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ABSTRACT
Tabular pre-training models have received increasing attention due

to the wide-ranging applications for tabular data analysis. However,

most of the existing solutions are directly built upon the tabular data

with a mixture of non-semantic and semantic contents. According

to the statistics, only 30% of tabular data in wikitables are semantic

entities that are surrounded and isolated by enormous irregular

characters such as numbers, strings, symbols, etc. Despite the small

portion, such semantic entities are crucial for table understanding.

This paper attempts to enhance the existing tabular pre-training

model by injecting common-sense knowledge from external sources.

Comparedwith the knowledge injection in the natural language pre-

training models, the tabular model naturally requires overcoming

the domain gaps between external knowledge and tabular data

with significant differences in both structures and contents. To this

end, we propose the dual-adapters inserted within the pre-trained

tabular model for flexible and efficient knowledge injection. The

two parallel adapters are trained by the knowledge graph triplets

and semantically augmented tables respectively for infusion and

alignment with the tabular data. In addition, a path-wise attention

layer is attached below to fuse the cross-domain representation

with the weighted contribution. Finally, to verify the effectiveness

of our proposed knowledge injection framework, we extensively

test it on 5 different application scenarios covering both zero-shot

and finetuning-based tabular understanding tasks over the cell,

column, and tables levels.
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• Computing methodologies → Artificial intelligence; Ma-
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1 INTRODUCTION
With the advance of large-scale pre-trained languagemodels (LMs) [?
? ? ? ? ? ? ? ], the representation learning of tabular data has recently
caught increasing attention. Several tabular pre-training models

have been proposed to address the tasks like table interpretation,

augmentation, and question answering [? ? ? ? ? ? ]. However, most

existing works have been focusing on pre-training itself, which

only rely on the general distribution information of corpora with-

out considering the difference between semantical and irregular

characters. Unlike the natural language, most of the tabular data

are organized by non-semantical items, including numbers, strings,

or symbols, which approximately remain 70% of the tabular pre-

training datasets like Wikitables and Common Crawl Tables [? ?
]. Therefore, the semantical table entities, including both headers

and cells, take the remaining 30% but play an important role in

high-level table understanding such as column type prediction or

table classification based on the semantical attributes. The equal

consideration of these imbalanced data will potentially result in the

bias of the model towards the non-semantical items.

Thus, injecting structured knowledge from the external data-

base [? ? ? ? ? ? ? ] into LMs is a natural idea to enhance the

semantical dependency among the entities. Such similar ideas have

been applied in the natural language pre-training models [? ? ? ?
? ]. For instance, CN-ADAPT [? ] inserts bottlenecks layers into
the transformer modules for knowledge fusion. Such bottlenecks

layers are regarded as the external parameters optimized by the

masked language modeling (MLM) loss over the synthetic corpus by

unwrapping ConceptNet [? ] into sentences. [? ] applies the phrase
strategy and entity strategy masking to augment the word-level

mask. Nevertheless, there are three main challenges to injecting

external structural knowledge into tabular data pre-training mod-

els. First of all, the tabular pre-training models are built upon the

various tables containing many irregular characters and out-of-

vocab (OOV) strings with unique meanings. The semantical entities

only take a small part of the whole corpora, which requires the

model to overcome the severe noise of irregular characters to learn

https://doi.org/10.1145/3534678.3539403
https://doi.org/10.1145/3534678.3539403
https://doi.org/10.1145/3534678.3539403
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Figure 1: Overview of our model. The proposedmodel is pretrained by the tabular corpora [? ] and external well strctured data
such as knowledge graph [? ]. Then the model will be applied to multiple downstream tasks by either zero-shot learning or
direct finetuning.

semantical dependencies. Secondly, there are severe domain gaps

between the external knowledge and tabular data in both data struc-

ture and distribution. The tabular data are organized in rigid grids.

However, the knowledge base is mainly represented by triples or

graphs, where most linked entities are spread across tables with-

out any connections in corpora. Moreover, most of the popular

entities in the knowledge base do not have a high frequency in

the tabular corpora, which cannot have a significant impact on

tabular representation learning. Last but not least, the finetuning

of large-scale pre-training models has a high computation cost due

to the large amount of parameters. Flexibility is also a crucial issue

to be considered to fulfill our objectives.

To address these challenges, this paper invents a novel frame-

work to efficiently embed external knowledge into well pre-trained

tabularmodels for semantical representation enhancement as shown

in Fig. 1. The keys of external knowledge infusion can be concluded

as three aspects, including 1) external structure design, 2) cross-

domain alignment, and 3) knowledge injection loss. In this paper,

we select the ConceptNet [? ], covering most of useful entities as

well as their underlying relations in tabular corpora, as the source

of external knowledge. However, such a database cannot be directly

fused with the tabular data due to the domain gap. Previous solu-

tion [? ] has unwrapped the knowledge graph into natural sentences
for alignment with pre-training data, which is unreasonable here

