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Efective time-series forecasting methods are of signiicant importance to solve a broad spectrum of research problems. Deep

probabilistic forecasting techniques have recently been proposed for modeling large collections of time-series. However,

these techniques explicitly assume either complete independence (local model) or complete dependence (global model)

between time-series in the collection. This corresponds to the two extreme cases where every time-series is disconnected

from every other time-series in the collection or likewise, that every time-series is related to every other time-series resulting

in a completely connected graph. In this work, we propose a deep hybrid probabilistic graph-based forecasting framework

called Graph Deep Factors (GraphDF) that goes beyond these two extremes by allowing nodes and their time-series to be

connected to others in an arbitrary fashion. GraphDF is a hybrid forecasting framework that consists of a relational global

and relational local model. In particular, a relational global model learns complex non-linear time-series patterns globally

using the structure of the graph to improve both forecasting accuracy and computational eiciency. Similarly, instead of

modeling every time-series independently, a relational local model not only considers its individual time-series but also the

time-series of nodes that are connected in the graph. The experiments demonstrate the efectiveness of the proposed deep

hybrid graph-based forecasting model compared to the state-of-the-art methods in terms of its forecasting accuracy, runtime,

and scalability. Our case study reveals that GraphDF can successfully generate cloud usage forecasts and opportunistically

schedule workloads to increase cloud cluster utilization by 47.5% on average. Furthermore, we target addressing the common

nature of many time-series forecasting applications where time-series are provided in a streaming version, however, most

methods fail to leverage the newly incoming time-series values and result in worse performance over time. In this paper, we

propose an online incremental learning framework for probabilistic forecasting. The framework is theoretically proven to

have lower time and space complexity. The framework can be universally applied to many other machine learning-based

methods.
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1 INTRODUCTION

Forecasting is fundamentally important with many applications including the optimization of resources allocation.

Time-series forecasting is signiicantly useful in business world, as most typically leveraged in stock price

prediction and sale outlook forecasting. Recently, forecasting has been utilized for the optimization of resource

allocation. For example, accurate forecasting of workload patterns on cloud cluster nodes can help service

providers such as AWS or Azure, optimize the resource allocation and scheduling and therefore save money. In

Authors’ addresses: Hongjie Chen, Virginia Tech, Blacksburg, Virginia, USA, 24061, jefchan@vt.edu; Ryan A. Rossi, Adobe Research, San

Jose, USA, ryrossi@adobe.com; Kanak Mahadik, Adobe Research, San Jose, USA, mahadik@adobe.com; Sungchul Kim, Adobe Research, San

Jose, USA, sukim@adobe.com; Hoda Eldardiry, Virginia Tech, Blacksburg, Virginia, USA, hdardiry@vt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

1556-4681/2022/6-ART $15.00

https://doi.org/10.1145/3543511

ACM Trans. Knowl. Discov. Data.

https://doi.org/10.1145/3543511


2 • Chen et al.

(a) Time-series of neighbors of a node (b) Time-series of randomly selected nodes

Fig. 1. In (a) the time-series of CPU usage for a node (machine) in the Google workload data shown in red and its immediate

neighbors in the graph (blue) are highly correlated, whereas in (b) the time-series of randomly selected nodes are significantly

diferent.

cloud resource optimization, the goal is to accurately forecast the resources a service or job will require given

CPU and memory usages over time. For this problem, learning and inference must be fast and eicient. For

instance, every 5 minutes, we receive new CPU and memory usage measurements, and as soon as we receive

them, we need to learn a model and use it to forecast the next ℎ-steps ahead, and then make a decision to scale

up/down or not. Additionally, it’s important to quantify the prediction uncertainty so that decision makers can

apply diferent strategies based on the probability of forecast values.

Classical time-series forecasting models such as ARIMA [54] and exponential smoothing models [32] only

focus on forecasting individual or small groups of time-series, and hence limiting scalability. In local models, the

free parameters are learned independently for each time-series. While these models are sometimes useful, they

require a large amount of data for training [38]. Since these models focus on individual time-series, there is often

not enough recent data available to make accurate forecasts. As a consequence, they fail to model and extract the

mutual connections and dependency across time-series that may help forecasting. Another disadvantage of these

models is that they are comparatively simple and they require manual feature engineering and design by domain

experts, which is labor-intensive and time-consuming.

Recently, there is a signiicant increase of data-driven approaches [7, 58] in time-series prediction due to the

extensive availability of abundant data from various ields, e.g.shopping behaviors of consumers [31, 65], resource

usage optimization for cloud computing [22] and energy consumption [24, 48]. The huge abundance of data

makes it necessary to have models that extract limited useful information from big data. At the same time, the

intrinsic dependency between time-series also needs to be leveraged for accurate predictions.

In the ield of multivariate forecasting , the global models have been studied for decades in econometrics and

statistics. In contrast to local models that consider each time-series individually, the free parameters in global

models are learned jointly across all time-series in the collection [31, 76]. The assumption behind global models

is that all time-series are driven by a small number of latent factors. Among the global models, the deep learning

approaches [31, 46, 60] are able to capture complex non-linear time-series patterns. However, in global models,

each time-series are equivalently related to any other time-series in the data, which is often violated in practice.

There has also recently been local-global models that attempt to combine the beneits of both [33]. Examples

include mixed-efects models [20], where the ix (global) efects describe the whole population while the random

(local) efects capture the idiosyncratic behavior of individuals. There are local-global models [66] that combine

both types of models for time-series forecasting. However, these models do not solve the disadvantages of ignoring

the diferent relations across time-series in the global model. Also, the local model is too restricted to model each
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time-series individually. Thus, we argue that a relational global and relational local model can lead to signiicantly

better forecasting performance with faster training/inference while improving the data eiciency.

In terms of relational time-series forecasting [64], the local models [12, 36] that treat each time-series in-

dependently corresponds to a graph where each node time-series is not connected to any other nodes and

their time-series. Conversely, global models[31, 60, 76] that consider all time-series jointly correspond to a fully

connected graph where each node time-series is connected to every other in the same way. These past works

all assume time-series are either completely mutually independent or completely dependent. However, these

assumptions are often violated in practice as shown in Fig. 1 where a node time-series is shown to be dependent

on an arbitrary number of other node time-series.

In this work, we propose a deep hybrid graph-based probabilistic forecasting model called Graph Deep Factors

(GraphDF) that allows nodes and their time-series to be dependent (connected) in an arbitrary fashion. GraphDF

leverages a relational global model that uses the dependencies between time-series in the graph to learn the complex

non-linear patterns globally while leveraging a relational local model to capture the individual random efects of

each time-series locally. GraphDF’s relational global model improves the runtime performance and scalability

since instead of jointly modeling all time-series together (fully connected graph), which is computationally

intensive, GraphDF learns the global latent factors that capture the complex non-linear time-series patterns

among the time-series by leveraging only the graph that encodes the dependencies between the time-series.

GraphDF serves as a general framework for deep graph-based probabilistic forecasting as many components are

completely interchangeable including the relational local and relational global models.

Relational local models use not only the individual time-series but also the neighboring time-series that are

1 or 2 hops away in the graph. Thus, the proposed relational local models are more data eicient, especially

when considering shorter time-series. For instance, given an individual time-series with a short length (e.g.,

only 6 previous values), purely local models would have problems accurately estimating the parameters due

to the lack of data points. However, relational local models can better estimate such parameters by leveraging

not only the individual time-series but the neighboring dependent time-series that are 1 or 2 hops away in

the graph. In comparison, relational global models are typically faster and more scalable since they avoid the

pairwise dependence assumed by global models via the graph structure. By leveraging the dependencies between

time-series encoded in the graph, GraphDF avoids a signiicant amount of work that would be required if the

time-series are modeled jointly as done in existing state-of-the-art models.

In addition, considering the time-series streaming nature where newly incoming values arrive at each time

step, we further propose an incremental online GraphDF (IOGraphDF) model that advances GraphDF model

tremendously with respect to training runtime. Instead of training a diferent GraphDF model instance when

new values arrive at each time step, only one IOGraphDF model instance is initialized in the irst time step, and

then the same model instance is modiied and updated to accommodate new values over time.

1.1 Main Contributions

We propose a general and extensible deep hybrid graph-based probabilistic forecasting framework called Graph

Deep Factors (GraphDF) that is capable of learning complex non-linear time-series patterns globally using the graph

time-series data to improve both computational eiciency and forecasting accuracy while learning individual

probabilistic models for individual time-series based on their own time-series and the collection of time-series

from the immediate neighborhood of the node in the graph. The GraphDF framework is data-driven, fast, scalable

for real-time demand forecasting, and highly data eicient.

The state-of-the-art deep probabilistic forecasting methods focus on learning a global model that considers

all time-series jointly or a local model learned from each individual time-series independently. In this work, we

propose a deep graph-based probabilistic forecasting model that lies in between these two extremes. In particular,
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we propose a relational global model that learns complex non-linear time-series patterns globally using the

structure of the graph to improve both computational eiciency and forecasting performance. Similarly, instead of

modeling every time-series independently, we learn a relational local model that not only considers its individual

time-series but the time-series of nodes that are connected to an individual node in the graph.

