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ABSTRACT

Unlike single images, capturing bursts enable many possible
downstream tasks (e.g. superresolution, HDR enhancement)
due to the rich information preserved in the consecutive
frames. Efficient compression of these bursts is therefore es-
sential given the additional frames to store. In this paper, we
propose a novel near-lossless compression method that can
preserve the most relevant information in the burst to enable
multiple downstream image enhancement tasks, while at the
same time reducing the file size. Specifically, we propose a
two-bitstream near-lossless compression pipeline that con-
trols the image-space distortion at frame level, and introduce
the Lipschitz condition to bound the task-space distortion
at burst level. Experiments conducted on a real-world burst
dataset confirm the benefit of the proposed solution in terms
of rate-distortion both in the burst frame space and the su-
perresolution task space, a popular downstream task in burst
processing.

Index Terms— Burst, near-lossless image compression,
Lipschitz condition, Bayer raw images

1. INTRODUCTION

Burst-based imaging is one of the key techniques in mod-
ern computational photography to overcome the limitations of
mobile devices’ cameras. Capturing a group of images tem-
porally close to each other, a so-called burst, enables very
complex processing like superresolution and low-light pho-
tography with visual results unreachable with a single input
image. This happens because burst frames present sub-pixel
shifts with respect to each other, e.g., due to camera motion,
thus providing different samplings of the captured scene.

However, the increased number of captured images repre-
sents a challenge in terms of storage. For this reason, most
mobile devices today simply discard the original burst once
it is processed at capture time. However, storing the origi-
nal burst could be useful to enable further downstream tasks
at a later stage, like super-resolution, focus switch, lighting
adjustment, denoising, or other image enhancement tasks.
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In this paper, we therefore propose a burst-specific com-
pression method that is able to consistently reduce the overall
burst size while preserving the necessary information to en-
able multiple high-quality downstream image enhancement
tasks. Traditional compression techniques focus on either
lossless compression or lossy compression optimized for hu-
man perception. In our problem instead, the compressed out-
put is to be consumed by a downstream image processing al-
gorithm, which requires us to selectively preserve information
in the burst that is relevant for the task. We exploit this as-
pect to design a compression scheme that results in better per-
formance compared to state-of-the-art methods both in terms
of compression and distortion in the downstream task space.
Particularly, we want the output of a downstream image en-
hancement task starting from our compressed burst to be as
close as possible to the output starting from the uncompressed
burst. Our proposed approach is based on a two-bitstream
technique that allows us to reach near-lossless performance
without compromising on compression. Moreover, we design
the Lipschitz condition to predict the distortion of the com-
pressed burst in the downstream task by simply considering
the distortion of the burst frames compared to their uncom-
pressed version, i.e., without actually processing the burst.

We summarize the contributions of our work as follows:

• We introduce the Lipschitz condition for our problem
to bound the distortion in the downstream task space
based on the distortion in the burst images space;

• We propose a two-bitstream near-lossless burst com-
pression pipeline, which contains a lossy compres-
sion module and a residual coding module. This de-
sign allows us to trade-off between compression ratio
and distortion of the lossy reconstruction via a hyper-
parameter and reach near-lossless performance without
compromising on compression;

• Our approach is the first solution for near-lossless com-
pression of Bayer RAW images, the most common un-
compressed image format produced by digital cameras;

• We evaluate our network considering superresolution
as a downstream task, and show the effectiveness of
our model in both image space and the task space.



2. RELATED WORK

Image compression algorithms have been studied for decades.
The key idea behind compression is to exploit the redundancy
in the input image. Usually, images are transformed to a fea-
ture space by a linear or nonlinear transformation, followed
by an entropy coding process, such as arithmetic coding [1]
and asymmetric numeral system [2]. Existing approaches can
be broadly divided into lossless or lossy.

Lossless methods aim at reducing the storage size without
any alteration or loss in the original image. JPEG2000 [3] ap-
plies the discrete wavelet transform to capture the local image
statistics. WebP [4] improves the compression ratio by using
the intra-frame coding of the VP8 video format [5]. FLIF
[6] is built on the MANIAC entropy coding algorithm and is
the current state-of-the-art for lossless compression. Several
recent works use Convolutional Neural Networks (CNN) to
better capture the hidden statistics of the image and achieve
higher compression. Pixel CNN and its variants [7, 8, 9] aim
to predict the distribution of unseen pixel value conditioned
on previously predicted pixels. Despite good compression
performance, these methods are slow in practice.

