

 1

A Scalable Image Processing Framework for Gigapixel
Mars and Other Celestial Body Images

Mark W. Powell, Ryan A. Rossi† and Khawaja Shams

Jet Propulsion Laboratory, California Institute of Technology,
{Mark.W.Powell, Ryan.A.Rossi, Khawaja.S.Shams}@ jpl.nasa.gov

Abstract—The Mars Reconnaissance Orbiter’s HiRISE
(High Resolution Imaging Science Experiment) camera
takes the largest images of the Martian surface. The image
size is typically around 2.52 gigapixels. There is only a
handful of software capable of doing a task as simple as
reducing the size of the image by half and saving the result
as a new image. The Scalable Image Processing Framework
(SIPF) overcomes these issues by creating a generalized
tile-based processing pipeline that loads only a small
portion of the image into memory. This allows for the data
in memory at any given time to become manageable. Image
tiles are an intrinsic property that provides scalability and
efficiency while processing images. Distributed computing
technologies such as cloud computing can be applied
naturally. A mathematical framework for scalable image
operations is defined that provides insight into the scalable
considerations needed with each class of operations. We
also formalize the deferred execution design pattern and
show how it is used as a basis for our implementation. The
SIPF has the ability to perform a variety of Scalable Image
Operations such as Cropping, Rotation, Scaling (Bilinear
and Nearest Neighbor Interpolation), Edge Detection,
Sharpening, Convolution (Filters), Brightness, Contrast, and
Gaussian Blurring. The Scalable Image Processing
Framework will be used to process incoming images from
the Mars Exploration Rovers and eventually the Mars
Science Laboratory. It will be integrated with the Maestro
software (science visualization and planning tool). Maestro
is used for the Mars Exploration Rover Mission and other
celestial body exploratory missions. 1 2

1978-1-4244-3888-4/10/$25.00 ©2010 IEEE.
2 IEEEAC paper #1533, Version 1, Updated August 5, 2009

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. MATHEMATICAL FRAMEWORK 2
3. DEFERRED EXECUTION PATTERN................................... 4
4. DESIGN AND IMPLEMENTATION...................................... 5
5. DISTRIBUTED AND CLOUD COMPUTING 8
6. CONCLUSION.. 9
7. FUTURE WORK .. 10
8. ACKNOWLEDGEMENTS.. 10
REFERENCES.. 10
BIOGRAPHY ... 10

1. INTRODUCTION
The Mars Reconnassance Orbiter’s HiRISE camera takes
very high resolution images up to 2.52 gigapixels (2520
megapixels). The HiRISE camera is a 0.5 m reflecting
telescope and is the largest ever carried on a deep space
mission. It has a resolution of about 1 microradian. The
ground sample distance is 30cm per pixel from an altitude
of 300km. The images can be either near infrared or red-
green-blue [9, 10]. A few of the HiRISE images that we
have worked on in the Operations Planning Software
Research group at the Jet Propulsion Laboratory are shown
below.

The Maestro team develops operations software used to
conduct mission exploration of the Moon, Mars, and other
celestial bodies [1-5]. Planning and operating these missions
all benefit from imaging and mapping planetary surfaces in
detail. As the size and volume of imagery from planetary

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 2

missions increases, image processing software faces the
challenge of keeping pace with the increase in scale while
still providing the high performance that is expected of
superior software.

Most image processing software assumes you can load the
entire image into memory and then perform an image
operation. This is typically not possible due to the size of
planetary imagery. The images at HiRISE provide a good
example as these are typically in the gigapixel range (one
billion pixels 109). We overcome these issues by creating a
generalized tile-based processing pipeline that loads only a
small portion of tiles into memory at any given time. This
creates a streaming pipeline of data for the image operations
to take advantage of without having severe memory issues.
The memory needed to process an arbitrary image is
decoupled from the size of the image and is instead bounded
by the size of the cache. This approach allows for images in
the gigapixel range to be processed on consumer based
computers as well as distributed across computers very
naturally and efficiently.