Furthermore, the proposed GraphDF framework applies to a signiicantly larger class of problems, which

includes prior work as a special case. In particular, GraphDF naturally generalizes many existing models including

those based purely on local and global models, or a combination of both. This is due to its lexibility to interpolate

between purely non-relational models (either local, global, or both) and relational models that leverage the

graph structure encoding the dependencies between the diferent time-series. The experiments demonstrate

the efectiveness of the proposed deep graph-based probabilistic forecasting model in terms of its forecasting

performance, runtime, and scalability.

Finally, we extend GraphDF to meet the incremental online scheme and derive the IOGraphDF model, which

converges over timespan to yield approximately accurate predictions as GraphDF, but takes much shorter time to

train and update.

2 RELATED WORK

Classical Time-series forecasting A vast variety of forecasting approaches have been developed for its wide

applications and usage in various domain [5, 15, 30, 55, 77]. Classical time-series models including autoregressive

integrated moving average (ARIMA) and exponential smoothing [32, 54] have demonstrated a huge success in

univariate time-series prediction, however, they fail to extract the non-linear relationships across time-series.

Besides that, they are incapable of modeling the exogenous values, which usually helps forecasting. By contrast,

multivariate time-series prediction [10, 65, 71] takes the advantage of modeling the inter-dependencies across time-

series to improve the prediction accuracy. One example of multivariate time-series models is vector autoregression

(VAR) [69] which is commonly considered a generalization of autoregressive model. However, VAR treats the

relationships across time-series equivalently without diference, which is unrealistic. Deb et al. [21] summarized

nine classical methods for forecasting energy usage including artiicial neural network (ANN), support vector

machine (SVR) and others.

Deep Learning-based Time-series Forecasting In recent years, advances in deep learning have led to sub-

stantial improvements [23, 35, 51] in time-series prediction, among which recurrent neural networks (RNNs)

received a great extent of popularity [1, 11, 39, 83] due to their signiicant accuracy in predictions and lexibility to

model the non-linear relationships [7]. As prominent examples of RNN model, the long short-term memory units

(LSTM) [6, 41] and the gated recurrent units (GRU) [18] are broadly adopted for their competence to overcome the

vanishing gradient problem. Based on the LSTM and GRU architectures, sequence-to-sequence models [4, 50, 70]

are developed to allow predictions for a modest number of horizons [26, 76].

While typical RNN models target at univariate time-series prediction, a substantial amount of eforts have been

made to share information across time-series to model the highly non-linear inter-dependencies and thus improve

the forecast accuracy. For instance, Qin et al. [59] proposed a dual stage attention-based RNN model. Huang

et al. [42] introduced a dual-attention mechanism for dynamic-period or non-periodic multivariate time-series

forecasting. These methods assume all time-series are equally related to each other, which can be seen as having

a fully connected graph.

While earlier work focused on point forecasting which aims at predicting optimal expected values, there is an

increasing interest in probabilistic forecasting models [40, 47, 53, 62, 78]. Probabilistic models yield prediction as

distributions and have the advantage of uncertainty estimates, which are important for downstream decision

making. Some recent probabilistic models are proposed in the multivariate manner, for example, Salinas et al. [31]

proposed a probabilistic forecasting model that jointly learns a global model from all available time-series. Wang
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et. al. proposed DF [75], a hybrid global-local model that assumes time-series are determined by shared factors as

well as individual randomness. These methods indiscriminately model mutual dependence between time-series.

Hence, they imply a strong and unrealistic assumption that all time-series are pairwise related to one another in

a uniformly equivalent way.

In contrast, we propose a hybrid deep graph-based probabilistic forecasting framework that leverages a

relational graph global component that learns the complex non-linear time-series patterns in the large collection

of relational time-series data and a relational local component that handles uncertainty by learning a probabilistic

forecasting model for every individual node in the graph that not only considers the time-series of the individual

node, but also the time-series of nodes directly connected in the graph. The relational global component of the

proposed GraphDF framework leverages the graph time-series data, leading to a signiicant improvement in

the time-eiciency, scalability, and most importantly, the forecasting accuracy of our model compared to the

state-of-the-art DF model. Conversely, the relational local model of GraphDF has the advantage of improving

both forecasting accuracy and data eiciency.

Graph-based modelsModeling the unique relations to each individual time-series from others naturally leads us

to graph models. For instance, Graph Neural Network(GNN) [14, 43, 44, 84] has recently showed great successes

in extracting the information across nodes. Moreover, the combination of GNNs and RNNs [34, 74] allows

the injection of dynamism of the pairwise non-linear relationship across time-series. As an early work, Seo et

al. [67] introduced graph convolutional recurrent network (GCRN) to predict structured sequential data. Other

recent work is mostly limited in spatio-temporal study, such as traic prediction [82] and ride-hailing demand

forecasting [80, 81]. All these methods are incorporated with a graph structure. Besides, these methods are not

probabilistic models and they fail to deliver uncertainty estimates.

Resource usage prediction Researchers and engineers put great eforts on resource provisioning and load

prediction in cloud scale systems [8, 56, 72]. Early work mainly utilized the traditional state space models such as

ARIMA [13, 85]. More recent work covers both traditional methods [13, 85], machine learning approaches [19]

such as K-nearest neighbors [29, 68] and linear regression [28, 79] and RNN-based methods [17, 27, 45]. However,

none of these methods leverages a graph to model the relationships between nodes.

Prediction on Streaming Data In many applications, data values are not given beforehand but instead arrive

continuously with an equivalent time gap between arrivals. Early work on prediction in this kind of scenario

includes modifying ARIMA models to an online manner [3, 52], predicting with kernel-based methods [63], and

eforts on elastic resource scaling to reduce cloud system operating cost [9, 68] More recent work leverages deep

learning on streaming data. For instance, Vrablecová et al. [73] proposed a stream change detection method to

identify the ongoing changes or concept drifts of the power meter data. Guo et al. [37] proposed an adaptive

gradient learning method which aims to minimize impacts from outliers as well as leverage the local features, but

this work is solely based on RNN and only targets univariate time-series prediction. A more recent RNN-based

work [25] targets inding mismatch of temporal distribution between periods of time-series. However, these

models do not leverage graph structures or the inter-correlations between time-series for forecasting. By contrast,

our proposed work is graph-based and has the advantage of forecasting accuracy and runtime eiciency.

3 GRAPH DEEP FACTORS

In this section, we describe a general and extensible framework called Graph Deep Factors (GraphDF). It is capable

of learning complex non-linear time-series patterns globally using the graph time-series data to improve both

computational eiciency and performance while learning probabilistic models for each individual time-series

based on their own time-series and the collection of related time-series from the neighborhood of the node

in the graph. The GraphDF framework is data-driven, lexible, accurate, and scalable for large collections of

multi-dimensional time-series data.
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3.1 Problem Formulation

We irst introduce the deep graph-based probabilistic forecasting problem. Notably, this is the irst hybrid

deep graph-based probabilistic forecasting framework. The framework is comprised of a graph relational global

component (described in Section 3.3) that learns the complex non-linear time-series patterns in the large collection

of graph-based time-series data and a relational local component (Section 3.4) that handles uncertainty by learning

a probabilistic forecasting model for every individual node in the graph that not only considers the time-series of

the individual node, but also the time-series of nodes directly connected in the graph. This has the advantage of

improving both forecasting accuracy and data eiciency.

The proposed framework solves the following graph-based time-series forecasting problem. Let� = (� , �,X,Z)

denote the graph model where� is the set of nodes, � is the set of edges, and X = {X(� ) }��=1 is the set of covariate

time-series associated with the � nodes in � where X(� ) ∈ R�×� is the covariate time-series data associated

with node � . Hence, each node is associated with � diferent covariate time-series. Furthermore,Z = {z(� ) }��=1 is

the set of time-series associated with the � nodes in � . The � nodes can be connected in an arbitrary fashion

that relects the dependence between nodes. Two nodes � and � that contain an edge (�, �) ∈ � in the graph �

encodes an explicit dependency between the time-series data of node � and � . Intuitively, using these explicit

dependencies encoded in � can lead to more accurate forecasts as shown in Fig. 1. Further, let z
(� )
1:�

denote a

univariate time-series for node � in the graph where z
(� )
1:�

=
[
�
(� )
1 · · · �

(� )
�

]
∈ R� and �

(� )
� ∈ R. In addition, each

node � in the graph � also has � covariate time-series, X(� ) ∈ R�×� where X
(� )
:,� ∈ R

� (or x
(� )
� ∈ R

� ) represents

the � covariate values at time step � for node � . We also denote A ∈ R�×� as the sparse adjacency matrix of the

graph� where � = |� | is the number of nodes. If (�, �) ∈ �, then�� � denotes the weight of the edge (dependency)

between node � and � , and �� � = 0 when (�, �) ∉ � otherwise.

We denote the unknown model parameters as Φ. Our goal is to learn a generative probabilistic forecasting

model described by Φ that gives the (joint) distribution on target values in the future horizon � :

P

({
z
(� )
�+1:�+�

}�
�=1

���A,
{
z
(� )
1:�
,X
(� )
:,1:�+�

}�
�=1

;Φ
)

(1)

Hence, solving Eq. (1) gives the joint probability distribution over future values given all covariates and past

observations along with the graph structure represented by A that encodes the explicit dependencies between

the � nodes and their corresponding time-series {z(� ) ,X(� )}��=1.