While lossless methods do not introduce any distortion,
the compression ratio that can be obtained using lossy meth-
ods is much higher, which makes them the preferred choice
for constrained settings like mobile devices. By adding a
quantization step into a lossless pipeline, it is possible to in-
crease the compression ratio, at the cost of increased distor-
tion compared to the original image. CNN-based lossy image
compression algorithms adopt an autoencoder architecture, in
which the key step to maximize compression is the entropy
estimation techniques. The hyperprior model [10] extracts an
image-specific prior from the given image and uses the prior
to estimate the marginal distribution of the latent representa-
tion. The joint models [11, 12, 13, 14] introduce the context
modeling to the hyperprior model for a better marginal dis-
tribution estimation. However, such CNN-based autoencoder
architecture is usually not invertible, making it difficult to ex-
plicitly control the distortion of the decompressed image.

Even though existing lossy image compression methods
can obtain competitive compression ratio, they are designed
to optimize between compression ratio and distortion com-
pared to the original input image. On the other hand, in our
burst compression case, the compressed burst is to be fur-
ther processed by a downstream image processing algorithm.
Therefore, in our work, we propose a novel compression tech-
nique that is able to find the right trade-off between compres-
sion ratio of the burst and reconstruction quality of the output
of a given downstream processing task (e.g., superresolution).
Our approach is designed to reach near-lossless performance,
meaning that the absolute difference between the original and
compressed image can be controlled and be bounded by a sin-
gle value referred as τ .

3. TASK-ORIENTED NEAR-LOSSLESS BURST
COMPRESSION

In this paper, we propose a two-stage framework for the task-
oriented near-lossless compression of bursts, as shown in Fig.
1. Assume Ij denotes a set of burst frames, where j de-
notes the id of the frame. The image compression model
is then denoted as (E,D), where E,D denote the encod-
ing and decoding modules, respectively. The encoding mod-
ule transforms the image data into a feature vector, while
the decoding module transforms the feature vector back to
the image space. For conventional image compression al-
gorithms, distortion is measured directly in the image space,
i.e., dimg = ∥D(E({Ij}))− {Ij}∥p, where ∥·∥p denotes the
Lp norm. In this case, it is easy to bound the distortion by
pixel-wise manipulation. In the task-oriented case instead, a
downstream task T is introduced to transform the burst im-
ages from the image space to the task space, which entails
that the distortion is measured in the task space, i.e., dtask =
∥T (D(E({Ij})))− T ({Ij})∥p. Bounding the distortion in
the task space by operating on the pixels in the image space
is a challenging problem given that the downstream task is
often complex and highly non-linear (e.g., a neural network).
The goal of our approach is to overcome this limitation and be
able to control the task space distortion from the image space.
We first show how to bound the distortion in the task space,
and later on describe our near-lossless pipeline.

3.1. Image-space Distortion to Task-space Distortion

In this section, we show how to estimate the error bound
of the task-space distortion based on the error bound of the
image-space distortion. If the downstream task T is a lin-
ear transformation, it is possible to find the closed form of
the correlation between the per-pixel variation in the image
space with that in the task space. Without loss of general-
ity, we first assume the downstream task is the bilinear in-
terpolation, in which each pixel in the task space is interpo-
lated by its adjacent pixels in the image space. We denote by
(x, y) and (u, v) the coordinates of the pixels of the image
in the image space and in the task space, respectively. In bi-
linear interpolation, the pixel (u2t, v2t) in the task space, of
which the pixel value is P2t,2t, is interpolated by the pixels
{(xt, yt) , (xt+1, yt) , (xt, yt+1) , (xt+1, yt+1)} in the image
space, of which the pixel values are {Qt,t, Qt+1,t, Qt,t+1,
Qt+1,t+1}. More formally:

∂P2t,2t

∂Qt+k,t+l
= (−1)k+l(xt+1−k−u2t)(yt+1−l−v2t)

(xt+1−xt)(yt+1−yt)
(1)

where k, l ∈ {0, 1}. From Eq. 1, it is possible to see that the
variation of the pixel value in the task space is linearly related
to the variations of the pixel values in the image space. With
u2t ∈ [xt, xt+1] , v2t ∈ [yt, yt+1], we have

∣∣∣ ∂P2t,2t

∂Qt+k,t+l

∣∣∣ ≤
1. If the distortion in the image space is bounded by ϵ, i.e.,
dimg ≤ ϵ, then the distortion in the task space is bounded
by 4ϵ, i.e., dtask =

∑
k,l

∂P2t,2t

∂Qt+k,t+l
ϵ ≤ 4ϵ. Therefore, if the



downstream task is a linear transformation, it is possible to
bound the per-pixel variation in the task space by bounding
the per-pixel variation in the image space.