The science activity planning for the Mars Rovers and
eventually the Mars Science Laboratory requires the most
recent images from the rovers to evaluate the executed
science. The Scalable Image Processing Framework will be
used to process operations images to support scientists in
the planning and operating of the Mars Exploration Rover
and the Mars Science Laboratory. The scalability of the
framework is a necessity due to the massive size and
amount of images we will be processing on a daily basis.
We also take advantage of distributed computing
technology as these technologies are intuitively applied with
our framework. Our framework also supports tile-based
delivery for web applications such as Google maps or our
science delivery system that efficiently delivers images to
planning teams located in different countries.

In the next section we define the mathematical framework
for scalable image operations. In the third section we
formalize and briefly describe the deferred execution design
pattern and explain how it is used as a basis for our Scalable
Image Processing Framework. In the fourth section we

describe the design and implementation details. Finally in
the last section we describe the distributed and cloud
computing strategies used with our Scalable Image
Processing Framework.

2. MATHEMATICAL FRAMEWORK
In this section we describe the mathematical definitions to
be used throughout the paper to define our scalable image
processing framework. The definitions are used for
representation and processing of tiles in a scalable manner.
Informally we define a matrix of tiles where the tiles are
matrices themselves. These matrices will have weaker
mathematical properties. Therefore results that hold for
normal matrices cannot be directly applied in the same way.

Let Ti,j ∈ ℜw x h be a matrix corresponding to an image tile
where (i, j) are the coordinates of the tile with respect to the
image matrix denoted as I and w x h are the width and
height of the tile, respectively. Furthermore, let Ti,j[x, y] be
a pixel value at location [x, y] with respect to the width and
height of the image tile Ti,j. Therefore a tiled image I is
defined as

Where n x m is the width and height of the image with
respect to the tiles in the image. Furthermore let Ii, j be a tile
at location i, j. Therefore Ii,j = Ti,j and Ii,j[x, y] = Ti,j[x, y].
Now we list a few properties of this definition that are
related to image processing:
1. The total amount of pixels in the image plane is defined

as (nm)(wh) where nm is the amount of tiles in the image
and wh is the number of pixels in every tile.

=I

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 3

2. Given an arbitrary pixel location [x, y] then the
appropriate tile can be referenced by I⎡x / w⎤, ⎡y / h⎤.

3. It is also easy to see that [iw - w, jh – h] is the minimum
pixel location and [iw, jh] is the maximum pixel location
of Ti,j with respect to I.

In the next few subsections we define the main scalable
image operations and discuss the scalable considerations.

2.1 Scalable Point Operations

A point operation performs a mapping of a pixel value but
without changing the size, geometry, or local structure of
the image. We show a simple example of how a scalable
point operation is defined. Below we increase the image’s
intensity by a factor α where Ii,j(x,y) is a pixel value from
the tile Ti,j.

α×=′],[],[,, yxIyxI jiji (1)

This operation is easily made scalable since each new pixel
value depends exclusively on the previous value at the same
position. Therefore the computation is independent from its
neighboring pixel values and the geometry of the image is
unchanged.

2.2 Scalable Convolution

Linear convolution is a mathematical operation that
combines two functions f and g producing a third function.
Convolution is the underlying concept of all filter
operations in image processing and thus described as a
black box operation. The results of convolution are defined
by the convolution matrix or kernel. A kernel is generally
defined as a nxn matrix denoted as Knxn.

Convolution from an Image Processing perspective can be

thought of as sliding a kernel K across an image I such that
the middle coefficient of the kernel K is multiplied by every
pixel in the image. Therefore it is straightforward to see that
scalable considerations are needed to appropriately
convolve tiles.

Now we define a simplified scalable smoothing operation.
To compute a new pixel in the smoothed image we average
the original pixel and the eight neighboring pixels. Given
the pixel location Ii,j[x + u, y + v] where we know [x,y] is in
Ti,j it is clear that if

iwuxwiw >+>−

jhvyhjh >+>− (2)

then we are in a situation where the given pixel location is
outside the tile Ti,j. Therefore let i′ = ⎡(x + u) / w⎤ and j′ =
⎡(y + v) / h⎤ be the tile corresponding with the pixel location
[x+u, y+v]. Now we can define a simple scalable 3x3
smoothing operation as

∑∑
−= −=

++=′
1

1

1

1
',',],[

9
1],[

v u
jiji vyuxIyxI (3)

Furthermore the more general notion of convolution follows
naturally. Let Ii,j[x, y] be a pixel from the image I in the tile
Ti,j and Knxn be a kernel. Linear convolution of the image I
with the kernel K is defined as

∑
∈

∗
′′ ×++=′

Kvu
jiji vuKvyuxIyxI

),(
,,),(],[],[

 (4)

Where K*(u, v) is equivalent to K(-u, -v) rotated by 180
degrees.