due to the mismatch in structure between the knowledge graph

and tabular data. Instead, this paper treats each entity/relation

in the external knowledge graph as an independent cell whose

data-processing pipeline can be referred to Fig. 2. A pre-trained

tabular model can easily obtain the embeddings of such cell-like

entities/relations organized as the tabular. To better infuse the cell-

like triplets with existing models, we propose the dual-path adapter

inserted within transformer layers. Inside each proposed module,

the KG adapter is trained by the triplet-like cells collected exter-

nally with the help of TransE loss [? ]. The other tabular adapter
is applied to enhance the tabular-embedded semantics for align-

ment of the external knowledge with the tabular corpora mixed

by irregular characters. In specific, the semantical-dense tables are

selected to train such an adapter. Within these tables, some entity

cells are randomly replaced by either linked or unlinked entities

according to the external knowledge base to enforce learning the

semantical dependencies among the tables. In addition, to bridge

the domain gap of knowledge triplets and tabular data, we further

devised the path-wise attention layers for feature fusion of the two

different adapters with the weighted contribution where the se-

mantical entities and OOVs are expected to have different weights

accordingly.

The main contributions of this paper can be summarized as:

• To the best of our knowledge, this is the first work to in-

troduce external common-sense knowledge into the tabular

pre-training models with the post-hoc fine-tuning strategy.

• To align the cross-domain representation of tabular data and

external knowledge, we have devised the dual-path architec-

ture adapters with path-wise attention layer for contribution

weighting.

• To collect the useful knowledge from the external database,

we link the mentioned entities of the training corpora, i.e.,

Wikipedia and Common Crawl tables [? ], with the KG

dataset, i.e., ConceptNet [? ], and re-organize them as over a

half million head-relation-tail triplets for infusion.

• Finally, the proposed knowledge-embedded model has been

evaluated across multiple downstream tasks over the tabular

datasets, including header type prediction, corrected cell

detection, etc.

2 RELATEDWORKS
In this section, we review the related works in terms of both Knowl-

edge Graph (KG) injected Language Models (LMs) and tabular LMs.

2.1 KG Injected LMs
Similar ideas have been applied in the natural language pre-training

models due to the weakness of LMs for capturing factual knowl-

edge [? ? ]. CN-ADAPT [? ] takes the BERT [? ] as the pre-training
models and inserts bottlenecks layers as the adapter [? ] into the

transformer modules for knowledge fusion. Such bottlenecks layers

are regarded as the external parameters optimized by the MLM

loss over the synthetic corpus by unwrapping ConceptNet into

sentences. Such unwrapping strategy of CN-ADAPT is obviously

not reliable for tabular knowledge injection due to the large domain

gap between the natural sentences and tabular cells. K-ADAPTER [?
] has injected the factual and linguistic knowledge into the pre-

trained LM model with the help of multi-task training. To this

end, two adapter models are devised for relations classification and

dependency relation prediction to learn the multiple kinds of knowl-

edge. ERNIE [? ] applies the phrase strategy and entity strategy

masking to augment the word-level mask. Such additional masks

can help to enhance the representations with the long-term seman-

tic dependencies among the corpus. Instead of unwrapping the KG
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Tabular Data
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Figure 2: KGdataset processing pipeline. The raw tabular datawill be alignedwith theKGdata in the beginning. Then, themen-
tioned entities and their relations will be selected from the KG dataset. This paper treats each entity/relation in the external
knowledge graph as an independent cell as the input to the tabular model. More details can be referred to Sec. 4.1.
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Figure 3: Histogram of top 20 relations in processed KG
triplets set. These items follow a long-tail distribution.

as sentences, K-BERT [? ] inserted the KG in the natural language

with the help of positional indexing. Based on the precise alignment

between the training corpora and KG, each sequential sentence will

be extended into the tree structure with the leaf branches from KG

appended aside. A mask-self-attention strategy is further applied

to enforce the model focusing on the visible leaf branches due to

the irrelevance between the rest KG leaf branches. BERT-MK [? ]
integrates the domain knowledge for medical data understanding.

Similar to K-BERT, BERT-MK has transformed the raw data as the

graph, which will be flattened as the node sequence for input. To

ensure the consistency between the training corpora and injected

domain knowledge, BERT-MK takes an adjacent matrix to mask

the irrelevant nodes during training. KEPLER [? ] considers the
knowledge injection into LM and embedding learning of KG as a

joint task with multiple objects to fulfill.

2.2 Tabular LM
Tabular pre-training has received growing attention due to its high

potential for table understanding, which mainly focuses on pre-

training itself without considering external common-sense knowl-

edge. TaBert [? ] is proposed for QA-based tabular understanding,

which takes both background text and tables for model pre-training.