Graph Construction. For each dataset, we derive a graph where each node represents a machine with one or

more time-series associated with it, and each edge represents the similarity between the node time-series �

and � . The constructed graph encodes the dependency information between nodes. In this work, we estimate

the edge weights using the radial basis function (RBF) kernel with the previous time-series observations as

� (z� , z� ) = exp(−
∥z�−z� ∥

2

2ℓ2
), where ℓ is the length scale of the kernel.

3.2 Framework Overview

The Graph Deep Factors (GraphDF) framework aims to learn a parametric distribution to predict future values. In

GraphDF, each node � and its time-series �
(� )
� ,∀� = 1, 2, . . . can be connected to other nodes and their time-series

in an arbitrary fashion, which is encoded in the graph � . These connections represent explicit dependencies

or correlations between the time-series of the nodes. Furthermore, we also assume that each node � and their

time-series z
(� )
1:� are governed by two key components including (1) a relational global model (Section 3.3), and (2)

a relational local random efect model (Section 3.4). As such, GraphDF is a hybrid forecasting framework. Both

the relational global component and relational local component of our framework leverage the graph via the

speciic underlying model used for each component.
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Fig. 2. An overview of GraphDF framework

In the relational global component of GraphDF, we assume there are � latent relational global factors that

determine the ixed efect to each node and their time-series. Speciically, the relational global model consists of

an approach that leverages the adjacency matrix A of the graph� and
{
X
( � )
:,1:� , z

( � )
1:�−1

}
for learning the � relational

global factors that capture the relational non-linear time-series patterns in the graph-based time-series data,

relational global factors: �� (·) = gcrn� (·), � = 1, . . . , � (2)

where �� (·), � = 1, 2, . . . , � are the � relational global factors that govern the underlying graph-based time-series

data of all nodes in � . In Eq. 2, we learn the relational global factors using a Graph Convolutional Recurrent

Network (GCRN) [67], however, GraphDF is lexible for use with any other arbitrary deep time-series model

such as DCRNN, among many other possibilities. These are then used to obtain the relational global ixed efects

function � (� ) for node � as follows,

ixed efect: � (� ) (·) =

�︁

�=1

��,� · �� (·) (3)

where��,� represents the �-dimensional embedding for node � . Therefore, the inal relational non-random ixed

efect for node � is simply a linear combination of the � global factors and the embedding w� ∈ R
� for node � .

Now we use a relational local model discussed in Section 3.4 to obtain the local random efects for each node � .

More formally, we deine the relational local random efects function � (� ) for a node � in the graph � as,

relational local random efect: � (� ) (·) ∼ R� , � = 1, . . . , � (4)

where R� can be any relational probabilistic time-series model. To compute P(z�1:� |R� ) eiciently, we ensure �
(� )
�

obeys a normal distribution, and thus can be derived fast. The relational latent function of node � denoted as � (� )

is then deined as,

latent function: � (� ) (·) = � (� ) (·) + � (� ) (·) (5)

where � (� ) is the relational ixed efect of node � and � (� ) is the relational local random efect for node � . Hence,

the relational latent function of node � is simply a linear combination of the relational ixed efect � (� ) from Eq. 3
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and its local relational random efect � (� ) from Eq. 4. Then,

emission: �
(� )
� ∼ P

(
�
(� )
�

�� � (� )
(
A,

{
X
( � )
:,1:� , z

( � )
1:�−1

}�
�=1

))
(6)

where the observation model P can be any parametric distribution. For instance, P can be Gaussian, Poisson,

Negative Binomial, among others.

The GraphDF framework is deined in Eq. 2-6. All the functions �� (·), �
(� ) (·), � (� ) (·) take past observations and

covariates
{
z
( � )
1:�−1,X

( � )
:,1:�

}�
�=1

, as well as the graph structure in the form of adjacency matrix A as inputs. We deine

w� =
[
��,1 · · ·��,� · · ·��,�

]
∈ R� as the �-dimension embedding for time-series z(� ) where��,� ∈ R is the weight

of the �-th factor for node � . An overview of the GraphDF framework is depicted in Fig. 2.

3.3 Relational Global Model

The relational global model learns � relational global factors from all time-series by a graph-based model. These

relational global factors are considered as the driving latent factors. After the relational global factors are derived

from the model, they are then used in a linear combination with weights given by embeddings for each time-series

�� , as shown in Eq. (3).

3.3.1 Learning Relational Global Factors via GCRN. We irst show how GCRN [67] can be modiied for learning

relational global factors in GraphDF. Let x
(� )
� ∈ R

� denote the � covariates of node � at time step � . Now, we

deine the input temporal features of the relational global factor component of the graph � as,

Y� =



�
(1)
�−1 x

(1)
�

...
...

�
(� )
�−1 x

(� )
�


∈ R�×� (7)

where � = � + 1 for simplicity. We refer to Y� as a time-series graph signal. The aggregation of information from

other nodes is performed by a graph convolution operation deined as the multiplication of a temporal graph

signal with a ilter �� . Given input features Y� , the graph convolution operation is denoted as �★G Θ with respect

to the graph � and parameters � :

�★G Θ(Y� ) = �� (L)Y� (8)

= U�� (Λ)U
�
Y� ∈ R

�×� (9)

where L = I − D−
1
2AD

− 1
2 is the normalized Laplacian matrix of the adjacency matrix, I ∈ R�×� is an identity

matrix. ��� =
∑
� �� � is the diagonal weighted degree matrix. L = UΛU

� is the eigenvalue decomposition. U is

the matrix composed of eigenvectors by order of eigenvalues of L, and Λ is the diagonal matrix of eigenvalues

of L. �� (Λ) = diag(� ) denotes a ilter parameterized by the coeicients � ∈ R� in the Fourier domain. Directly

applying Eq (9) is computationally expensive due to the matrix multiplication and the eigen-decomposition of L.

To accelerate the computation speed, the Chebyshev polynomial approximation up to a selected order � − 1 is

�� (L) =

�−1︁

�=0

���� (L̃), (10)

where � =
[
�0 · · · ��−1

]
∈ R� in Eq. (10) is the Chebyshev coeicients vector. Importantly, �� (L̃) = 2L̃��−1 (L̃) −

��−2 (L̃) is recursively computed with the scaled Laplacian L̃ = 2L/�max − I ∈ R
�×� , and starting values �0 = 1

and �1 = L̃. The Chebyshev polynomial approximation improves the time complexity to linear in the number

of edges � (� |� |), i.e., number of dependencies between the multi-dimensional node time-series. The order �

controls the local neighborhood time-series that are used for learning the relational global factors, i.e., a node’s
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multi-dimensional time-series only depends on neighboring node time-series that are at maximum � hops away

in the graph � .

Let Θ ∈ R�×�×� be a tensor of parameters that map the dimension � of input to the dimension � of output:

H:,� = tanh

[
�︁

�=1

�★G Θ(Y�, :,� )

]
, for � ∈ 1 . . . � (11)

The relational global component integrates the temporal dependence and relational dependence among nodes

with the graph convolution,

I� = � (Θ� ★G [Y� ,H�−1] +W� ⊙ C�−1 + b� ) (12)

F� = � (Θ� ★G [Y� ,H�−1] +W� ⊙ C�−1 + b� ) (13)

C� = F� ⊙ C� -1 + I� ⊙ tanh(Θ� ★G [Y� ,H� -1] + b� ) (14)

O� = � (Θ� ★G [Y� ,H�−1] +W� ⊙ C� + b� ) (15)

H� = O� ⊙ tanh(C� ) (16)

where I� , F� ,O� ∈ R
�×� are the input, forget and output gate in the LSTM structure. � is the number of hidden

units, W� ,W� ,W� ∈ R
�×� and b� , b� , b� , b� ∈ R

� are weights and bias parameters, Θ� ,Θ� ,Θ� ,Θ� ∈ R
�×� are

parameters corresponding to diferent ilters.

The hidden state H� ∈ R
�×� encodes the observation information from H�−1 and Y� , as well as the relations

across nodes through the graph convolution described by Θ★G (·) in Eq. (8). From hidden state H� , we derive the

value of � relational global factors at time step � as S� ∈ R
�×� through a fully connected layer,

S� = H�W + b (17)

whereW ∈ R�×� and b ∈ R� are the weight matrix and bias vector trained in the model (for the � relational

global factors), respectively. The relational global factors S� is derived from the Eq. (17) that capture the complex

non-linear time-series patterns between the diferent time-series globally.

Finally, the ixed efect at time � is derived for each node � as a weighted sum with the embedding w� ∈ R
� and

the relational global factors S� , as

�
(� )
� (·) =

�︁

�=1

��,� · ��,�,� (18)

The embedding w� represents the weighted contribution that each relational factor has on node � .

3.3.2 Learning Relational Global Factors via DCRNN. For the relational global component of GraphDF, we can

also leverage DCRNN [49]. Diferent from the GCRNmodel, the original DCRNN leverages a difusion convolution

operation and a GRU structure for learning the relational global factors of GraphDF.

