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Abstract—The Mars Reconnaissance Orbiter’s HiRISE 
(High Resolution Imaging Science Experiment) camera 
takes the largest images of the Martian surface. The image 
size is typically around 2.52 gigapixels. There is only a 
handful of software capable of doing a task as simple as 
reducing the size of the image by half and saving the result 
as a new image. The Scalable Image Processing Framework 
(SIPF) overcomes these issues by creating a generalized 
tile-based processing pipeline that loads only a small 
portion of the image into memory. This allows for the data 
in memory at any given time to become manageable. Image 
tiles are an intrinsic property that provides scalability and 
efficiency while processing images. Distributed computing 
technologies such as cloud computing can be applied 
naturally. A mathematical framework for scalable image 
operations is defined that provides insight into the scalable 
considerations needed with each class of operations. We 
also formalize the deferred execution design pattern and 
show how it is used as a basis for our implementation. The 
SIPF has the ability to perform a variety of Scalable Image 
Operations such as Cropping, Rotation, Scaling (Bilinear 
and Nearest Neighbor Interpolation), Edge Detection, 
Sharpening, Convolution (Filters), Brightness, Contrast, and 
Gaussian Blurring. The Scalable Image Processing 
Framework will be used to process incoming images from 
the Mars Exploration Rovers and eventually the Mars 
Science Laboratory. It will be integrated with the Maestro 
software (science visualization and planning tool). Maestro 
is used for the Mars Exploration Rover Mission and other 
celestial body exploratory missions. 1 2 
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1. INTRODUCTION 
The Mars Reconnassance Orbiter’s HiRISE camera takes 
very high resolution images up to 2.52 gigapixels (2520 
megapixels). The HiRISE camera is a 0.5 m reflecting 
telescope and is the largest ever carried on a deep space 
mission. It has a resolution of about 1 microradian. The 
ground sample distance is 30cm per pixel from an altitude 
of 300km. The images can be either near infrared or red-
green-blue [9, 10]. A few of the HiRISE images that we 
have worked on in the Operations Planning Software 
Research group at the Jet Propulsion Laboratory are shown 
below. 

The Maestro team develops operations software used to 
conduct mission exploration of the Moon, Mars, and other 
celestial bodies [1-5]. Planning and operating these missions 
all benefit from imaging and mapping planetary surfaces in 
detail. As the size and volume of imagery from planetary  
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missions increases, image processing software faces the 
challenge of keeping pace with the increase in scale while 
still providing the high performance that is expected of 
superior software. 

 

Most image processing software assumes you can load the 
entire image into memory and then perform an image 
operation. This is typically not possible due to the size of 
planetary imagery. The images at HiRISE provide a good 
example as these are typically in the gigapixel range (one 
billion pixels 109). We overcome these issues by creating a 
generalized tile-based processing pipeline that loads only a 
small portion of tiles into memory at any given time. This 
creates a streaming pipeline of data for the image operations 
to take advantage of without having severe memory issues. 
The memory needed to process an arbitrary image is 
decoupled from the size of the image and is instead bounded 
by the size of the cache. This approach allows for images in 
the gigapixel range to be processed on consumer based 
computers as well as distributed across computers very 
naturally and efficiently. 

The science activity planning for the Mars Rovers and 
eventually the Mars Science Laboratory requires the most 
recent images from the rovers to evaluate the executed 
science. The Scalable Image Processing Framework will be 
used to process operations images to support scientists in 
the planning and operating of the Mars Exploration Rover 
and the Mars Science Laboratory. The scalability of the 
framework is a necessity due to the massive size and 
amount of images we will be processing on a daily basis. 
We also take advantage of distributed computing 
technology as these technologies are intuitively applied with 
our framework. Our framework also supports tile-based 
delivery for web applications such as Google maps or our 
science delivery system that efficiently delivers images to 
planning teams located in different countries. 