TAPAS [? ] is proposed to address the tabular-based question an-

swering based on weakly-supervised learning. To do this, TAPAS

extends the architecture of Bert with additional embeddings to

represent the structure information of tabular data. The final rep-

resentation of the transformer model will be applied to predict

the selecting cells or aggregation operators for semantical under-

standing. TUTA [? ] has devised a tree-structure transformer model

to encode the tabular data in various formats. Such the proposed

bi-dimensional coordinate tree enables the joint encoding of both

positional and hierarchical information. Moreover, tree-based atten-

tion is applied for knowledge fusion of the surrounding cells based
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Transformer Layer 

Adapter Layer

Transformer Layer 

Update
Update

Fix
Fix

Fix

TripletsTables

Task Loss KG Loss

Update
Update
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8.625 35 26.5
10.5 35.5 22
9 36 22.5

Pre-training Knowledge Injection

Figure 4: The proposed tabular adapter layers are plugged
into the well trained transformer layers with different loss
functions to optimize.

on tabular structure. Tabbie [? ] is also a pioneering approach for

pure and general-purpose tabular pre-training without additional

text-based input such as titles, captions, premise (QA-based), and it

is also the direct baseline for our implementation of pre-training

models. The semantical entities are deludedly embedded in Tabbie

due to their sparse distribution around the OOV strings. TURL [?
] is designed to address the representation learning on relational

Web tables whose cells and tables are linked through the internet.

Specifically, TURL proposed the Masked Entity Recovery strategy

for model pre-training and finetuned the pre-trained model on mul-

tiple downstream tasks such as relation prediction and cell filling on

the relational tabular data. We take the isolated/independent tables

as the inputs, which is more general and is the essential difference

with TURL.

3 APPROACH
The final goal of this paper is to inject external common-sense

knowledge into a well pre-trained model for tabular data under-

standing. Such a model should be verified on some downstream

tasks as shown in Fig. 1 with the help of finetuning. The keys of

valid external knowledge injection can be summarized as three

aspects, including 1) external structure design, 2) cross-domain

alignment, and 3) knowledge injection loss. As shown in Fig. 4, our

proposed knowledge injection employs the tabular adapter layers

plugged inside the well-trained transformer layers, which is also

model-agnostic and can be applied for most of the tabular data

pre-training models. In this paper, we pick the general-purpose

tabular pre-training model, i.e., Tabbie [? ], as the example for

implementation. More details of our solution are given below.
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Figure 5: (a): Detailed architecture of the enhanced trans-
formers and the adapter layers. (b): Dual-path adapters with
path-wise attention. Inside the figure, the rectangle boxwith
rings indicate a neural layer.

3.1 Base Pre-training Model
In the Tabbie [? ] model, two different transformers are applied

for row and column representation learning to collect row-wise

embedding set R = {𝑟𝑖,1, 𝑟𝑖,2, ..., 𝑟𝑖,𝑁 } and column-wise embedding

set C = {𝑐𝑖,1, 𝑐𝑖,2, ..., 𝑐𝑖,𝑀 }. The tabular pre-training model takes

an 𝑀 × 𝑁 table as input and outputs embeddings X = {𝑥𝑖 𝑗 |𝑖 =

1, .., 𝑀, 𝑗 = 1, ..., 𝑁 } for each cell. Specifically, the contextualized

cell embedding is the average of row embedding and column em-

bedding:

𝑟𝐿𝑖,𝑗 =𝜙𝜃𝑟 (𝑥
𝐿
𝑖,𝑗 ), (1)

𝑐𝐿𝑖,𝑗 =𝜙𝜃𝑐 (𝑥
𝐿
𝑖,𝑗 ), (2)

𝑥𝐿+1𝑖, 𝑗 =(𝑟𝐿𝑖,𝑗 + 𝑐
𝐿
𝑖,𝑗 )/2, (3)

where 𝐿 denotes the index of transformer layer, and 𝜃𝑟 and 𝜃𝑐 rep-

resent the parameters of row transformer and column transformer

respectively. The subscripts 𝑖 and 𝑗 denote the coordinates of the cell

at the 𝑖-th column and 𝑗-th row. The base model adopts corruption

loss by predicting if the cell is corrupted or not:

𝑝𝑖, 𝑗 = 𝜎

(
𝑤𝑇 𝑥𝐿𝑖,𝑗

)
, (4)

where 𝜎 (·) denotes a Sigmoid function and𝑤 represents the pro-

jection matrix for outlier cell prediction. Such outlier cells can be

self-supervisedly generated by automatically swapping and remov-

ing some cells with the labels as either 0 or 1 to represent polluted

or not. Therefore, the pre-training object is a binary cross entropy

loss:

L𝑡𝑎𝑠𝑘 =
1

𝑀𝑁

𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝑦𝑖, 𝑗 log 𝑝𝑖, 𝑗 + (1 − 𝑦𝑖, 𝑗 ) log(1 − 𝑝𝑖, 𝑗 ), (5)

where 𝑦𝑖, 𝑗 means the cell-wise corruption label.
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Figure 6: Multilayer external knowledge injection.

3.2 Dual-path Tabular Adapters
Adapter was proposed in the natural language pre-training models

for efficient adaptation to downstream applications [? ? ? ? ? ]. It is
only required to update the parameters of adapter layers based on

finetuning loss, with the majority of parameters fixed. The basic

idea behind this comes from the transfer learning that the low/mid-

level representation are shared across similar tasks [? ? ]. Therefore,
it is reasonable to have the similar assumption on the tabular pre-

training models whose general representations can be enhanced

by the external knowledge.