Given the time-series graph signal Y� ∈ R
�×� with � nodes, the difusion convolution with respect to the

graph-based time-series is deined as,

�★G Θ(Y� ) =

�−1︁

�=0

(�� Ã
�
)Y� (19)

where Ã = D
−1
A is the normalized adjacency matrix of the graph � that captures the explicit weighted depen-

dencies between the multi-dimensional time-series of the nodes. The Chebyshev polynomial approximation is

used similarly as Eq. (10).
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The relational global factors are learned using the graph difusion convolution combined with GRU enabling

them to be carried forward over time using the graph structure,

R� = � (Θ� ★G [Y� , H�−1] + b�) (20)

U� = � (Θ� ★G [Y� , H�−1] + b� ) (21)

C� = tanh(Θ� ★G [Y� , (R� ⊙ H�−1)] + b� ) (22)

H� = U� ⊙ H�−1 + (1 − U� ) ⊙ C� (23)

where H� ∈ R
�×� denotes the hidden state of the model at time step � , � is the number of hidden units,

R� ,U� ∈ R
�×� are called as reset gate and update gate at time � , respectively. Θ�,Θ� ,Θ� ∈ R

� denote the

parameters corresponding to diferent ilters.

With the hidden state H� in Eq. (23), the ixed efect is derived from DCRNN similarly with Eq. (17) and

Eq. (18). Compared to the previous GCRN that we adapted for the relational global component, DCRNN is more

computationally eicient due to the GRU structure it uses.

3.4 Relational Local Model

The (stochastic) relational local component handles uncertainty by learning a probabilistic forecasting model for

every individual node in the graph � that not only considers the time-series of the individual node, but also the

time-series of nodes directly connected. This has the advantage of improving both forecasting accuracy and data

eiciency.

The random efects in the relational local model represent the local luctuations of the individual node time-

series. The relational local random efect for each node time-series � (� ) is sampled from the relational local model

R� , as shown in Eq. (4). For R� , we choose the Gaussian distribution as the likelihood function for sampling,

but other parametric distributions such as Student-t or Gamma distributions are also possible. Compared to the

relational global component of GraphDF from Section 3.3 that uses the entire graph � along with all the node

multi-dimensional time-series to learn � global factors that capture the most important non-linear time-series

patterns in the graph-based time-series data, the relational local component focuses on modeling an individual

node � ∈ � and therefore leverages only the time-series of node � and the set of highly correlated time-series

from its immediate local neighborhood Γ� . Hence, {z
( � ) ,X( � ) }, � ∈ Γ� . Intuitively, the relational local component

of GraphDF achieves better data eiciency by leveraging the highly correlated neighboring time-series along

with its own time-series. This allows GraphDF to make more accurate forecasts further in the future with less

training data. We now introduce probabilistic GCRN and probabilistic DCRNN model that can be used as the

stochastic relational local component in GraphDF.

3.4.1 Estimating Uncertainties via Probabilistic GCRN. In this section, we propose a relational local probabilistic

GCRN model for use with the GraphDF framework. In contrast to the relational global model in Section 3.3,

the relational local model focuses on learning an individual local model for each individual node based on its

own multi-dimensional time-series data as well as the nodes neighboring it. This enables us to model the local

luctuations of the individual multi-dimensional time-series data of each node.

Compared to RNN, the beneits of the proposed probabilistic GCRN model in the local component is that it not

only models the sequential nature of the data, but also exploits the graph structure by using the surrounding

nodes to learn a more accurate model for each individual node in � . This is an ideal property for we assume the

luctuations of each node are related to those of other connected nodes in the ℓ-localized neighborhood, which

was shown to be the case in Fig. 1.

For simplicity, let � = Γ� denote the set of neighbors of a node � in the graph � . Note that � can be thought of

as the set of related neighbors of node � , which may be the immediate 1-hop neighbors, or more generally, the
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ℓ-hop neighbors of � . Recall that we deine x
(� )
� ∈ R

� as the � covariates of node � at time � . Then, we deine X��
as an |� | × � matrix consisting of the covariates of all the neighboring nodes � ∈ � of node � .

X
(� )
� =

[
x
(�1 )
� x

(�2 )
� · · · x

(� |� | )

�

]⊺
(24)

where � � denotes the � (th) neighbor. Now, we deine the input temporal features of the relational local model for

node � as,

Y
(� )
� =

[
�
(� )
�−1 x

(� )
�

⊺

z
(� )
�−1 X

(� )
�

]
(25)

Let L(� ) ∈ R( |� |+1)×( |� |+1) denote the submatrix of Laplacian matrix L that consist of rows and columns

corresponding to node � and its neighbors � . For each node � , we derive the relational local random efect using

its past observations and covariates of the node � and those of its neighbors through the graph convolution with

respect to L
(� ) .

I
(� )
� = � (Θ

(� )
�

★G [Y
(� )
� , H

(� )
�−1] +W

(� )
�
⊙ C

(� )
�−1 + b

(� )
�
)

F
(� )
� = � (Θ

(� )
�

★G [Y
(� )
� , H

(� )
�−1] +W

(� )
�
⊙ C

(� )
�−1 + b

(� )
�
)

C
(� )
� = F

(� )
� ⊙ C

(� )
�−1 + I

(� )
� ⊙ tanh(Θ

(� )
�

★G [Y
(� )
� ,H

(� )
�−1] + b

(� )
�
)

O
(� )
� = � (Θ

(� )
�

★G [Y
(� )
� , H

(� )
�−1] +W

(� )
�
⊙ C

(� )
� + b

(� )
�
)

H
(� )
� = O

(� )
� ⊙ tanh(C

(� )
� )

where Θ
(� )
�
,Θ
(� )
�
,Θ
(� )
�
,Θ
(� )
�
∈ R�×� denote the parameters corresponding to diferent ilters of the relational local

model, � is the number of hidden units in the relational local model, and recall � = �+1. Further,H
(� )
� ∈ R

( |� |+1)×�

is the hidden state for node � and its neighbors Γ� .W
(� )
�
,W
(� )
�
,W
(� )
�
∈ R( |� |+1)×� are weight matrix parameters

and b
(� )
�
, b
(� )
�
, b
(� )
�
, b
(� )
�
∈ R� are bias vector parameters. Note in the above formulation, we assume ℓ = 1, hence,

only the immediate 1-hop neighbors are used.

From the hidden state H
(� )
� , we only take the row corresponding to node � to derive the relational local random

efect for node � . We denote the value as h
(� )
� ∈ R

� , and apply a fully connected layer with a softplus activation

function to aggregate the hidden units,

��,� = log
(
exp(w(� )

⊺
h
(� )
� + �

(� ) ) + 1
)

(26)

where w(� ) ∈ R� and � (� ) are weight vector and bias, respectively.

Finally, the relational local random efect �
(� )
� (·) for node � at time � is sampled from a Gaussian distribution

with zero mean and a variance given by �2 in Eq.(26),

�
(� )
� (·) ∼ N (0, �

2
�,� ) (27)

The relational local random efect �
(� )
� captures both past observations, covariates values of node � and its

neighbors Γ� for uncertainty estimates through ��,� , which is given by the probabilistic GCRN. A small ��,�
means a low uncertainty of prediction for node � at � . Speciically, the probabilistic model subsumes the point

forecasting model when the relational local random efect is zero for all nodes at all timesteps as ��,� = 0,∀�∀� .

The probabilistic property also allows the uncertainty to be propagated forward in time.
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3.4.2 Estimating Uncertainties via Probabilistic DCRNN. We also describe a probabilistic DCRNN for the relational

local component of GraphDF. For a given node � , its relational local random efect is derived with respect to its

past observations, covariates and those of its neighbors, denoted by Y
(� )
� ∈ R

( |� |+1)×� as deined in Eq. (25). The

difusion convolution models the relational local random efect among nodes. The GRU structure is adapted with

the difusion convolution to allow the random efects to be forwarded in time.

R
(� )
� = �

(
Θ
(� )
�

★G [Y
(� )
� ,H

(� )
� ] + b

(� )
�

)
(28)

U
(� )
� = �

(
Θ
(� )
�

★G [Y
(� )
� ,H

(� )
� ] + b

(� )
�

)
(29)

C
(� )
� = tanh

(
Θ
(� )
�

★G [Y
(� )
� ,H

(� )
� ] + b

(� )
�

)
(30)

H
(� )
� = U

(� )
� ⊙ H

(� )
�−1 + (1 − U

(� )
� ) ⊙ C

(� )
� (31)

where Θ
(� )
�
,Θ
(� )
�
,Θ
(� )
�
∈ R�×� denote the parameters corresponding to diferent ilters, H

(� )
� ∈ R( |� |+1)×� is

the hidden state for node � and its neighbors Γ� , � is the number of hidden units in the relational local model.

b
(� )
�
, b
(� )
�
, b
(� )
�
, b
(� )
�
∈ R� are bias vector parameters. The graph convolution in equations above is performed with

the submatrix L(� ) taken from the Laplacian matrix L of the graph � that explicitly models the important and

meaningful dependencies between the multi-dimensional time-series data of each node. The matrix L(� ) consists

of rows and columns corresponding to node � and its neighbors Γ� . With the hidden state H
(� )
� , the relational local

random efect �
(� )
� (·) is calculated similarly with Eq. (26) and Eq. (27).

Algorithm 1 Training Graph Deep Factor Models

1: Initialize the model parameters Φ (W∗, b∗,Θ∗, etc.)