In the next section we define the mathematical framework 
for scalable image operations. In the third section we 
formalize and briefly describe the deferred execution design 
pattern and explain how it is used as a basis for our Scalable 
Image Processing Framework. In the fourth section we 

describe the design and implementation details. Finally in 
the last section we describe the distributed and cloud 
computing strategies used with our Scalable Image 
Processing Framework. 

2. MATHEMATICAL FRAMEWORK  
In this section we describe the mathematical definitions to 
be used throughout the paper to define our scalable image 
processing framework. The definitions are used for 
representation and processing of tiles in a scalable manner. 
Informally we define a matrix of tiles where the tiles are 
matrices themselves. These matrices will have weaker 
mathematical properties. Therefore results that hold for 
normal matrices cannot be directly applied in the same way. 

Let Ti,j ∈ ℜw x h be a matrix corresponding to an image tile 
where (i, j) are the coordinates of the tile with respect to the 
image matrix denoted as I and w x h are the width and 
height of the tile, respectively. Furthermore, let Ti,j[x, y] be 
a pixel value at location [x, y] with respect to the width and 
height of the image tile Ti,j.  Therefore a tiled image I is 
defined as 
 

 
Where n x m is the width and height of the image with 
respect to the tiles in the image. Furthermore let Ii, j be a tile 
at location i, j. Therefore Ii,j = Ti,j and Ii,j[x, y] = Ti,j[x, y]. 
Now we list a few properties of this definition that are 
related to image processing: 
1. The total amount of pixels in the image plane is defined 

as (nm)(wh) where nm is the amount of tiles in the image 
and wh is the number of pixels in every tile. 

=I
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2. Given an arbitrary pixel location [x, y] then the 
appropriate tile can be referenced by I⎡x / w⎤, ⎡y / h⎤. 

3. It is also easy to see that [iw - w, jh – h] is the minimum 
pixel location and [iw, jh] is the maximum pixel location 
of Ti,j with respect to I. 

 

In the next few subsections we define the main scalable 
image operations and discuss the scalable considerations. 
 
2.1 Scalable Point Operations 

A point operation performs a mapping of a pixel value but 
without changing the size, geometry, or local structure of 
the image. We show a simple example of how a scalable 
point operation is defined. Below we increase the image’s 
intensity by a factor α where Ii,j(x,y) is a pixel value from 
the tile Ti,j. 
 

α×=′ ],[],[ ,, yxIyxI jiji  (1)

 

 
 
This operation is easily made scalable since each new pixel 
value depends exclusively on the previous value at the same 
position. Therefore the computation is independent from its 
neighboring pixel values and the geometry of the image is 
unchanged.  
 

2.2 Scalable Convolution 

Linear convolution is a mathematical operation that 
combines two functions f and g producing a third function. 
Convolution is the underlying concept of all filter 
operations in image processing and thus described as a 
black box operation. The results of convolution are defined 
by the convolution matrix or kernel. A kernel is generally 
defined as a nxn matrix denoted as Knxn.  
 

 
 

Convolution from an Image Processing perspective can be 

thought of as sliding a kernel K across an image I such that 
the middle coefficient of the kernel K is multiplied by every 
pixel in the image. Therefore it is straightforward to see that 
scalable considerations are needed to appropriately 
convolve tiles. 
 
Now we define a simplified scalable smoothing operation. 
To compute a new pixel in the smoothed image we average 
the original pixel and the eight neighboring pixels. Given 
the pixel location Ii,j[x + u, y + v] where we know [x,y] is in 
Ti,j it is clear that if 
 

iwuxwiw >+>−  

jhvyhjh >+>−  (2) 

 
then we are in a situation where the given pixel location is 
outside the tile Ti,j. Therefore let i′ = ⎡(x + u) / w⎤ and j′ = 
⎡(y + v) / h⎤ be the tile corresponding with the pixel location 
[x+u, y+v]. Now we can define a simple scalable 3x3 
smoothing operation as 
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Furthermore the more general notion of convolution follows 
naturally. Let Ii,j[x, y] be a pixel from the image I in the tile 
Ti,j and Knxn be a kernel. Linear convolution of the image I 
with the kernel K is defined as 
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Where K*(u, v) is equivalent to K(-u, -v) rotated by 180 
degrees. 
 