As shown in Fig. 5, there are two different types of adapters

proposed for tabular pre-training models. The vanilla version is

simply plugging the adapter between the dropout and layer-norm

layers, which can be formulated as:

𝜙𝜃𝑎𝑑 (ℎ) = ℎ +𝑤𝑇
𝑢 𝑓 (𝑤𝑇

𝑑
ℎ + 𝑏𝑑 ) + 𝑏𝑢 , (6)

whereℎ is the embedding of previous layer and𝑤𝑑 and𝑤𝑢 represent

the downscale and upscale projection matrices with the correspond-

ing bias weights as 𝑏𝑑 and 𝑏𝑢 . 𝑓 (·) is the activation function such

as ReLU.

Due to the gap between tabular data and external knowledge,

the alignment between such two domains are necessary. To this

end, we have devised the dual-path tabular adapter with a knowl-

edge adapter and a tabular adapter parameterized by 𝜃𝑘 and 𝜃𝑡 ,

respectively, given different input data. Accordingly, the knowl-

edge adapter 𝜙 (·)𝜃𝑘 will only be trained by the external knowledge

and tabular adapter 𝜙 (·)𝜃𝑡 will be trained by the semantically aug-

mented tabular data. During downstream finetuning, both adapter

models need to be updated with an attention layer to weight the

contributions from two paths:

𝐴𝑑𝑎𝑝𝑡𝑒𝑟 (ℎ) = 𝑤𝑘𝜙𝜃𝑘 (ℎ) +𝑤𝑡𝜙𝜃𝑡 (ℎ), (7)

where the path-wise weights𝑤𝑘 and𝑤𝑡 are computed by the MLP

layer as:

[𝑤𝑡 ,𝑤𝑘 ] = 𝑀𝐿𝑃𝜃𝑎𝑡𝑡 (ℎ), (8)

where ℎ ∈ R𝑑 denotes a cell embedding.
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Table 1: Column Type Classification

TaBert Tabbie-F Tabbie-M Ours-NoKG-F Ours-20K-F Ours-Full-F

#Data Acc@1 Acc@3 F1 Acc@1 Acc@3 F1 Acc@1 Acc@3 F1 Acc@1 ACC@3 F1 Acc@1 Acc@3 F1 Acc@1 Acc@3 F1

1K - - 84.7 85.1 92.7 82.0 84.8 91.9 81.6 85.4 92.6 82.1 86.0 92.8 83.1 85.9 93.0 82.8

10K - - 93.5 93.4 96.9 91.8 92.2 96.4 90.7 93.2 97.1 92.0 93.6 97.8 92.7 93.8 97.8 92.8

56K - - 97.2 96.4 98.4 95.5 95.7 98.3 94.2 96.5 98.7 95.4 96.9 98.1 95.8 97.0 98.0 95.7

Avg - - 91.8 91.6 96.0 89.8 90.9 95.5 88.8 91.7 96.1 89.8 92.2 96.2 90.5 92.2 96.3 90.4

3.3 External Knowledge Injection
The external knowledge expected to be injected into the pre-trained

model come from the raw knowledge graph dataset. In specific, the

knowledge graphs are commonly denoted as KG = (E,R,T),
where E = {𝑒1, ..., 𝑒𝑁 } is the set of entities and R = {𝑟1, ..., 𝑟𝑃 } is
the relation set. T = {(𝑒𝑡1

𝑖
, 𝑟𝑡2

𝑖
, 𝑒𝑡3

𝑖
) |1 ⩽ 𝑖 ⩽ 𝑇, 𝑒𝑡1

𝑖
, 𝑒𝑡3

𝑖
∈ E, 𝑟𝑡2

𝑖
∈ R}

represents the head-relation-tail triplet set. 𝑁𝑣 = {(𝑟,𝑢) | (𝑣, 𝑟,𝑢) ∈
T } represents the set of neighboring relations and entities of an

entity 𝑣 which is also considered as the positive/correct data. This

paper has applied the ConceptNet [? ] as the source of external KG.
TransE [? ] is a classic method for knowledge representation

learning. In TransE, the tail entity is represented as the sum of

head entity embedding and relation embedding:

−→
ℎ + −→𝑟 =

−→
𝑡 where

(−→ℎ ,−→𝑟 ,−→𝑡 ) ∈ 𝑆 . The negative triples, i.e., (
−→
ℎ′,

−→
𝑟 ′,

−→
𝑡 ′ ) ∈ 𝑆 ′ cannot

satisfy such constraint. To this end, the TransE loss is defined as:

L𝑇𝑟𝑎𝑛𝑠𝐸 =
∑

(ℎ,𝑟,𝑡 ) ∈𝑆

∑
(ℎ′,𝑟 ,𝑡 ′) ∈𝑆′

[𝛾 + 𝑑 (ℎ + 𝑟, 𝑡) − 𝑑 (ℎ′ + 𝑟, 𝑡 ′)], (9)

to maximize the difference between positive and negative triplets.