As an example the Laplace kernel is generally used for
sharpening and enhancing edges. If a filter coefficient is
negative it can be interpreted as the difference of two sums.
The filter essentially computes the difference between the
center pixel and the weighted sum of the four surrounding
pixels. In our scalable framework we have used convolution
for Difference Filters, Gaussian Blur, Minimum Filter
(Dilation), Maximum Filter (Erosion), Sharpening, and
Edge Detection. Any filter operation can be easily
performed by passing the corresponding kernel to the

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 4

convolution function.

2.3 Scalable Geometric Operations

A geometric operation transforms an image I by modifying
the coordinates of the pixels. Therefore given an image
Ii,j[x, y] the result of a geometric operation is denoted as
I′i′,j′[x′, y′] where I′ is of size n′ x m′ with respect to the
transformation. We use geometric operations to scale the
size of an image (Bilinear and Nearest Neighbor
Interpolation) and also for rotation. We define an arbitrary
continuous mapping function M() as

),(),(yxMyandyxMx yx =′=′
 (5)

Most transformed coordinates [x′, y′] will no longer fall
onto the corresponding previous discrete point [x, y] in the
image plane therefore interpolation is used to compute
intermediate pixel values. This can be thought of as using
the original discrete image I and transforming it using a
continuous function into another discrete image I′ without
significantly reducing the quality of the image. Interpolation
can be seen as trying to reconstruct the transformed image
(made by a continuous function) using the set of discrete
pixel values from the original image. Therefore there is a
need to estimate the intermediate pixel values of the
transformed image using the original pixel values. An affine
mapping function used to scale an image is denoted as

xsxM xx ⋅=′:

ysyM yy ⋅=′:

(6)

where sx and sy are scaling factors. We define a scalable
scaling operation using nearest-neighbor interpolation.
Nearest-neighbor interpolation simply rounds the
continuous coordinate to the closest integer and uses this as
an approximation. Let I′ be an n′ x m′ matrix of tiles where
n′ = ⎡(nw)sx /w⎤ and m′ = ⎡(mh)sy /h⎤ . Therefore given an
arbitrary pixel in the transformed image I′i′,j′[x′, y′] where i′
and j′ are the tile coordinates with respect to the transformed
image I′ then the interpolated pixel is Ii,j[round(x′ / sx),
round(y′ / sy)].

It is straightforward to see how a form of convolution can
be applied to geometric operations. The parameters used in

a transformation can be found by solving a system of linear
equations x′ = Ma. An interesting future direction will be to
apply Singular Value Decomposition to predict the pixel
values of an unknown region in an image using the known
pixel values in I as a basis.

2.4 Scalable Cropping Operation

To crop an image we had to translate coordinate systems to
request the appropriate tiles needed to make the crop tiles.
Assuming tiles of size 256 x 256, if we started cropping at
image location I1,1[100,100] we would have to request tiles
{T1,1, T2,1, T1,2, T2,2} to make the first crop tile.

In the diagram above the tiles are designated by white lines
where the dotted line represents the image region to be
cropped. The crop operation will request the image tile T3,1
thus calling the Image Reader where the tile will be
randomly accessed and read. The crop operation will copy
the appropriate data into the crop tile C1,1 and make another
request to read in the image tile T3,2 and copy the remaining
data into the tile C1,1. If there are no more image operations
to be performed on C1,1 the writer will write the crop tile to
disk. The scalable image processor will begin reading and
processing the next tile C1,2 in a similar manner until the
operation is completed.

3. DEFERRED EXECUTION
PATTERN

Design patterns originated with
Christopher Alexander in 1977 as
a way to describe fundamental
building blocks of towns,
buildings, and construction.
Gamma et. al. extended the notion
of design patterns to object
oriented programming. A design
pattern in object oriented
programming can be described as
a template or a reusable solution
that can be applied to a similar
common occurring problem in software engineering. Design
patterns can speed up development by providing proven
tested paradigms [11].