In the burst processing domain though, the downstream
task is often a non-linear transformation (e.g., a neural net-
work), which entails that dtask = maxu,v

∑
x,y

∂Pu,v

∂Qx,y
ϵ

(where Pu,v and Qx,y denote the pixel value in the task
and the image space, respectively). Given the complexity
of the downstream task, it might not be possible to compute
this partial derivative, which indicates the pixel-wise correla-
tion between the image and task space. Inspired by previous
works on the robustness of neural networks [15, 16, 17], we
introduce the Lipschitz continuity of a neural network, and
bound the per-pixel variation in the task space with the esti-
mated tight bound of the Lipschitz constant. Particularly, for
a given function f : Rn → Rm, if there exists a non-negative
constant L ≥ 0 such that:

∥f(X)− f(Y )∥p ≤ L∥X − Y ∥p, ∀X,Y ∈ Rn (2)

where the function f is Lipschitz continuous on Rn, and the
smallest such L is called the Lipschitz Constant (LP) of f .
The Lipschitz constant is the maximum ratio between varia-
tions in the output space and the variations in the input space
and thus is a measure of sensitivity of the function with re-
spect to input perturbations. In linear transformations, the
Lipschitz constant is easy to estimate. Neural networks can be
divided into linear operators (e.g., convolutions) and nonlin-
ear operators (e.g., activation functions). The difficulty of es-
timating the Lipschitz constant of a neural network lies there-
fore in the non-linear activation functions. Previous works
found that even though activation functions are nonlinear in
nature, they are usually slope restricted:

α ≤ φ(X)− φ(Y )

X − Y
≤ β,∀X,Y ∈ R, (3)

where φ : R → R can be a nonlinear function, and 0 ≤
α < β < ∞. In particular, the activation functions ReLU,
tanh and sigmoid are all slope restricted with α = 0, β = 1.
Such slope-restricted non-linearities enable us to estimate a
tight bound on the Lipschitz constant [17]. However, com-
puting the Lipschitz constant of a neural network would re-
quire quadratic time, according to the number of neurons in
the network, which is infeasible in practice. For this rea-
son, in this work, we estimate the Lipschitz constant of the
downstream task in a numerical manner. In particular, we
add uniform noise to the input of the network with differ-
ent means and measure the corresponding variations in the
task space. Therefore, if the Lipschitz continuity holds for
the downstream task, with corresponding Lipschitz constant
L, we can bound the task-space distortion by manipulating
image-space pixel-wise distortion, i.e., dtask ≤ Ldimg .

3.2. A Near-lossless Image Compression Framework

We now introduce our near-lossless image compression
framework, which targets the following objective function:

Fig. 1. Overview of proposed near-lossless image compres-
sion system.

min
E

H(E ({Ij}))

s.t. ∥T (D (E ({Ij})))− T ({Ij})∥p < ε
(4)

where H denotes encoding costs. Assuming the Lipschitz
continuity holds for the downstream task, we can rewrite the
objective function as:

min
E

H(E ({Ij}))

s.t. ∥D (E ({Ij}))− {Ij}∥p <
ε

L

(5)

Inspired by previous works on ”lossy plus residual” cod-
ing schemes [18, 19], we propose a two-stage framework for
our compression pipeline. As shown in Fig. 1, the first stage
utilizes a lossy image compression module to reduce the re-
dundancy in the source image, in which we may apply any
flexible lossy compression algorithms (e.g. JPEG, lossy FLIF
etc.). The second stage is a pixel-wise image compression that
focuses on encoding the residuals between the source image
and the decoded image from the first stage. Particularly, the
residual map is first fed into the τ quantization module, in
which a binning process is implemented for error control, and
then the quantized residual map is fed into a lossless image
compression module. Thus, in the end, we use two bitstreams
to encode the source image. The advantages of using this two-
stage framework for near lossless image compression are two-
fold. First, any lossy compression scheme (either traditional
or CNN-based) can be employed in the first stage, which en-
ables the framework to be applied in multiple compression
scenarios. Second, unlike existing learned lossy compression
methods, our framework introduces invertibility, allowing for
controllable distortion without need for retraining.