To ensure the dense knowledge injection, as shown in Fig. 6, we

have employed the multilayer training where the TransE loss can

be computed in both final layer and the higher adapter layers.

3.4 Joint Training of KG and Tabular Data
The domain gap between the two modalities is crucial for structural

knowledge injection into tabular pre-training models, i.e., triples

and tabular forms. The vanilla tabular adapters are directly op-

timized by the TransE loss from raw knowledge triplets, which

cannot address the mismatch issue. Instead, our proposed dual-

path adapter considers the domain gap and applies two different

adapters for feature fusion.

Here, we share the details about training the dual-path tabular

adapters with the iterative optimization between the task loss and

knowledge loss on different inputs. The final training losses are:

ˆ𝜃𝑎𝑡𝑡 , ˆ𝜃𝑡 , ˆ𝜃𝑘 = argmin

𝜃𝑎𝑡𝑡 ,𝜃𝑡 ,𝜃𝑘

L𝑡𝑎𝑠𝑘 (X) + L𝑇𝑟𝑎𝑛𝑠𝐸 (𝑆, 𝑆 ′), (10)

where the two losses are iteratively optimized in our implementa-

tion, and
ˆ𝜃𝑎𝑡𝑡 , ˆ𝜃𝑡 , ˆ𝜃𝑘 denote the updated parameters of path-wise

attention network, tabular adapter and knowledge adapter, respec-

tively.

4 EXPERIMENTS
4.1 Datasets Processing
There are multiple challenges to overcome to obtain high-quality

external knowledge for representation enhancement. The topmost

one is the data processing to transform and align the external

Algorithm 1: External Knowledge Injection for Dual-path

Tabular Adapters

1 Input: External Knowledge Graph KG = (E,R,T).
Semantically Augmented Tabular Forms

X = {(𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 ) |𝑖 = 1, .., 𝑀, 𝑗 = 1, ..., 𝑁 } .
2 Initialize: Tabular Adapter Θ𝑘 = {𝜃𝑖

𝑘
|𝑖 = 1, ..., 𝐿}.

Knowledge Adapter Θ𝑡 = {𝜃𝑖𝑡 |𝑖 = 1, ..., 𝐿}. Path-wise
Attention Network Θ𝑎𝑡𝑡 = {𝜃𝑖𝑎𝑡𝑡 |𝑖 = 1, ..., 𝐿}.

3 Sample the positive and negative knowledge graph triples,

i.e., 𝑆 and 𝑆 ′, from KG.

4 for t = 1 ∼ T do
5 Achieve embeddings of tabular data ℎ𝑡 = 𝜙 (𝑋 ) ;
6 Achieve embeddings of knowledge triplets ℎ𝑘 = 𝜙 (𝑆)

and ℎ
′

𝑘
= 𝜙 (𝑆 ′) ;

7 Compute the task loss L𝑡𝑎𝑠𝑘 as Eq. (5) ;

8 Compute the triplet loss L𝑇𝑟𝑎𝑛𝑠𝐸 as Eq. (9) ;

9 Back-propagate gradients and update Θ𝑡 , Θ𝑘 and Θ𝑎𝑡𝑡 .

10 end
11 Output: Θ∗

𝑡 , Θ
∗
𝑘
, Θ∗

𝑎𝑡𝑡 .

knowledge with our tabular data. To do this, we first extract the

named entities from the ConceptNet dataset [? ], covering most

of useful entities as well as their underlying relations in tabular

corpora. Then, a pre-defined parsing rule is applied to match the

similarity of tabular cells with the entities in the semantic space.

Finally, the filtered entities are selected to retrieve the existing

triplets as the aligned external knowledge for our purpose. More

details of the whole pipeline are illustrated in Fig. 2.

We also provide more details about the processed KG triplets

and the statistics of semantical entities in the tabular data. Tab. 2

shows the whole picture of tabular pre-training data as well as the

extracted triplets well aligned with entity cells. Moreover, Tab. 4

reveals that the over 30% tabular cells can be regarded as the se-

mantical entities mixed with 70% non-semantical cells, including

numbers, out-of-vocabulary strings, symbols, etc. Such statistics

support our arguments that the tabular models should not equally

consider the semantical and non-semantical cells since the for-

mer carries most of the information, which, however, only takes a

small part of the whole tabular data. Our knowledge injection is

based on the extracted triplets whose semantical entities are already

presented in the tabular data. However, due to the nature of the

Wikitable corpora, the entities, as well as their relations, follow the

long-tail distribution as shown in Fig. 3.
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Table 2: Statistics of the Entities of the Wikipedia Tabular Data

Tables Headers Cells Entities Unique Entities Triplets Relations Headers/Table Cells/Table Entities/Table

3 M 15.62 M 250.38 M 80.59 M 91,744 654,873 30 5.21 83.47 26.86

Table 3: Statistic of Parameters

Tabbie Adapter Dual-adapters

Parameters 279.6 M 3.578 M 4.466 M

Table 4: Statistics of the Entities and Their Ratios, i.e., (Quan-
tity/Percentage), of the Tabular Data

Overall Entities Headers Entities Non-Headers Entities

80.59 M (32.19%) 10.09 M (64.58%) 70.51 M (30.03%)

4.2 Experiments Setup
Implementation. Our proposed adapter-based knowledge injec-

tion is agnostic to most of the existing tabular pre-training models.