As an example the Laplace kernel is generally used for 
sharpening and enhancing edges. If a filter coefficient is 
negative it can be interpreted as the difference of two sums. 
The filter essentially computes the difference between the 
center pixel and the weighted sum of the four surrounding 
pixels. In our scalable framework we have used convolution 
for Difference Filters, Gaussian Blur, Minimum Filter 
(Dilation), Maximum Filter (Erosion), Sharpening, and 
Edge Detection. Any filter operation can be easily 
performed by passing the corresponding kernel to the 
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convolution function. 
 
2.3 Scalable Geometric Operations 

A geometric operation transforms an image I by modifying 
the coordinates of the pixels. Therefore given an image 
Ii,j[x, y] the result of a geometric operation is denoted as 
I′i′,j′[x′, y′] where I′ is of size n′ x m′ with respect to the 
transformation. We use geometric operations to scale the 
size of an image (Bilinear and Nearest Neighbor 
Interpolation) and also for rotation. We define an arbitrary 
continuous mapping function M() as 
 
 

),(),( yxMyandyxMx yx =′=′
 (5)

 
Most transformed coordinates [x′, y′] will no longer fall 
onto the corresponding previous discrete point [x, y] in the 
image plane therefore interpolation is used to compute 
intermediate pixel values. This can be thought of as using 
the original discrete image I and transforming it using a 
continuous function into another discrete image I′ without 
significantly reducing the quality of the image. Interpolation 
can be seen as trying to reconstruct the transformed image 
(made by a continuous function) using the set of discrete 
pixel values from the original image. Therefore there is a 
need to estimate the intermediate pixel values of the 
transformed image using the original pixel values. An affine 
mapping function used to scale an image is denoted as 
 

xsxM xx ⋅=′:  

ysyM yy ⋅=′:
 

(6)

 
where sx and sy are scaling factors. We define a scalable 
scaling operation using nearest-neighbor interpolation. 
Nearest-neighbor interpolation simply rounds the 
continuous coordinate to the closest integer and uses this as 
an approximation. Let I′ be an n′ x m′ matrix of tiles where 
n′ =  ⎡(nw)sx /w⎤  and  m′ =  ⎡(mh)sy /h⎤ . Therefore given an 
arbitrary pixel in the transformed image I′i′,j′[x′, y′] where i′ 
and j′ are the tile coordinates with respect to the transformed 
image I′ then the interpolated pixel is Ii,j[round(x′ / sx), 
round(y′ / sy)]. 

 
 
It is straightforward to see how a form of convolution can 
be applied to geometric operations. The parameters used in 

a transformation can be found by solving a system of linear 
equations x′ = Ma. An interesting future direction will be to 
apply Singular Value Decomposition to predict the pixel 
values of an unknown region in an image using the known 
pixel values in I as a basis. 
 
2.4 Scalable Cropping Operation 

To crop an image we had to translate coordinate systems to 
request the appropriate tiles needed to make the crop tiles. 
Assuming tiles of size 256 x 256, if we started cropping at 
image location I1,1[100,100] we would have to request tiles 
{T1,1, T2,1, T1,2, T2,2} to make the first crop tile. 
 

 
 

In the diagram above the tiles are designated by white lines 
where the dotted line represents the image region to be 
cropped. The crop operation will request the image tile T3,1 
thus calling the Image Reader where the tile will be 
randomly accessed and read. The crop operation will copy 
the appropriate data into the crop tile C1,1 and make another 
request to read in the image tile T3,2 and copy the remaining 
data into the tile C1,1. If there are no more image operations 
to be performed on C1,1 the writer will write the crop tile to 
disk. The scalable image processor will begin reading and 
processing the next tile C1,2 in a similar manner until the 
operation is completed. 