2: for each time series pair {(z(� ) , x(� ) )} in a batch do

3: With current model parameter estimates Φ

4: Calculate the relational ixed efect �
(� )
� =

∑�
�=1��,� · ��,�,� described in Sec. 3.3

5: Calculate the relational local random efect, �
(� )
� (·) ∼ N (0, �2�,� ) described in Sec. 3.4

6: Compute marginal likelihood, P(z(� ) ) =
∑
� −

1
2 ln(2���,� ) −

∑
�
(�
(� )
� −��,� )

2

2�2
�,�

and accumulate loss

7: end for

8: Compute the overall loss in the current batch and perform stochastic gradient descent and update the trainable

parameters Φ accordingly.

3.5 Learning & Inference

To train a GraphDF model, we estimate the parameters Φ, which represent all trainable parameters (W, etc.) in

the relational global and relational local model, as well as the parameters in the embeddings. We leverage the

maximum likelihood estimation,

Φ = argmax
︁

�

P
(
z
(� )
��Φ,A,

{
X
( � )
:,1:� , z

( � )
1:�−1

}�
�=1

)
(32)

where

P(z(� ) ) =
︁

�

−
1

2
ln(2���,� ) −

︁

�

(�
(� )
� − ��,� )

2

2�2�,�
(33)

is the negative log likelihood of Gaussian function. Notice that maximizing − 1
2 ln(2���,� ) will minimize the

relational local random efect, at the same time, � is small when the predicted ixed efect ��,� is close to the
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actual value �
(� )
� , as shown in the second term

(�
(� )
� −��,� )

2�2
�,�

in Eq. (33). We describe a general training procedure in

Algorithm 1.

3.6 Model Variants

In this section, we deine a few of the GraphDF model variants investigated in Section 5.

• GraphDF-GG: This is the default model in our GraphDF framework, where we use a graph model to learn

the � relational global factors (Sec. 3.3) and the probabilistic local graph component from Sec. 3.4.1 as the

relational local model.

• GraphDF-GR: This model variant from the GraphDF framework uses the GCRN from Sec. 3.3 to learn the

� relational global factors from the graph-based time-series data and leverages a simple RNN for modeling

the local random efects of each node.

• GraphDF-RG: This model variant from the GraphDF framework uses a simple RNN to learn the � global

factors and ixed efects of the nodes and for the relational random efects of the nodes, we leverage the

probabilistic graph component from Sec. 3.4.1 as the relational local model.

The GraphDF framework is lexible with many interchangeable components. Importantly, the relational global

component (Sec. 3.3) of GraphDF is completely interchangeable. In particular, this component uses the graph-

based time-series data to learn the � global factors and ixed efects of the nodes. Similarly, one can also leverage

any arbitrary relational local model (Sec. 3.4) for obtaining the relational local random efects of the nodes.

4 INCREMENTAL ONLINE LEARNING FOR GRAPHDF

In practical setting, time-series are changing frequently in a streaming fashion as new time-series observations

arrive for all � nodes. For instance, in Google cloud dataset [61] that we used, the time interval is ive minutes,

which means we have new time-series observations for all � nodes every ive minutes. In such scenarios, we

want to incrementally update the forecasting model without the need to relearn the entire model from scratch

every time a new point arrives in the stream.

However, the original GraphDF model is incapable of incrementally updating the model as new values arrive

in the stream. One solution could be to retrain a new GraphDF model from scratch each time new values arrive,

however, it will take too much time for GraphDF to initialize new parameters and train from scratch, which

would cause a waste of limited computing resources, especially when predicting with large-scale time-series data.

To handle this, we propose an incremental online approach called Incremental Online GraphDF (IOGraphDF)

that eiciently updates the current model, without the need to retrain it entirely from scratch with each newly

arrive point. By doing this, the IOGraphDF modeling operates much more eiciently.

Denote � the moment dynamic streaming time-series currently reach, we deine the set of covariate time-series

as X� = {X
(� ) }��=1 where X

(� ) ∈ R�×� , where � is the number of dimension for covariate features. We deine

the set of target time-series is Z� = {z
(� ) }��=1 where z

(� )
1:� denotes the �(th) univariate target time-series. Given(

X� ,Z�
)
at the moment � , our task is to give probabilistic predictions at the horizon for each target time-series

{ẑ
(� )
�+1}

�
�=1, {ẑ

(� )
�+2}

�
�=1, . . . , {ẑ

(� )
�+...}

�
�=1 Hence the target function is modiied accordingly as:

P

({
z
(� )
�+1:�+�

}�
�=1

���A,
{
z
(� )
1:� ,X

(� )
:,1:�+�

}�
�=1

;Φ
)

� = 1, 2, · · · (34)

Therefore, every time new observations arrive, the new problem formulation is conditioned upon all available

known values to make further predictions. The algorithm for IOGraphDF is described in Algorithm 2.
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Algorithm 2 Incremental Online Learning for GraphDF

1: Initialize the model parameters Φ (W∗, b∗,Θ∗, etc.)

2: while new time-series values {(�
(� )
� , �

(� )
� )}

�
�=1 arrive at time � in stream do

3: Add new values at time � and remove earliest for all � node time-series

4: Perform incremental update to relational global model

5: for each time series pair (z(� ) , x(� ) ) do

6: With current model parameter estimates Φ

7: Calculate the relational ixed efect �
(� )
� =

∑�
�=1��,� · ��,�,� described in Sec. 3.3

8: Calculate the relational local random efect �
(� )
� (·) ∼ N (0, �2�,� ) described in Sec. 3.4

9: Compute marginal likelihood P(z(� ) ) =
∑
� −

1
2
ln(2���,� ) −

∑
�
(�
(� )
� −��,� )

2

2�2
�,�

and accumulate the loss

10: end for

11: end while

12: Compute the overall loss in the current batch and perform SGD and update the trainable parameters Φ

accordingly.

Now we analyze the time complexity of IOGraphDF, when a single value arrives at time � , the worst-case time

complexity is

O ((|� | · ���� + �) + ��max�� ) (35)

where |� | is size of the edge set in the graph, � is the number of relational global factors, � is the order of the

graph convolution. Noticeably, for incremental online GraphDF, we maintain only the most recent � values

in a streaming window for each of � nodes. The time complexity of the relational global component can

be decomposed into the computation for � relational global factors, and their linear combination (i.e., the �

term in Eq. 35) which is timewise negligible, therefore, the time complexity of the relational global component

O (|� | · ���� + �) is approximately linear to all the aforementioned values.

Further in the time complexity O (��max�� ) for the relational local component, �max is the maximum node

degree of the graph, and thus Eq. 35 is the worst case. However, in practice ��max ≫
∑�
�=1 |�� |, where |�� |

is the degree of the �th node. Notice that since the number of local iterations in the online model is a small

ixed constant (e.g., 1, 10) for every new data point that arrives at time � , it can safely be omitted. In the multi-

step ahead prediction scenario, Eq. 35 is multiplied by a factor of future horizon � , i.e., the time complexity is

linear to � . However, the oline model time complexity is signiicantly larger by a factor of epoch numbers

� . In the oline case of GraphDF, we are given � time-series values for each � nodes, and need to relearn an

entire model from scratch every time. Thus, the time complexity of GraphDF is signiicantly higher than that

of IOGraphDF, O (� · (( |� | · ���� + �) + ��max�� )) ≫ O ((|� | · ���� + �) + ��max�� ). It is important to

note that� increases as a function of the stream size, hence, the oline model consumes much more computation

time than the IOGraphDF model.

In terms of input data space requirements, the oline GraphDF requires O(�� ) space while the incremental

online GraphDF requires only O(�� ) space where � is the most recent � values in the stream. Hence, since

� ≪ � , then O(�� ) ≪ O(�� ). Furthermore, as more data arrives over time, we can also see that the input data

space of GraphDF can actually increase (assuming that it is trained using all available data). This is in contrast to

the incremental online GraphDF that always uses a ixed amount of space, as when a new data point arrives for

time � , we simply discard the most distant value and append the new value.
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5 EXPERIMENTS

In this section, We examine the performance of GraphDF models with previous state-of-the-arts, then we evaluate

the performance of IOGraphDF models against GraphDF models, inally, we investigate both models in the task

of opportunistic scheduling. For GraphDF, the experiments are designed to investigate the following:

RQ1. Does GraphDF outperform the state-of-the-art deep probabilistic forecasting method?

RQ2. Are the GraphDF models fast and scalable for large-scale time-series forecasting?

RQ3. Can GraphDF generate cloud usage forecasts to efectively perform opportunistic workload scheduling?

Table 1. Statistics of the two real-world large-scale collections of time-series.

Avg. Median Mean Mean Median

Data |� | |� | Density Deg. Deg. wDeg. D Time-scale T CPU usage CPU usage

Google 12,580 1,196,658 0.0075 95.1 40 30.3 5 5 min 8,354 22.7% 21.4%

Adobe 3,270 221,984 0.0207 67.9 15 67.7 5 30 min 1,687 108.5% 9.1%

5.1 Experimental Setup

We used two real-world datasets in our experiments; Google trace data and Adobe trace data. Table 1 shows the

statistics and properties (e.g.edge density, average degree, etc.).

Google Trace. The Google trace dataset records the activities of a cluster of 12, 580 machines for 29 days since

19:00 EDT in May 1, 2011. The CPU and memory usage for each task are recorded every 5 minutes. The usage of

tasks is aggregated to the usage of associated machines, resulting time-series of length 8, 354.