Here we choose Tabbie [? ] as our base model, which a general-

purpose tabular pre-training model. The vanilla Tabbie model is

composed of 12 layers with a hidden dimensionality of 768 for

both row and column Transformers. Each layer includes a row and

a column transformer, respectively. A pre-trained Bert embedder

initializes the input to Tabbie. Our adapter takes a bottleneck archi-

tecture with the downscale projection from the dimensionality of

768 to 48 and the upscale projection from 48 to 768. The path-wise

attention network applies a two-layer MLP with the output in the

dimensionality of 2. Both adapters in the dual-path model take the

identical architecture trained by different data. Therefore, there

are 48 adapters inserted within the whole pre-trained model for

knowledge injection. Despite the large number, the adapter layers

only take a small portion of the whole model whose quantity of

parameters can be referred to Tab. 3. For model optimization, we

take the Adam with decoupled weight decay (AdamW) [? ] as the
optimizer on PyTorch [? ]. The learning rate is assigned as 0.0002

in both knowledge injection and downstream tasks.

Baselines. There are multiple methods to compare. The two-

version Tabbie, includingMix and Freqwith different training strate-

gies, can be regarded as the direct baselines. The Tabbie-Freq only

uses frequency-based cell sampling, and Tabbie-Mix is trained by

the 50/50 mixture of frequency-based cell sampling and intra-table

cell swapping. TaBert [? ] is another baseline designed for Tabular

QA. Variant ablations, such as the adapter w/o kg (No-KG), or w/o

tabular adapter, are also necessary to be included to evaluate the

effects of knowledge injection. The quantity of external knowledge

will also impact the performance. We have selected 20K triplets or

the full version (i.e., 654,873 triplets) for comparison in most tasks

to explore its detailed influence.

Evaluation metrics. The evaluation tasks can be classified as

binary/multiclass classification and 1-to-N retrieval, whosematrices

are slightly different. In the outlier cells or tables detection, we take

the precision, recall, and f1 score as the evaluation metrics. Other

tasks, such as column classification, column relation classification,

and eve relation retrieval, can be considered as a multiclass-based

Table 5: Relation Classification of Columns

Data 1K 10K

Methods @1 @3 @5 @1 @3 @5

Tabbie-M 85.3 95.2 97.5 92.3 97.6 99.2

Tabbie-F 86.4 95.3 97.1 92.2 98.1 99.0

Ours-NoKG-M 85.3 94.1 96.4 92.5 98.0 98.6

Ours-NoKG-F 86.1 94.7 97.8 92.2 98.6 99.3

Ours-20K-M 86.0 95.6 97.6 92.7 98.4 98.8

Ours-Full-M 86.1 95.4 96.8 92.8 97.9 98.8

Ours-20K-F 87.5 95.1 96.8 92.4 98.7 99.3
Ours-Full-F 86.7 95.5 97.0 92.5 98.7 99.4

classification or retrieval problem. Accuracy at k (acc@k) is a widely

used metric in multiclass-based problems. acc@k represents the

ratio of any top k prediction results that match the ground truth. We

select different k to demonstrate the accuracy over various scales

according to the number of classes. Among most of the tables for

quantitative comparison, the best results are marked in bold, and
the second-best ones are highlighted in italic.

Benchmarks. For a fair comparisonwith Tabbie and TaBert, this

paper takes theWikipedia tables mixed with preprocessed Common

Crawl [? ] as the benchmarks for table-based tasks. To demonstrate

the effectiveness of knowledge injection, we also conducted the

results on the knowledge level in which the model intends to predict

the relations of two entities. We randomly sample the 10,000 triplets

from the ConceptNet [? ] as the benchmark for evaluation.

4.3 Column Classification
The column classification is the task that predicts a high-level type

of a particular column (e.g., name, age, etc.) without access to its

header. This task applies when processing the tables with missing or

unreliable headers, which often happens in practice. With help from

accurate header classification, these missing or incorrect headers

will be recovered for further analysis. Moreover, these high-level

predictions potentially cluster the columns into several groups that

are helpful for content summarization. The experimental results

can be referred to in Tab. 1 and Tab. 8 that most of the reported

scores are collected from the same benchmarks, including 1k, 10k,

and 57600 tables for finetuning. Both tasks have the shared set

of testing tables for a fair comparison. From the tables, we can

easily notice that the proposed knowledge injection has boosted

the performance in most of the scenarios. Especially considering the

ablation between w/o or w KG injection, the experimental results

show that the proposed injection effectively improves the column

type classification beyond the help of extra parameters, which also

brings certain benefits for this downstream task.
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Table 6: Outlier Cell Classification on Hybrid Data