3. DEFERRED EXECUTION 
PATTERN  

Design patterns originated with 
Christopher Alexander in 1977 as 
a way to describe fundamental 
building blocks of towns, 
buildings, and construction. 
Gamma et. al. extended the notion 
of design patterns to object 
oriented programming. A design 
pattern in object oriented 
programming can be described as 
a template or a reusable solution 
that can be applied to a similar 
common occurring problem in software engineering. Design 
patterns can speed up development by providing proven 
tested paradigms [11]. 
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In this section we discuss and formalize a design pattern 
called the Deferred Execution Pattern which is used as a 
basis for the design of our Scalable Image Processing 
Framework. The Deferred Execution Pattern is an 
adaptation of the Java Advanced Imaging model. We 
demonstrate how this design pattern is applied to our 
Scalable Image Processing Framework. 
 
The deferred execution pattern allows us to process pixel 
information only when needed, avoiding any unnecessary 
computations. In the design pattern, image operations are 
chained together where the read tile operation is declared 
first and the write tile operation is declared last. There can 
be any number of image operations chained in between the 
read and write operations as shown in the diagram. Pixels 
are not loaded until the write operation is invoked. This 
gives the illusion that the image operations are performed 
with no time (or deferred executed). The diagram illustrates 
that when the write() method is invoked the ScaleOperation 
requests the cropped tiles needed from CropOperation 
which will make a tile request to TileOperation. The 
TileOperation makes a request to the ReadOperation where 
the codestream is randomly accessed and the data needed to 
make the requested tile is read. This pattern allows us to 
process pixel information only when needed. A formal 
example is shown. In figure 1 we have three scalable image 
operations chained together such that  

ReadOperation  ←  CropOperation  ←  ScaleOperation 
 

where the tiles of each operation are denoted as Ri,j, Ci,j and 
Si,j respectively. In this oversimplified example the crop 
operations parameters are set to crop the image starting at 
location (256, 256) with the width and height (512, 512). 
Therefore assuming tiles of size 256 x 256 the read 
operation will simply read in the tiles {R2,2, R3,2, R2,3, R3,3} 
to complete the crop operation. The scale operations 
parameters are set to scale the cropped image by a factor of 

1.5 on the x and y axes. Now we will describe the image 
operation pipeline using the notion of our deferred 
execution pattern. To make the first scale tile S1,1 a request 
is made to retrieve the crop tiles needed. In this simple 
example the only crop tile needed is C1,1. Therefore a 
request is made from the crop operation to read in R2,2. The 
process is then repeated until the scale operation is finished. 
One can see that S2,2 is a slightly more expensive tile to 
make as the four crop tiles {C1,1, C2,1, C1,2, C2,2} are needed 
in the computation. Furthermore every scale tile Si,j is 
written to disk after being processed to maintain scalability. 
It is also easy to see that the tiles in the operation pipeline 
are computed independently from one another allowing for 
them to be intuitively processed in parallel. 

4. DESIGN AND IMPLEMENTATION 
The Scalable Image Processing Framework uses the JPEG 
2000 wavelet based standard. JPEG2000 has many 
advantages over the other image standards such as 
flexibility of the code-stream, intrinsic support for tiles, 
virtually unlimited file size, compression performance 
(wavelet based), and support for floating point numbers [7, 
8]. A feature that is very important to us is the random 
code-stream access and processing. This allows us to 
perform operations such as rotation or scaling on random 
parts of the code-stream without having to read in the entire 
image into memory. 
 