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 5

In this section we discuss and formalize a design pattern
called the Deferred Execution Pattern which is used as a
basis for the design of our Scalable Image Processing
Framework. The Deferred Execution Pattern is an
adaptation of the Java Advanced Imaging model. We
demonstrate how this design pattern is applied to our
Scalable Image Processing Framework.

The deferred execution pattern allows us to process pixel
information only when needed, avoiding any unnecessary
computations. In the design pattern, image operations are
chained together where the read tile operation is declared
first and the write tile operation is declared last. There can
be any number of image operations chained in between the
read and write operations as shown in the diagram. Pixels
are not loaded until the write operation is invoked. This
gives the illusion that the image operations are performed
with no time (or deferred executed). The diagram illustrates
that when the write() method is invoked the ScaleOperation
requests the cropped tiles needed from CropOperation
which will make a tile request to TileOperation. The
TileOperation makes a request to the ReadOperation where
the codestream is randomly accessed and the data needed to
make the requested tile is read. This pattern allows us to
process pixel information only when needed. A formal
example is shown. In figure 1 we have three scalable image
operations chained together such that

ReadOperation ← CropOperation ← ScaleOperation

where the tiles of each operation are denoted as Ri,j, Ci,j and
Si,j respectively. In this oversimplified example the crop
operations parameters are set to crop the image starting at
location (256, 256) with the width and height (512, 512).
Therefore assuming tiles of size 256 x 256 the read
operation will simply read in the tiles {R2,2, R3,2, R2,3, R3,3}
to complete the crop operation. The scale operations
parameters are set to scale the cropped image by a factor of

1.5 on the x and y axes. Now we will describe the image
operation pipeline using the notion of our deferred
execution pattern. To make the first scale tile S1,1 a request
is made to retrieve the crop tiles needed. In this simple
example the only crop tile needed is C1,1. Therefore a
request is made from the crop operation to read in R2,2. The
process is then repeated until the scale operation is finished.
One can see that S2,2 is a slightly more expensive tile to
make as the four crop tiles {C1,1, C2,1, C1,2, C2,2} are needed
in the computation. Furthermore every scale tile Si,j is
written to disk after being processed to maintain scalability.
It is also easy to see that the tiles in the operation pipeline
are computed independently from one another allowing for
them to be intuitively processed in parallel.

4. DESIGN AND IMPLEMENTATION
The Scalable Image Processing Framework uses the JPEG
2000 wavelet based standard. JPEG2000 has many
advantages over the other image standards such as
flexibility of the code-stream, intrinsic support for tiles,
virtually unlimited file size, compression performance
(wavelet based), and support for floating point numbers [7,
8]. A feature that is very important to us is the random
code-stream access and processing. This allows us to
perform operations such as rotation or scaling on random
parts of the code-stream without having to read in the entire
image into memory.

We use the Kakadu JPEG2000 encoder and decoder
software library. The Kakadu Java Native Interface allows
us to make calls to the native C++ libraries. We created
several supporting classes to read and write JPEG 2000
images in a scalable fashion. Kakadu is the first and only
available implementation of the complete standard. The
Kakadu SDK has been used in medical imaging
applications, geospatial imaging applications, and many
other applications. We were tempted to use JJ2000 (a
reference implementation of the JPEG2000 codec written in

Figure 1 – Scalable Image Operation Tiles. The tiles from the three image operations in the pipeline are shown.

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 6

Java) but we discovered problems with the random code-
stream access. Additionally, we found Kakadu to be much
more efficient in regards to encoding and decoding. We
plan to eventually provide support for the JPEG 2000
Interactivity Protocol (JPIP) which is a client-server
communication protocol used to view images or parts of
images in a networked environment through randomly
accessing the codestream. There is currently no support for
writing defined in JPIP (part nine of the JPEG standard) or
we could have used this as a basis for our scalable image
processing framework.

4.1 Framework Components

The main components of the scalable image processing
framework are the ImageTile, TiledImageData and
ImageOperation classes.