Intra-table swap Random swap

Non-header Header Overall Non-header Header Overall

Methods Pre Recall F1 Pre Recall F1 Pre Recall F1 Pre Recall F1 Pre Recall F1 Pre Recall F1

TaBert - - - - - - 81.2 69.5 74.9 - - - - - - 86.7 87.0 86.8

Tabbie-F 98.1 70.4 81.9 99.3 98.9 99.1 98.2 73.8 84.3 99.3 97.4 98.4 99.3 99.0 99.2 99.3 97.5 98.5
Tabbie-M 97.7 82.2 89.4 99.5 99.1 99.3 97.9 84.3 90.6 99.2 97.3 98.3 99.4 98.9 99.1 99.2 95.5 98.3

Ours-20K-M 98.5 81.1 89.0 99.6 98.8 99.2 98.7 83.2 90.3 99.3 96.9 98.1 99.3 98.8 99.1 99.3 97.1 98.2

Ours-Full-M 98.6 81.0 88.8 99.4 98.8 99.1 98.7 82.9 90.1 99.3 97.0 98.1 99.3 98.7 99.0 99.3 97.2 98.2

Ours-20K-F 98.3 68.9 81.0 99.2 98.0 99.1 98.5 72.5 83.5 99.4 97.1 98.2 99.2 98.9 99.1 99.4 97.3 98.3
Ours-Full-F 98.5 66.1 79.1 99.4 98.7 99.0 98.6 70.0 81.9 99.5 96.3 97.9 99.3 98.7 99.0 99.5 96.5 98.0

Table 7: Cell Classification on Semantical Entities

Mix Model Freq Model

Methods Pre Recall F1 Pre Recall F1

Tabbie 59.1 64.9 61.2 60.2 66.5 63.2

+ 20K KG 74.0 78.2 76.0 77.0 81.7 79.3
+ Full KG 73.2 77.7 75.4 76.3 82.6 79.3

Table 8: Column Classification on Semantical-rich Data

Baselines Ours

Finetuning Data Tabbie-F Tabbie-M Ours-20K Ours-100K

5K 85.9 85.7 86.2 86.6
33K 89.1 88.8 89.9 90.0

4.4 Relation Prediction
Column relation prediction is a unique task applied in this paper

that aims to classify the specific relations of two columns when

masked headers. Ground-truth relations are obtained based on the

reasoning over the header entities in the KG database. For instance,

the headers of two columns could be "California" and "US", whose

relation is annotated as "part of" in the ConceptNet. The goal of this

task is to predict the desired relation, i.e., "part of" by masking the

headers "California" and "US". This downstream task is useful when

it is required to infer the content of tables withmissing headers. This

technique also applies to infer or enrich hidden relations/schema

of the tabular columns in the case of schema completion. We have

conducted the experiments on two sets with 1k and 10k tables,

respectively. In addition, there is a shared testing set with 1k tables.

As shown in Table 5, most KG injected models have outperformed

the baseline ones over acc@1, acc@3, and acc@5. Moreover, the

no-KG ablations are still inferior to KG ones.

4.5 Cell Value Prediction
This task aims to evaluate the model over the cell-level tasks. We

have shown the two settings here, i.e., Tab. 6 and 7, in which the

former one follows the [? ] with randomly corrupted cells. Another

setting considers more fine-grained cell classification where some

Table 9: Tables Classification

Methods Pre Recall F1-score

Tabbie 95.8 82.1 88.5

+ NoKG Adapter 95.6 (-0.2) 78.6 (-3.5) 86.3 (-2.2)
+ KG Adapter 93.1 (-2.6) 96.4 (+14.3) 94.7 (+6.2)

"Headers" place event name age time
"Row1" 5 200 free Stewart 29 2:19.08
"Row2" 7 50 fly Jamie 35 29.90
"Row3" 5 100 fly Tim 24 1:07.57
"Row4" 1 200 fly Mike 20 2:46.48
"Row5" 1 400 im Tom 25 5:54.70
"ID" 0 1 2 3 4

Tabbie OursBert

Figure 7: The above figure visualizes the heatmap of the dot
product between column-wise embedding collected by dif-
ferent models. The purple lines link the connected headers
in KG, whose corresponding affinity scores are marked in
gray boxes for comparison.

of the entity cells are replaced by the "counterpart entities + re-

lation" according to the positive triplets in KG. The models are

required to detect the replaced cells, which has practical use in the

missing cell completions given a pool of candidates. Moreover, cell

value prediction is also helpful to pre-processing the raw and noisy

tabular data with corrupted values. The results of the first setting

can be referred to Tab. 6 where the two sub-settings come from [?
] with different strategies for cell corruption. Tabert’s results are

directly copied from [? ] with some blank items since there is no

open-source code for Tabert on this task. Other results of base-

lines are collected from our re-implementation which are similar

to the reported results in [? ]. We notice that the performance is

comparable after knowledge injection. On Tab. 7 of semantic cells

detection, the proposed methods show remarkable improvements

compared with the baselines. In this setting, the model needs to
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Table 10: Ablations Study on Zero-shot Retrieval Tasks