We use the Kakadu JPEG2000 encoder and decoder 
software library. The Kakadu Java Native Interface allows 
us to make calls to the native C++ libraries. We created 
several supporting classes to read and write JPEG 2000 
images in a scalable fashion. Kakadu is the first and only 
available implementation of the complete standard. The 
Kakadu SDK has been used in medical imaging 
applications, geospatial imaging applications, and many 
other applications. We were tempted to use JJ2000 (a 
reference implementation of the JPEG2000 codec written in 

Figure 1 – Scalable Image Operation Tiles. The tiles from the three image operations in the pipeline are shown.
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Java) but we discovered problems with the random code-
stream access. Additionally, we found Kakadu to be much 
more efficient in regards to encoding and decoding. We 
plan to eventually provide support for the JPEG 2000 
Interactivity Protocol (JPIP) which is a client-server 
communication protocol used to view images or parts of 
images in a networked environment through randomly 
accessing the codestream. There is currently no support for 
writing defined in JPIP (part nine of the JPEG standard) or 
we could have used this as a basis for our scalable image 
processing framework. 

 
4.1 Framework Components 

The main components of the scalable image processing 
framework are the ImageTile, TiledImageData and 
ImageOperation classes.  
 
The ImageTile object stores the tiles pixels and the tiles 
coordinates (i,j) as well as the pixel coordinates [x,y] with 
respect to the image operation. The ImageTile object also 
has a copy of the specific ImageOperation’s 
TiledImageData object and various other intrinsic attributes 
of the tile. This class also provides useful methods used to 
retrieve and copy data within the image plane. It is 
important to note that every image operation will create a 
set of tiles where the tile coordinates and pixel coordinates 
depend exclusively on the operation that is being 
performed. 
 

 
 
The TiledImageData object describes the entire image to be 
tiled with respect to the image operation in the pipeline. 
When an image operation is invoked a TiledImageData 
object is created with the appropriate attributes such as the 

image bounds (x, y, w, h) where (x, y) are the starting 
coordinates and (w, h) is the width and height of the image. 
Therefore if a scaleOperation is invoked a TiledImageData 
object is created with bounds (x, y, wsx, hsy) where sx and sy 
are the scaling factors. This also automatically updates 
image properties that are derived from the image plane such 
as the number of tiles in both x and y directions. The 
writeOperation will request a tile from the preceding image 
operation in the pipeline by calling the getTile(i, j) method 
in the specific image operations TiledImageData object. 
When the tile is returned it is written to disk and the process 
is repeated. 
 
4.2 Reading and Writing Tiles 

Tiles are read only when they are requested by an image 
operation. The read randomly accesses the codestream and 
decompresses the appropriate image region. The data is then 
stored in a tile object and sent to the requesting image 
operation. The tile will also be stored in the cache until it is 
removed with respect to the cache’s eviction policy or used 
again by another operation. Conversely when a tile has been 
completely processed by the requesting image operations it 
is compressed and stored in the appropriate codestream 
location. The data is then written to disk. After the data is 
written to disk the tile is discarded.   
 
The Scalable Image Processing Framework: 

(1) Reads in a tile only when requested by another image 
operation. The tile size we use is generally 256 x 256 
pixels but can be set to an arbitrary size. 

(2) Performs the appropriate image operation on the tile. 
(3) Saves the result to the cache and the tile is sent back 

to the calling operation. 
(4) If the resulting tile has no more image operations to 

be performed on it the tile is written to disk. 
(5) Discards any tiles that are no longer needed. 
(6) Repeats the process. 

 

 

                                  Figure 3 – ImageTile object.  
 

Figure 2 – Image tiles are an intrinsic property and only read into memory 
when they are needed by an image operation. 
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4.3 Tiling Operation 

The tiling operation handles creating the tile object with the 
appropriate attributes. The pixels are read into the tile 
through the ReadOperation using the random code-stream 
access. The tile is then stored into the cache and passed 
back to the image operation that requested it. In the Mars 
photo in figure 2 the black squares represent tiles. Every tile 
has a set of tile coordinates that can be referenced and a set 
of x,y coordinates relative to the entire image.  As an 
example, tile T1,2  would have starting x,y coordinates at 
position [0,256] and so forth. 
 