Adobe Workload Trace. The Adobe trace dataset records the CPU and memory usage of 3, 270 nodes in the period

from Oct. 31 to Dec. 5 in 2018. The timescale is 30 minutes, resulting time-series of length 1, 687.

For the opportunistic workload scheduling case study in Section 6, we need to train a model fast within a few

minutes and then forecast a single as well as multiple timesteps ahead, which are then used to make a decision

on whether the current resources are enough or if we should instead scale up or down. Therefore, models must

be able to be trained fast within a few minutes. To ensure the models are trained fast within minutes, we use

6 observations in the time-series data for training across all experiments. Furthermore, as in most time-series

forecasting problems, the future CPU usage of machines is highly dependent on the most recent observations

than those in the distant past. We set the number of embedding dimension as � = 10 in�� ∈ R
� and use time

feature series as covariates. We set the embedding dimension to � = 10 in�� ∈ R
� and used � = 5 covariates for

each time-series. Similar to DF [75], the time features (e.g.minute of hour, hour of day) are used as covariates. We

derive a ixed graph using Radial Based Function (RBF) on the past observations.

The three models described in Section 3.6 are evaluated against four state-of-the-art probabilistic forecasting

methods including Deep Factors, DeepAR [31], MQRNN [76], and NBEATS [57]:

• Deep Factors is a generative approach that combines a global model and a local model. To ensure fair

comparison, we modiied DF to solve the same problem formulated in Eq. 1, and thus the DF version

used for comparison uses the same inputs as GraphDF. Unless otherwise mentioned, we use the same

experimental setup as mentioned in the DF paper. In particular, as suggested by the authors, we use the

Gaussian likelihood in terms of the random efects in the deep factors model. We use 10 global factors with

a LSTM cell of 1-layer and 50 hidden units in its global component, and 1-layer and 5 hidden units RNN in

the local component. We also use suggested hyperparameters for other compared baselines.

• DeepAR is an RNN-based global model, we use a LSTM layer with 50 hidden units in DeepAR.
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Table 2. Results for one-step ahead forecasting (p10ql, p50ql and p90ql).

data NBEATS MQRNN DeepAR DF GraphDF-GG GraphDF-GR GraphDF-RG

p10ql
Google 18.12±201.26 0.190±0.004 0.046±0.000 0.083±0.001 0.037±0.000 0.038±0.000 0.044±0.000

Adobe 0.615±0.091 0.132±0.000 0.164±0.001 1.128±0.004 0.118±0.001 0.119±0.000 1.027±2.700

p50ql
Google 10.064±62.12 0.172±0.001 0.098±0.001 0.239±0.001 0.072±0.000 0.076±0.000 0.077±0.000

Adobe 3.070±2.286 0.272±0.001 0.619±0.026 1.649±0.001 0.188±0.000 0.210±0.001 0.746±0.835

p90ql
Google 2.013±2.485 0.106±0.001 0.051±0.000 0.144±0.002 0.041±0.000 0.044±0.000 0.048±0.000

Adobe 5.524±7.410 0.217±0.000 0.949±0.086 1.802±0.002 0.153±0.001 0.169±0.001 0.342±0.037

Table 3. Results for multi-step ahead forecasting (p10ql).

data h NBEATS MQRNN DeepAR DF GraphDF-GG GraphDF-GR GraphDF-RG

Google

3 0.652±0.396 0.152±0.006 0.070±0.000 0.132±0.004 0.064±0.001 0.077±0.000 0.087±0.000

4 0.260±0.017 0.272±0.018 0.138±0.000 0.193±0.016 0.071±0.001 0.083±0.000 0.089±0.001

5 0.447±0.054 0.147±0.005 0.484±0.017 0.327±0.036 0.054±0.000 0.113±0.001 0.088±0.001

Adobe

3 0.811±0.295 0.184±0.003 0.207±0.002 0.303±0.006 0.183±0.002 0.216±0.008 0.267±0.009

4 0.985±0.537 0.219±0.008 0.273±0.003 0.313±0.018 0.184±0.002 0.242±0.014 0.423±0.019

5 0.626±0.023 0.398±0.229 0.402±0.011 0.343±0.047 0.251±0.016 0.298±0.031 0.544±0.020

Table 4. Results for multi-step ahead forecasting (p50ql).

data h NBEATS MQRNN DeepAR DF GraphDF-GG GraphDF-GR GraphDF-RG

Google

3 0.741±0.050 0.257±0.011 0.148±0.001 0.400±0.004 0.091±0.001 0.134±0.002 0.097±0.000

4 0.618±0.105 0.410±0.017 0.191±0.000 0.454±0.007 0.097±0.002 0.185±0.002 0.109±0.000

5 0.485±0.021 0.684±0.012 0.466±0.006 0.563±0.017 0.128±0.000 0.284±0.012 0.126±0.001

Adobe

3 1.683±0.100 0.556±0.028 0.592±0.017 1.116±0.006 0.272±0.004 0.315±0.006 0.319±0.005

4 1.424±0.210 0.574±0.011 0.629±0.024 1.029±0.001 0.314±0.004 0.353±0.007 0.405±0.007

5 1.069±0.027 0.687±0.064 0.633±0.012 1.039±0.004 0.375±0.007 0.401±0.014 0.484±0.005

Table 5. Results for multi-step ahead forecasting (p90ql).

data h NBEATS MQRNN DeepAR DF GraphDF-GG GraphDF-GR GraphDF-RG

Google

3 0.830±0.262 0.091±0.001 0.067±0.000 0.208±0.002 0.051±0.000 0.051±0.000 0.089±0.000

4 0.976±0.429 0.090±0.000 0.070±0.000 0.213±0.002 0.050±0.001 0.076±0.001 0.095±0.001

5 0.523±0.085 0.124±0.000 0.134±0.000 0.220±0.002 0.069±0.001 0.167±0.013 0.094±0.001

Adobe

3 2.556±0.328 0.317±0.002 0.751±0.117 1.545±0.008 0.248±0.004 0.254±0.003 0.301±0.003

4 1.862±1.212 0.335±0.004 0.696±0.170 1.673±0.008 0.317±0.006 0.318±0.009 0.482±0.014

5 1.512±0.082 0.463±0.003 0.546±0.000 1.690±0.015 0.410±0.021 0.434±0.007 0.512±0.007

• MQRNN is a sequence model with quantile regression and NBEATS is an interpretable pure deep learning

model. For MQRNN, we use a GRU bidirectional layer with 50 hidden units as encoder and a modiied

forking layer in decoder.

• For N-BEATS, we use an ensemble modiication of the model and take the median value from 10 bagging

bases as results.
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Fig. 3. Probabilistic forecasting results for 3-step ahead forecast horizon (P50QL) from Adobe and Google trace dataset.

All methods are implemented using MXNet Gluon [2, 16]. The Adam optimization method is used with a

default initial learning rate as 0.001 to train all models. The training epochs are selected by grid search in

{100, 200, . . . , 1000}. An early stopping strategy is leveraged if weight losses do not decrease for 10 continuous

epochs. We used a learning rate decay factor of 0.5, minimum learning rate of 5 ∗ 10−5, Xavier as the weight

initializer, and trained for 500 epochs on Adobe data and 100 epochs for the Google dataset. Some hyperparameters

are speciic to our method: In GraphDF, we set the order � = 2 in Eq. (10). A small number of the order indicates

that the model makes forecasts based more on neighboring nodes than those more distant. For other methods,

we use default hyperparameters given by the Gluonts implementation if not otherwise mentioned.

To evaluate the probabilistic forecasts, we use the quantile loss deined as follows: given a quantile � ∈ (0, 1), a

target value z� and �-quantile prediction ẑ� (�), the �-quantile loss is

QL� [z� , ẑ� (�)] = 2
[
� (z� − ẑ� (�))Iz�−ẑ� (� )>0 + (1 − �) (̂z� (�) − z� )Iz�−ẑ� (� )⩽0

]
(36)

For deriving quantile losses over a timespan across all time-series, we use a normalized version of quantile

loss
∑
�,� QL� [��,� , �̂�,� (�)]/

∑
�,� |��,� |. When � = 0.5, the resulted quantile loss is equivalent to Mean Absolute

Percentage Error (MAPE). In experiments, the quantile losses are computed based on 100 sample values. Our

algorithms are implemented in MXNet Gluon [16] and all experiments run on a machine with 8 CPU cores.

5.2 Forecasting Performance

To answer the research questions, we investigate the proposed GraphDF framework with various forecast horizons

including � = {1, 3, 4, 5}.

The results for single and multi-step ahead forecasting are provided in Table 2 and Table 3-5, respectively,

where the best result for every dataset and forecast horizon are highlighted in bold. We run 10 trials for each

model and report the average for � = {0.1, 0.5, 0.9}, denoted as the P10QL, P50QL and P90QL, respectively. In

all cases, we observe that the GraphDF models outperform the state-of-the-art method across all datasets and

forecast horizons. Furthermore, we observe that in most cases, the GraphDF-GG variant that uses GCRN for both

the relational global and relational local component outperforms the other variants. The second best GraphDF

model is GraphDF-GR followed by Graph-RG.

To understand the overall performance and variance of the models, we show boxplots for each model in

Fig. 3. Strikingly, we observe that the GraphDF models provide more accurate forecasts with signiicantly lower

variance.
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Table 6. Training runtime performance (in seconds).

