
model.
an executor module configured to generate recommenda-
tions from the plurality of lower-dimension matrices
without use of the at least one matrix; and
an incremental computation module configured to:
receive a stream of updates to the at least one matrix in
real time;

project a new column or row of the at least one matrix
into a latent feature space of the latent feature model,
the column or row newly added to the at least one
matrix by the updates; and

add the projection to the plurality of lower-dimension
matrices