The Scalable Image Processing Framework uses Ehcache 
[13] to store the processed tiles so they can be retrieved 
rapidly in the future.  We chose to use Ehcache because it is 
fast, simple, scalable, supports memory/disk stores into the 
gigabytes, and provides distributed caching. Once in the 
cache the tiles can be repeatedly accessed inexpensively. 
Our cache uses the Least Frequently Used eviction policy. 
This algorithm keeps track of when the tiles were last used 
and discards them based on which ones are not used 
frequently. Caching speeds up things by using the notion of 
locality of reference; data that is near other data or has just 
been used is more likely to be used again. The cache is 
defined in the parent ImageOperation class and every tile 
produced by the children operations (Tiling, Scaling, 
Sharpening, Convolution, Rotation, Cropping, Edge 
Detection, ….) is stored in the cache for use with other 
image operations. When an image operation is invoked 
through an API call a unique random number is generated. 
We use the image operations name, tile coordinates and the 
random number as a key for a specific tile. 

 

4.4 Implementing Scalable Image Operations 

An image is read and processed in the form of tiles. These 
tiles are an intrinsic design component of our Scalable 
Image Processing Framework. All implemented image 
operations must process the image in the form of tiles. This 
is often difficult, as many image operations require the 
neighboring tiles pixels as shown in the mathematical 
framework. As an example, suppose we use the bilinear 
operation to resize the image by half of its size. Bilinear 
interpolation is performed using the neighboring pixel 
values to estimate the resulting pixel value. To make the 
first bilinear tile B1,1 the operation needs four tiles {T1,1, 
T1,2, T2,1, T2,2} from the original image. 
 
All scalable image operations extend the ImageOperation 
class that provides generic functionality for all image 
operations. The ImageOperation class provides functions to 
retrieve tiles from the cache, manage the cache, and add 
inputs. Image Operations can be easily added onto the 
existing framework in a scalable fashion. 
 
Scalable Image Operations are designed by implementing 
two simple methods. The first method addInput(…)  is 
invoked when the user is chaining together operations using 
our API. This method only needs to be modified if the 
image operation that you are designing will change the 
geometry of the image such as rotation, cropping or any 
scaling algorithm. The second method is 
performOperation(TileX, TileY) where it requires the image 
operation to be designed in a scalable manner. Every call to 
this method by getTile(i, j) needs to be implemented in a 
way that processes only the tile Ti,j. The method Inputs.get() 
returns the image operation in the pipeline preceding the 
operation to be implemented. Therefore the call to getTile(i, 

 
 
 
 
 
 
 
 
 
 

Figure 4 – Level of detail tiling. The first tile T1,1 from every level of detail is shown where the leftmost tile is from the 
original image. A small image with only five levels of detail was used to demonstrate the algorithm. 
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j) successfully returns the correct tile in the pipeline to be 
processed. 

5. DISTRIBUTED AND CLOUD COMPUTING 
We are using the Amazon Elastic Cloud Computing service 
as well as our own machines (at NASA JPL) to distribute 
the tiling and processing of images. This adds even more 
flexibility and scalability. The Amazon Elastic Cloud 
Computing is a web service that provides resizable 
computing capacity in the cloud. The cloud is elastic in that 
it can scale itself up and down in seconds depending on the 
needed resources of the Scalable Image Processing 
Framework. This provides a substantial increase in both 
speed and efficiency. A goal of ours is to eventually be able 
to process all MER (Mars Exploration Rover) images within 
a few hours. Implementing our image processing framework 
on the cloud is only natural as it is intrinsically scalable by 
the way of tiles where the tiles of a specific operation can be 
computed independently from one another.  
 