In particular, the τ quantization module is formulated as:

R̂ = sgn (R) (2τ + 1)

⌊
|R|+ τ

2τ + 1

⌋
, (6)

where R and R̂ denote the residual map before and after quan-
tization, respectively, sgn () denotes the sign function and ⌊⌋
the maximum integer that is less than or equal to the given
variable. With the τ quantization module, the per-pixel differ-
ence between R and R̂ is bounded by τ . To ensure the com-
pression ratio of the second stage increases with increased
tolerance on the distortion error, we apply a PMF quantiza-
tion along with the τ quantization module. Assume rx,y and
r̂x,y denote the pixel values of the residual map R and R̂ at
position (x, y), respectively. According to the quantization



scheme at Eq. 6, we have ∥r̂x,y − rx,y∥ ≤ τ . Similar to [8],
the discretized logistic mixture model is introduced to esti-
mate the distribution of each residual. Note that each burst
frame is in the RAW format instead of standard RGB format,
which contains four RGGB channels. Thus, we may factorize
the distribution of each pixel (i.e. Prob(r̂x,y)) as the product
of the distribution of each sub-pixel.

Prob(r̂x,y) = Prob(r̂crx,y|µcr (Cx,y), s
cr (Cx,y))

× Prob(r̂
cg1
x,y |µcg1 (Cx,y, µ

cr ), scg1 (Cx,y))× ...
(7)

where cr, cg1 , cg2 , cb denote the four RGGB channels. Cx,y

denotes the context information. Then we adapt the cross-
channel auto-regression model for parameters estimation,

µcg1 = µcg1 (Cx,y) + α1(Cx,y)r̂
cr
x,y

µcg2 = µcg2 (Cx,y) + α2(Cx,y)r̂
cr
x,y + β1(Cx,y)r̂

cg1
x,y

µcb = µcb(Cx,y) + α3(Cx,y)r̂
cr
x,y + β2(Cx,y)r̂

cg1
x,y

+ γ(Cx,y)r̂
cg2
x,y .

(8)

4. EXPERIMENTAL RESULTS

To evaluate the benefits of the proposed burst compression
approach, we choose super-resolution as a downstream task,
given its popularity. Specifically, we choose the Deep Burst
SR network from Bhat et al. [20], which takes a set of burst
frames and generates a single super-resoluted frame.

First, we aim to investigate the impact of distortion on the
individual burst frames on the final distortion of the super-
resolute image generated by Deep Burst SR. Following sim-
ilar convention in the near-lossless compression domain, we
compute distortion τ as the largest pixel-level difference be-
tween the original and the compressed image (i.e., the H-
infinity norm). As shown in Fig. 2(a), given the same level of
distortion in the image space, the distortion in the task space
may vary. Next, in Fig. 2(b), we compute the maximum ratio
between the variations in the task space and those in the image
space at different distortion levels. Notably, the sensitivity of
the given neural network decreases when the distortion level
increases as shown in Fig. 2(b).

To implement our method, we use the lossy FLIF algo-
rithm (with quality setting = 25) as the lossy compression
module in the first stage and adapt the PixelCNN++ algorithm
as the lossless image compression model for the generation of
the residual stream in the second stage. Particularly, we ex-
tended the original Pixel CNN++, which is designed to work
on 8-bit RGB images, to 10-bit Bayer RAW RGGB images1,
the standard uncompressed output of modern digital cameras.
We use the public HDR+ dataset [21] for our experiments,
which contains 3640 10-bit RGGB bursts. 80% of the bursts
are used for training and 20% for validation and testing.

For evaluation, we choose JPEG LS [22] as our baseline
method, where we use its near-lossless mode to control the

1https://en.wikipedia.org/wiki/Bayer filter

Fig. 2. Lipschitz constant estimation when considering super-
resolution as the burst downstream processing task.

Fig. 3. Proposed Nearlossless Compression method’s BPSP
over Tau on 10bit Burst images.

maximum pixel-level distoration, Tau. We evaluate the two
methods on a set of bursts consists of 10bit Bayer raw images.
The results of this analysis are as shown in Fig. 3, where com-
pression rate is measured with bis per sub-pixel (BPSP) and
distoration is measured in terms of Tau. As we can see, our
proposed method still under-performs the highly-optimized
hand-crafted codec JPEG LS. However, our proposed solu-
tion is the first learning-based solution for near-lossless com-
pression of Bayer raw images.

5. CONCLUSION
In this work, we presented a novel approach for the near-
lossless compression of bursts. Since bursts are meant to be
processed by a downstream image processing algorithm, we
design a two-stage pipeline that controls the image-space dis-
tortion of the individual burst frames while guaranteeing a
specific level of distortion in the task space. This is obtained
by introducing the Lipschitz condition for our problem that
relates task space distortion to image space distortion. More-
over, our approach represents the first attempt at the near-
lossless compression of Bayer RAW images, the most com-
mon uncompressed output format of digital cameras. Exper-
iments on the HDR+ burst dataset confirms the effectiveness
of our scheme.
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