Architecture KG Quantity Column-based Retrieval Entity-based Relation Retrieval

KG-Ada Entity-Ada 20K 100K Acc@3 Acc@5 Acc@10 Acc@15 Acc@3 Acc@5 Acc@10 Acc@15

- - - - 2.11 4.91 39.40 49.51 9.79 14.85 29.88 47.94

✓ - ✓ - 3.42 5.41 43.57 56.72 13.34 23.46 32.68 48.12

- ✓ - - 2.34 5.11 39.51 50.14 10.20 15.13 29.81 48.11

✓ ✓ ✓ - 4.87 6.23 45.72 58.43 21.43 29.91 41.84 50.61
✓ ✓ - ✓ 4.89 6.43 46.12 58.31 22.61 30.02 41.97 50.72

Table 11: Entity-based Relation Retrieval with Different 𝛾

Margins Acc@3 Acc@5 Acc@10 Acc@15

𝛾=0.1 21.71 30.60 44.09 52.20
𝛾=0.2 21.43 29.91 41.84 50.61

𝛾=0.4 20.84 31.12 44.79 52.41

distinguish the original entity and the similar entity with extending

meanings. Such different phenomena have demonstrated that the

extra knowledge injection contributes more to the semantical-dense

tasks.

4.6 Table Classification
To verify the effectiveness of our knowledge infusion for such a

task, we have collected some tables with binary labels to indicate

the density of semantic entities. The tables with more than half

of semantic entities will be annotated as type 0, and those below

30% are marked as 1. Such a task is helpful for filtering the infor-

mative tables with rich semantics. After finetuning the models on

100 labeled tables, there are another 100 tables as the testing set.

The quantitative comparison can be referred to Tab. 9 that the KG

adapter has greatly boosted the performance compared with both

vanilla Tabbie and adapters-inserted-Tabbie without knowledge

injection.

4.7 Zero-shot Retrieval
We have applied the zero-shot relation retrieval to verify the effec-

tiveness of representation enhancement by knowledge injection

given either columns or cell entities. Compared with the natural

language models, there are only limited tabular works devised to

investigate zero-shot tasks. However, such zero-shot tasks are prac-

tical in many applications, such as schema matching, where the

model does not need updating.

Column-based Relation Retrieval. Column-based relation re-

trieval is a relatively challenging task due to the heavy noise of

unrelated cells. To further enhance the difficulty, we mask the head-

ers of each column for the pure evaluation of the semantical affinity

of cells. The experimental results can be referred to Tab. 10.

Entity-based Relation Retrieval. The right half of Tab. 10

shows the entity-based relation retrieval where the model is ex-

pected to retrieve the top matched relations with two input cell

entities [? ? ? ]. This task is only applied to evaluate the knowl-

edge representation of the tabular model, which does not have
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Figure 8: (a) Curve of TransE losses with different margins,
i.e., 𝛾 . (b) Increase of magnitude of adapters’ weights trained
by the TransE loss.

much practical use. From the table, we can easily see that the pro-

posed knowledge injection has boosted column and entity retrieval

accuracy. In addition, more KG triplets bring more gains in the

performance on most of the scenarios.

4.8 Analysis
LossMargins.Themargin𝛾 of TransE loss in Eq. 9 has a significant

influence on the overall performance. Therefore, we have inves-

tigated the performance and loss curve with different 𝛾 . Tab. 11

shows that the best retrieval results can be achieved by 𝛾 = 0.4.

According to Fig. 8 (a), the lower bound of 𝛾 = 0.1 is higher than

the rest two which indicates that the 𝛾 = 0.2 and 𝛾 = 0.4 are better

choices. We have applied 𝛾 as 0.2 in most of the experiments.

Magnitude ofAdapters’Weights.Knowledge injection is highly
related with the training of KG adapters. In Fig. 8 (b), we have plot-

ted the magnitude of adapters along different epochs. It is clear to

notice that the magnitude has increased in scales during training,

which is a side evidence of effective knowledge injection.

Case Study. In Fig. 7, we have visualized the affinity matrix

of three different models with the same input table. Some of the

columns are highly related as indicated by the linked lines. The

affinity scores of these linked headers have increased after knowl-

edge infusion, which is a side evidence for the enhancement of

semantic dependencies.

5 CONCLUSION
This paper attempts to improve the existing large-scale tabular pre-

training models by infusing common-sense knowledge, which is

flexible and easy to plug in. Compared with the knowledge infusion

into the natural-language-based pre-training models, the tabular
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models naturally require overcoming the domain gaps between

external knowledge and tabular data with the significant difference

in both structures and contents. We have proposed the dual-path

adapters inserted within the well pre-trained tabular models. Specif-

ically, the dual-path adapters are trained by the knowledge triplets

and semantically augmented tables for injection. A path-wise at-

tention layer is applied to fuse the cross-modality representation of

the two designs for the final object. To verify the effectiveness of

our proposed knowledge injection framework, we have tested it on

multiple downstream tasks ranging in cell, column and table levels

under both zero-shot and finetuning-based settings. The highly

semantic tasks are more beneficial from this technique.
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