The Maestro Science Activity Planner delivers tiles on 
demand to scientists only when needed by the current 
viewing area of the application. The tiles are sent over the 
internet to scientists in all facets of the world. To support 
viewing images at different levels of detail the following 
basic level of detail tiling algorithm is implemented using 
our application programming interface. 
 

Let I be an n x m matrix of tiles Ti,j ∈ 256256xℜ . A one 
pixel border is created around I therefore the pixels in every 
tile Ti,j ∈ I are shifted by one in the x and y directions in the 
image plane and written to disk. The image I is scaled by 
half in both the x and y axes using bilinear interpolation 
therefore I′ is an n′ x m′ matrix of tiles where n′ = n/2 and 
m′ = m/2. The process is repeated with the image I′ until it 
only contains one tile T′n′,m′ as shown in figure 4. 
 
The border operation is needed for scaling the tiles at levels 
higher than their native resolution. Mars Rover images often 
need to be scaled by a factor of two or more times to 
carefully target the in situ science instruments. The border 
operation creates a tile Ti,j where each tile overlaps with its 
neighbor by one pixel on each side for the interpolation to 
work properly without leaving artifacts when rendering the 
tiles in the viewer. Every tile is rendered as if it is two 
pixels smaller in the x and y directions. 
 
This method of tiling an image for multiple levels of detail 
is processed in a scalable fashion automatically with our 
scalable image processing framework. It is important to note 
that the scaling at every level of detail is incremental for 
both speed and the difference in quality that we noticed. 
Assuming k levels of details (LODs) where the k level of 
detail refers to the level of detail from the original image. 
Therefore if we have an image with k levels of detail the k – 
1 level of detail would need the scaled image from the k 
level of detail. This algorithm is used as a benchmark for 

our software. The images in figure 5 have been processed 
by our software using the level of detail tiling algorithm. 
 
These images were selected because they are of interest to 
scientists (Future Exploration/Landing sites) and are some 
of the largest images. The Possible MSL Landing Surface 
Hazard image is 5.71GP (1,000 times the size of a standard 
6MP consumer based camera). 
 

 
 
We describe a few strategies for using distributed and cloud 
computing technologies to process gigapixel images using 
our Scalable Image Processing Framework. These strategies 
are described using the simple level of detail tiling 
algorithm for demonstration purposes. The strategies can be 
applied to various other problems that can be defined using 
our application programming interface. 
 
5.1 Processing Levels of Detail in Parallel 

As a first instance we could have assigned every level of 
detail to a machine in the cloud. Since the scaling is 
incremental the level of details has a dependency requiring 
the scaling of the k level of detail to be completed before 
other level of details can begin processing. The processing 
time of all levels of details is bounded by the amount of 
time it takes to complete the k level of detail. Therefore 
given an arbitrary level of detail we can decouple the 
scaling and writing of tiles to disk. This strategy provides a 
decent solution where only a limited amount of machines 
are needed. 
 
5.2 Distributing Regions of Tiles in the Cloud 

A set of tiles from an image operation in the operation 

Figure 5 – Opportunity Rover Tracks at Victoria Crater 
(2.03GP [GigaPixels] : 67643 by 30015 : 1274.3MB), 
Surface Hazards of Possible MSL Rover Landing Site 
(5.71GP : 126021 by 45357 : 2047.4MB), Possible MSL 
Landing Site Mawrth Vallis (2.29GP : 71319 by 32248 : 
1158.9MB) and Possible Location of Spirit Rover in 
Columbia Hills (1.17GP : 44364 by 26522 : 693MB). 

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore.  Restrictions apply. 



 

 9 

pipeline can be assigned to a machine in the cloud where 
the number of machines is constrained by the time in which 
we need the task completed. This assumes the time it takes 
to process one tile in the operation pipeline is less than the 
time constraint. This strategy requires a job handler that on 
demand assigns machines to the processing of tile regions 
within the image given some time constraint. 
 