The ImageTile object stores the tiles pixels and the tiles
coordinates (i,j) as well as the pixel coordinates [x,y] with
respect to the image operation. The ImageTile object also
has a copy of the specific ImageOperation’s
TiledImageData object and various other intrinsic attributes
of the tile. This class also provides useful methods used to
retrieve and copy data within the image plane. It is
important to note that every image operation will create a
set of tiles where the tile coordinates and pixel coordinates
depend exclusively on the operation that is being
performed.

The TiledImageData object describes the entire image to be
tiled with respect to the image operation in the pipeline.
When an image operation is invoked a TiledImageData
object is created with the appropriate attributes such as the

image bounds (x, y, w, h) where (x, y) are the starting
coordinates and (w, h) is the width and height of the image.
Therefore if a scaleOperation is invoked a TiledImageData
object is created with bounds (x, y, wsx, hsy) where sx and sy
are the scaling factors. This also automatically updates
image properties that are derived from the image plane such
as the number of tiles in both x and y directions. The
writeOperation will request a tile from the preceding image
operation in the pipeline by calling the getTile(i, j) method
in the specific image operations TiledImageData object.
When the tile is returned it is written to disk and the process
is repeated.

4.2 Reading and Writing Tiles

Tiles are read only when they are requested by an image
operation. The read randomly accesses the codestream and
decompresses the appropriate image region. The data is then
stored in a tile object and sent to the requesting image
operation. The tile will also be stored in the cache until it is
removed with respect to the cache’s eviction policy or used
again by another operation. Conversely when a tile has been
completely processed by the requesting image operations it
is compressed and stored in the appropriate codestream
location. The data is then written to disk. After the data is
written to disk the tile is discarded.

The Scalable Image Processing Framework:

(1) Reads in a tile only when requested by another image
operation. The tile size we use is generally 256 x 256
pixels but can be set to an arbitrary size.

(2) Performs the appropriate image operation on the tile.
(3) Saves the result to the cache and the tile is sent back

to the calling operation.
(4) If the resulting tile has no more image operations to

be performed on it the tile is written to disk.
(5) Discards any tiles that are no longer needed.
(6) Repeats the process.

 Figure 3 – ImageTile object.

Figure 2 – Image tiles are an intrinsic property and only read into memory
when they are needed by an image operation.

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 7

4.3 Tiling Operation

The tiling operation handles creating the tile object with the
appropriate attributes. The pixels are read into the tile
through the ReadOperation using the random code-stream
access. The tile is then stored into the cache and passed
back to the image operation that requested it. In the Mars
photo in figure 2 the black squares represent tiles. Every tile
has a set of tile coordinates that can be referenced and a set
of x,y coordinates relative to the entire image. As an
example, tile T1,2 would have starting x,y coordinates at
position [0,256] and so forth.

The Scalable Image Processing Framework uses Ehcache
[13] to store the processed tiles so they can be retrieved
rapidly in the future. We chose to use Ehcache because it is
fast, simple, scalable, supports memory/disk stores into the
gigabytes, and provides distributed caching. Once in the
cache the tiles can be repeatedly accessed inexpensively.
Our cache uses the Least Frequently Used eviction policy.
This algorithm keeps track of when the tiles were last used
and discards them based on which ones are not used
frequently. Caching speeds up things by using the notion of
locality of reference; data that is near other data or has just
been used is more likely to be used again. The cache is
defined in the parent ImageOperation class and every tile
produced by the children operations (Tiling, Scaling,
Sharpening, Convolution, Rotation, Cropping, Edge
Detection, ….) is stored in the cache for use with other
image operations. When an image operation is invoked
through an API call a unique random number is generated.
We use the image operations name, tile coordinates and the
random number as a key for a specific tile.

4.4 Implementing Scalable Image Operations

An image is read and processed in the form of tiles. These
tiles are an intrinsic design component of our Scalable
Image Processing Framework. All implemented image
operations must process the image in the form of tiles. This
is often difficult, as many image operations require the
neighboring tiles pixels as shown in the mathematical
framework. As an example, suppose we use the bilinear
operation to resize the image by half of its size. Bilinear
interpolation is performed using the neighboring pixel
values to estimate the resulting pixel value. To make the
first bilinear tile B1,1 the operation needs four tiles {T1,1,
T1,2, T2,1, T2,2} from the original image.