Data NBEATS MQRNN DeepAR DF GraphDF-GG GraphDF-GR GraphDF-RG

Google 663.31±54.09 284.76±71.08 413.79±49.62 315.06±67.80 279.45±41.19 222.08±69.52 281.76±49.51

Adobe 462.06±120.07 393.08±4.22 351.99±285.30 378.97±441.64 282.30±36.80 211.20±21.56 264.00±56.29

Table 7. Inference runtime performance (in seconds).

Data NBEATS MQRNN DeepAR DF GraphDF-GG GraphDF-GR GraphDF-RG

Google 88.08±10.96 9.22±0.06 17.06±0.16 8.28±0.02 1.67±0.03 0.99±0.003 1.16±0.003

Adobe 162.63±7.59 2.69±0.006 4.30±0.02 2.12±0.001 0.51±0.005 0.28±0.001 0.33±0.000
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Fig. 4. Comparing scalability of GraphDF to DF as the training set size increases for the Adobe workload trace dataset. Note

training set size = data points per time-series.

5.3 Runtime Analysis

Training and inference runtime performance results are shown in Table 6 and Table 7, respectively. All forecasting

models are trained using only six previous values for each time-series in the collection (Table 6). As expected, the

relational global model is signiicantly faster and more scalable than the global model used in Deep Factors. In

particular, we see that the runtime of our GraphDF model that uses GCRN for the relational global model with

RNN as the local model is signiicantly faster than Deep Factors that uses the same local model, but difers in the

global model used. This is due to the fact that in the state-of-the-art DF model, all time-series are considered

equivalently and jointly when learning the � global factors. This can be thought of as a fully connected graph

where each time-series is connected to every other time-series. In comparison, the relational global components of

GraphDF leverage the graph that encodes explicit dependencies between the diferent time-series, and therefore,

does not need to leverage all pairwise time-series, but only a smaller fraction of those that are actually related.

In terms of inference, all models are fast taking only a few seconds as shown in Table 7. For inference, we

report the time (in seconds) to infer the next six values in each time-series in the collection. In all cases, the

GraphDF model variants are signiicantly faster than DF across both Google and Adobe workload datasets.
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Fig. 5. Comparing training runtime and one step ahead P50QL (i.e.MAPE) between GraphDF (blue) and IOGraphDF(yellow

dashed line) on Google dataset.

5.4 Scalability

To evaluate the scalability of GraphDF, we vary the training set size (i.e., the number of previous data points

per time-series to use) from {2, 4, 8, 16, 32}. Fig. 4 shows that GraphDF scales nearly linear as the training set

size increases from 2 to 32. For instance, GraphDF takes around 15 seconds to train using only 2 data points per

time-series and 30 seconds using 4 data points per time-series, and so on. We also observe that for the Adobe

data, GraphDF is always about 3x faster compared to DF across all training set sizes.

5.5 Experimental Result on IOGraphDF

To evaluate the performance of IOGraphDF, we design experiments to answer the following research questions:

RQ4. Does IOGraphDF yield more accurate predictions than GraphDF?

RQ5. Does IOGraphDF outperform GraphDF regarding training and prediction runtime?

RQ6. Does IOGraphDF perform better in the opportunistic workload scheduling task?

Experimental setting. To compare the performance and runtime between IOGraphDF and GraphDF model,

we simulate an streaming procedure containing 100 timesteps, where new values are received by both models

at each time step. At each time step new values arrive, a new GraphDF instance is initialized and then trained

with the just arrived values. By contrast, IOGraphDF model only needs to be initialized once at the beginning,

and the same IOGraphDF instance is incrementally updated from the previous time step with newly arrived

data. Incoming values are assumed to be more dependent on near observations than those in the distant past,

therefore, we maintain a shifting window size of 9 to include the most recent observations relative to � . When

� increments, the oldest values are removed from the window and newly arrived values are appended to the

window. The window values are split sets for data training and itting procedure. Using the Google dataset, for

GraphDF model, the number of training epochs is set as 100, while for IOGraphDF model, the number of local

iterations (the training times upon each shifting window) only needs to be set as a smaller number 50, because

after the model is initialized, the existed model preserve learned information from previous time steps. In the

inference stage, values in � = 3 steps ahead are predicted and evaluated with ground truth.

Experimental results. Overall, we observe from Fig. 5 (left) and Table 8 that IOGraphDF is signiicantly

faster, with very comparable loss (as shown in Fig. 5 (right) and Table 8). Hence, IOGraphDF sacriices a small

amount of accuracy for a signiicant speedup.
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Fig. 6. Comparing training runtime and one step ahead P50QL between GraphDF (blue) and IOGraphDF(yellow dashed line)

on Adobe dataset.

We further conducted experiments on 100 timesteps using the best variants GraphDF-GG and IOGraphDF-GG.

As observed in Fig. 5 (Right), the p50QL (i.e.MAPE) of GraphDF (in blue) and IOGraphDF (yellow dashed line)

for each 100 streaming timestep is plotted. In the irst few timesteps, IOGraphDF has much higher errors than

GraphDF, however, IOGraphDF performance converges quickly to that of GraphDF’s, as two lines in Fig. 5 are

mostly overlapping after streaming timestep 20.

Table 8. Results for multi-step ahead forecasting (Runtime) with IOGraphDF.

data h GraphDF-GG GraphDF-GR GraphDF-RG IOGraphDF-GG IOGraphDF-GR IOGraphDF-RG

Google

3 279.45±41.19 222.08±69.51 281.76±49.51 70.209±0.844 51.213±1.380 68.237±1.477

4 282.67±12.33 222.31±14.31 283.54±26.26 70.325±1.227 51.481±1.222 68.340±0.729

5 283.69±15.43 223.53±24.54 289.16±32.79 70.839±1.351 51.733±1.465 68.807±1.080

Adobe

3 282.30±36.80 211.20±21.36 264.00±56.29 27.69±1.17 20.20±0.82 25.19±0.55

4 282.80±26.03 212.60±14.00 264.90±60.90 26.69±0.63 20.49±1.17 25.22±0.49

5 287.30±12.03 214.81±21.93 274.78±46.10 26.86±0.82 20.78±0.73 25.24±0.68

Table 9. Results for multi-step ahead forecasting (p50ql) with IOGraphDF.

data h GraphDF-GG GraphDF-GR GraphDF-RG IOGraphDF-GG IOGraphDF-GR IOGraphDF-RG

Google

3 0.091±0.001 0.134±0.002 0.097±0.000 0.104±0.006 0.146±0.007 0.141±0.013

4 0.097±0.002 0.185±0.002 0.109±0.000 0.108±0.005 0.146±0.005 0.156±0.005

5 0.128±0.000 0.284±0.012 0.126±0.001 0.122±0.006 0.164±0.010 0.171±0.010

Adobe

3 0.272±0.004 0.315±0.006 0.319±0.005 0.211±0.023 0.328±0.039 0.371±0.042

4 0.314±0.004 0.353±0.007 0.405±0.007 0.240±0.018 0.332±0.057 0.393±0.056

5 0.375±0.007 0.401±0.014 0.484±0.005 0.286±0.023 0.341±0.083 0.404±0.059

In both oline and online models, the expected runtime on training are positively related to the number of

values on input and output. In the oline GraphDF model, each time new values arrived, a new model has to be

created and trained using the new values, and only recent values are taken as input, hence, this causes the loss of
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Table 10. Runtime comparison between GraphDF and IOGraphDF over timesteps

Data GraphDF IOGraphDF

Google 208.770±11.862 76.948±22.717

Adobe 58.170±1.666 30.534±0.718

Algorithm 3 Opportunistic Scheduling

1: Initialize hyperparameters and variables lookbackwindow for GraphDF (or streamingwindow for IOGraphDF)

� , horizon � , threshold ratio � , portion ratio �. Accumulated utilization improvement ���

2: while New observations arrive � ← � + 1 do

3: Initialize weights Φ for new model ��

4: �� ← P
(
·
��Φ,A,

{
X
(� )
:,�−�+1:�+� , z

(� )
�−�+1:�

}�
�=1

)

5: for each node � do

6: Obtain forecasts �̂ (� )={�̂
(� )
�+1, �̂

(� )
�+2 . . . �̂

(� )
�+� }∼��

7: if MEAN of forecasts MEAN(�̂ (� ) ) ≤ � then

8: Utilization ���←��� + �(1 −MEAN(�̂ (� ) ))

9: else

10: Cancel assigned tasks on node �

11: end if

12: end for

13: end while

earlier observations as possibly useful information. In our proposed IOGraphDF, the input is only modeled upon

a ixed amount of recent values. Since the same model instance is used and kept updated over time, IOGraphDF

has the advantage of leveraging earlier observations for forecasting, as learned by the model parameters. As a

consequence, we set the local iterations, the number of times data values are used to update IOGraphDF model, a

small number 50, which results a much faster IOGraphDF while still preserving a high accuracy. The runtime

comparison between GraphDF and IOGraphDF over 100 timesteps is shown in Fig. 5 (Left). Similar result can be

observed from the experiment using Adobe dataset using the same warm start period (20 steps i.e.10 hours), as

shown in Fig. 6. We also summarize average and deviation runtime in Table 10.