 
 
In the above oversimplified example our image operation 
pipeline has only reading, scaling, brightness and writing 
operations. We are simply scaling the image down using 
bilinear interpolation with a factor of 0.75 in both the x and 
y axes and brightening the resulting image. Every tile Ti,j ∈ 
{R, S, B} can be processed independently. Therefore we 
could assign a machine in the cloud to every tile in the last 
image operation in the pipeline. In this example we would 
assign a machine to each of the tiles Bi,j. We show a 
diagram of the process below. 

 
The figure above shows that the tiles {B1,1, B2,1, …} are 
processed in parallel on machines in the cloud where the 
tiles needed from the other image operations in the 
operation pipeline are processed on demand and 
independently. 
 
This strategy can be applied to the level of detail tiling 
algorithm. Suppose we are performing the level of detail 
tiling algorithm on an arbitrary image I of size n x m tiles 
where k is the maximum number of levels of detail. We still 
have the previously defined dependency where the k – 1 
level of detail cannot begin until the k level scaling is 
completed. The solution is to distribute the scaling 
operation (Bilinear Interpolation) and the writing of tiles. 
The scaling and writing operations are easily distributable 
since they operate on tiles and not the image itself. 
Therefore we do not need to modify the operation or the 

framework. Informally we simply divide the image into 
regions and distribute these regions to machines on the 
cloud. 
 
Let R be a matrix of tiles corresponding to an image region 
where (u, v) are the coordinates of the region with respect to 
the image matrix denoted as I and nr x mr are the width and 
height of the region, respectively. Therefore we have a new 
mathematical object I of regions where a region Ru,v is a 
matrix of tiles Ti,j. Furthermore let c be the number of 
regions and consequently the initial number of machines. 
The number of regions can be defined as a function of time. 
 
Every region in I is sent to a machine to scale the region and 
another machine writes the tiles in the region to disk. The 
more regions we have the less amount of time to process the 
image and consequently the more machines needed. As 
soon as these regions are scaled by half the next level of 
detail can begin writing the tiles and scaling these new 
regions. 
 

 

 
Only the most significant level of detail from I should be 
divided into regions as combinatorial problems are 
encountered otherwise and resources are often wasted. At a 
certain level of detail we must stitch together the regions to 
avoid the size of the region becoming less than the size of a 
tile. This depends on the number of regions defined in the 
image. Given enough resources it is easy to see that by 
using this strategy the 6 gigapixel image (Mars Science 
Laboratory Landing Site Surface Hazards) could be 
processed within seconds. 

6. CONCLUSION 
We have developed a Scalable Image Processing 
Framework capable of performing image operations on 
gigapixel images. A mathematical framework for the 
scalable image operations is defined to give insight into the 
considerations needed with each class of image operations. 
We show how we used the Deferred Execution Pattern as a 
basis to design our Scalable Image Processing Framework. 
Distributed and Cloud Computing technologies are applied 

Figure 6 – Regions of an image are distributed and 
scalably processed by machines on a supercomputer.  
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naturally with our framework. The Scalable Image 
Processing Framework will be used to process incoming 
images from the Mars Exploration Rovers and eventually 
the Mars Science Laboratory. It will also be integrated with 
the Maestro software tools used to operate missions and 
technology concept studies for the Moon, Mars, and other 
celestial bodies. 

7. FUTURE WORK 
Image data is sometimes lost due to transmission problems 
when the data is sent from Mars to Earth using the Deep 
Space Network. Therefore an image region might be corrupt 
causing artifacts in the image or part of the image might 
even be lost. A future direction will be to explore the use of 
Singular Value Decomposition to automatically 
approximate the missing or corrupt pixel values. The error 
in approximation depends on the size of the region. If the 
region is small the approximation is likely to be very 
accurate. This would allow scientists to view data more 
accurately without obvious mistakes or artifacts. 
 
We will also explore how to integrate this framework with 
advanced visualization hardware such as the large multi-
touch display and CAVE augmented reality venues. 
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