Following the setup in Section 5.2, we design experiments to investigate the performance of IOGraphDF model

variants over multi-step ahead prediction, and compare against previous results from GraphDF variants. Since

IOGraphDF models take advantages of incremental training, for a fair comparison, we report the result for

IOGraphDF models after a warm start period (set as 20 timesteps). The values in the warm start period are used

to train the IOGraphDF models, but not used for loss comparison. The values after the warm period are then

used to evaluate and compare the prediction loss with the GraphDF variants. The result is shown in Table. 9. We

observe that on the Google dataset, IOGraphDF variants reach very close result to the GraphDF counterparts,

while IOGraphDF models only requires signiicantly less training runtime than GraphDF models, as shown in

Table 8. For the Adobe dataset, IOGraphDF models not only require less runtime, but also obtain more accurate

prediction with smaller loss in most cases (highlighted in the column IOGraphDF-GG).

5.6 Ablation Study

We further investigate the efects of hyperparameters upon IOGraphDF model with extensive experiments.

The length of warm start period and the number of relational global factors � are selected from the range
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Table 11. Results on combination of hyperparameters for 3-step ahead forecasting (p50QL) with Google dataset, the best

performance for each number of warm start period (row) is highlighted in bold.

Number of relational global factors �

5 10 20 50

N
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p
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5 1.121±0.124 0.804±0.105 0.746±0.058 0.453±0.048

10 0.321±0.015 0.305±0.011 0.295±0.010 0.281±0.009

20 0.124±0.012 0.104±0.006 0.108±0.009 0.126±0.008

50 0.102±0.005 0.009±0.003 0.105±0.007 0.107±0.003
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Fig. 7. CPU utilization without opportunistic workload scheduling (shown in green) and with scheduling based on each

forecaster (shown in red and blue), over a period of 6 hours on Google dataset. GraphDF-based scheduling leads to higher

CPU utilization than DF and vanilla scheduling.

of {5, 10, 20, 50}. We report p50QL for forecasting 3-step ahead on Google dataset with combinations of these

hyperparameters and the result is shown in Table 11. From the result table, we observe (1) When the number

of relational global factor � is ixed, i.e., for each column of Table 11, the longer the warm start period is, the

better performance IOGraphDF achieves. (2) When the number of warm start period is small, the performance

is drastically improved as the number of relational global factors � increases, as shown in the irst two rows

of Table 11, and the best performance is achieved when � = 50. We suggest this can be due to the insuicient

training of the model, since the number of warm start period is small. (3) When the number of warm start period

is large, the performance improves little or even worsens as the number of relational global factors � increases,

as shown in the last two rows of Table 11. This can be caused due to the excessive amount of model parameters

which leads to overitting.

6 CASE STUDY: OPPORTUNISTIC SCHEDULING

We leverage our GraphDF forecasting model to enable opportunistic scheduling of batch workloads. Since batch

workloads such as ML training, crawling web pages etc. have loose latency requirements, they can be scheduled

on underutilized resources (such as CPU cores) opportunistically. This improves resource utilization of the cluster

and reduces operating costs by precluding the need to allocate additional machines to run the batch workloads.

Our model generates probabilistic CPU usage forecasts for cloud nodes and nodes with low predicted usage are

employed for scheduling these workloads.
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Fig. 8. The time constraint (black line), the runtime of scheduler with DF (red line) and that with GraphDF (blue line). Note

that in most cases, DF fails to meet the time constraint while GraphDF produces a forecast much faster.

Table 12. Results for opportunistic scheduling in the cloud over a 6 hour period using diferent forecasting models.

Data Model
utilization correct cancellation

improvement (%) ratio (%) ratio (%)

Google
DF 38.8 68.6 20.9

GraphDF 41.9 88.6 8.2

Adobe
DF 42.0 65.8 19.1

GraphDF 53.2 97.0 2.2

Our model satisies the following requirements of such an opportunistic scheduler. First, the model must be

able to correctly forecast utilization. If the utilization is underestimated, tasks will be assigned to busy machines

and then need to be canceled, which is a waste of resources. Second, the execution time of the forecasting model

must be signiicantly faster than the time period used for data collection, e.g., since CPU usage in Google dataset

is observed every 5 minutes, the CPU usage forecast should be generated in less than 5 minutes i.e. before the next

observation arrives. We simulate opportunistic scheduling by developing two main components, the forecaster

and the scheduler. The Google dataset provides CPU usages for the cluster in this study. The forecaster reads

the 6 most recent observed CPU utilization values of each machine from the data stream and predicts next

3 values. The scheduler identiies underutilized machines as those with mean predicted utilization across the

three predictions lower than a predeined threshold � (25%). To safely make use of the idle resources without

disturbing already running tasks or cause thrashing, the scheduler only assigns workloads that require at most

75% of compute resources. If a machine is assigned batch workloads that exceeds resource availability, they are

terminated/canceled. This procedure is described in Algorithm 3.

Efects on CPU utilization. Fig. 7 shows CPU utilization without opportunistic workload scheduling (vanilla)

and with scheduling based on each forecaster over a period of 6 hours on the Google dataset. We observe that the

GraphDF-based forecaster consistently outperforms both vanilla and DF-based versions by generating forecasts

with higher accuracy. We also observed similar results (in Fig. 9 ) over longer periods (12 hours and 24 hours) for

Google dataset. Table 12 summarizes the performance of the GraphDF-based forecaster with respect to three

metrics CPU utilization improvement, correct scheduling ratio, and cancellation ratio. The utilization improvement

measures the absolute increase in CPU usage compared to the vanilla version. Correct scheduling ratio corre-

sponds to the ratio when predicted utilization by the scheduler matches the actual utilization. Cancellation ratio
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Fig. 9. Using the Google dataset, we simulate a scheduler over 12 hours and 24 hours(144, 288 timestamps). The lag is

selected as 6 and horizon is set as 3. The figure shows improvements over baseline (no forecaster) on CPU utilization by using

DF and GraphDF as forecasters. For nodes whose average predicted CPU usage in horizon are lower than a threshold 20%,

the scheduler will assign tasks that consume 80% CPU resources to the nodes. The overall average utilization improvement

of DF is 37.8%, 43.8%. The overall average utilization improvement of GraphDF is 41.9%, 42.6%.

measures the fraction of machines on which the batch workload was terminated due to incorrectly generated

forecasts. We observe that GraphDF-based workload scheduling leads to higher CPU utilization, higher correct

scheduling ratio, and lower cancellation ratio compared to DF-based scheduling.

Execution Time Comparison. Fig. 8 shows that the runtime of DF-based scheduling often exceeds the

5-minute time limit, while GraphDF-based version is much faster and always meets it. The average time of

prediction by DF is 340.43 ± 77.95 where the average time of prediction by GraphDF is 231.90 ± 4.25. Hence,

GraphDF persuasively provides a solution for enhancing cloud eiciency through efective usage forecasting.

Google dataset receive observations every 5 minutes, therefore, DF will fail as it is too slow.
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Fig. 10. CPU utilization without opportunistic workload scheduling (shown in green) and with scheduling based on each

forecaster (shown in blue and yellow), over a period of 6 hours on Google dataset.
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Table 13. Results for opportunistic scheduling in the cloud over a 24 hour period using diferent forecasting models.

Data Model
utilization correct cancellation

improvement (%) ratio (%) ratio (%)

Google
GraphDF 41.9 88.0 4.6

IOGraphDF 42.7 90.1 2.9

Adobe
GraphDF 56.3 97.3 0.80

IOGraphDF 54.3 98.5 0.44

Opportunistic Scheduling with IOGraphDF. Using the same parameter setup as in previous section,

we further conducted opportunistic scheduling with IOGraphDF model, as shown in Fig. 10. We observe that

scheduling based on IOGraphDF performs worse than GraphDF at the beginning, which is due to insuicient

training of IOGraphDF model, however, over time IOGraphDF give close performance to the GraphDF model.

Also, IOGraphDF gives more smooth scheduling curve than GraphDF model. Since IOGraphDF delivers more

accurate prediction over time, the opportunistic scheduling with IOGraphDF also outperforms scheduling with

GraphDF model with respect to correct ratio and cancellation ratio, as shown in Table 13.

7 CONCLUSION

In this work, we introduced a deep graph-based probabilistic forecasting framework called Graph Deep Factors.

While existing deep probabilistic forecasting approaches do not explicitly leverage a graph, and assume either

complete independence among time-series (i.e., completely disconnected graph) or complete dependence between

all time-series (i.e., fully connected graph), this work moved beyond these two extreme cases by allowing nodes

and their time-series to have arbitrary and explicit weighted dependencies among each other. Such explicit and

arbitrary weighted dependencies between nodes and their time-series are modeled as a graph in the proposed

framework. Notably, GraphDF consists of a relational global component that learns complex non-linear time-series

patterns globally using the structure of the graph to improve both computational eiciency and performance as

well as a relational local model that not only considers its individual time-series but the time-series of nodes that

are connected in the graph. The experiments demonstrated the efectiveness of the proposed deep graph-based

probabilistic forecasting model in terms of its forecasting performance, runtime, and data eiciency. To address

the common streaming nature of many time-series prediction applications where values arrive over timesteps, we

propose the incremental online GraphDF model (IOGraphDF). Experiments show that IOGraphDF outperforms

GraphDF regarding forecasting accuracy and runtime.
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