All scalable image operations extend the ImageOperation
class that provides generic functionality for all image
operations. The ImageOperation class provides functions to
retrieve tiles from the cache, manage the cache, and add
inputs. Image Operations can be easily added onto the
existing framework in a scalable fashion.

Scalable Image Operations are designed by implementing
two simple methods. The first method addInput(…) is
invoked when the user is chaining together operations using
our API. This method only needs to be modified if the
image operation that you are designing will change the
geometry of the image such as rotation, cropping or any
scaling algorithm. The second method is
performOperation(TileX, TileY) where it requires the image
operation to be designed in a scalable manner. Every call to
this method by getTile(i, j) needs to be implemented in a
way that processes only the tile Ti,j. The method Inputs.get()
returns the image operation in the pipeline preceding the
operation to be implemented. Therefore the call to getTile(i,

Figure 4 – Level of detail tiling. The first tile T1,1 from every level of detail is shown where the leftmost tile is from the
original image. A small image with only five levels of detail was used to demonstrate the algorithm.

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 8

j) successfully returns the correct tile in the pipeline to be
processed.

5. DISTRIBUTED AND CLOUD COMPUTING
We are using the Amazon Elastic Cloud Computing service
as well as our own machines (at NASA JPL) to distribute
the tiling and processing of images. This adds even more
flexibility and scalability. The Amazon Elastic Cloud
Computing is a web service that provides resizable
computing capacity in the cloud. The cloud is elastic in that
it can scale itself up and down in seconds depending on the
needed resources of the Scalable Image Processing
Framework. This provides a substantial increase in both
speed and efficiency. A goal of ours is to eventually be able
to process all MER (Mars Exploration Rover) images within
a few hours. Implementing our image processing framework
on the cloud is only natural as it is intrinsically scalable by
the way of tiles where the tiles of a specific operation can be
computed independently from one another.

The Maestro Science Activity Planner delivers tiles on
demand to scientists only when needed by the current
viewing area of the application. The tiles are sent over the
internet to scientists in all facets of the world. To support
viewing images at different levels of detail the following
basic level of detail tiling algorithm is implemented using
our application programming interface.

Let I be an n x m matrix of tiles Ti,j ∈ 256256xℜ . A one
pixel border is created around I therefore the pixels in every
tile Ti,j ∈ I are shifted by one in the x and y directions in the
image plane and written to disk. The image I is scaled by
half in both the x and y axes using bilinear interpolation
therefore I′ is an n′ x m′ matrix of tiles where n′ = n/2 and
m′ = m/2. The process is repeated with the image I′ until it
only contains one tile T′n′,m′ as shown in figure 4.

The border operation is needed for scaling the tiles at levels
higher than their native resolution. Mars Rover images often
need to be scaled by a factor of two or more times to
carefully target the in situ science instruments. The border
operation creates a tile Ti,j where each tile overlaps with its
neighbor by one pixel on each side for the interpolation to
work properly without leaving artifacts when rendering the
tiles in the viewer. Every tile is rendered as if it is two
pixels smaller in the x and y directions.

This method of tiling an image for multiple levels of detail
is processed in a scalable fashion automatically with our
scalable image processing framework. It is important to note
that the scaling at every level of detail is incremental for
both speed and the difference in quality that we noticed.
Assuming k levels of details (LODs) where the k level of
detail refers to the level of detail from the original image.
Therefore if we have an image with k levels of detail the k –
1 level of detail would need the scaled image from the k
level of detail. This algorithm is used as a benchmark for

our software. The images in figure 5 have been processed
by our software using the level of detail tiling algorithm.

These images were selected because they are of interest to
scientists (Future Exploration/Landing sites) and are some
of the largest images. The Possible MSL Landing Surface
Hazard image is 5.71GP (1,000 times the size of a standard
6MP consumer based camera).

We describe a few strategies for using distributed and cloud
computing technologies to process gigapixel images using
our Scalable Image Processing Framework. These strategies
are described using the simple level of detail tiling
algorithm for demonstration purposes. The strategies can be
applied to various other problems that can be defined using
our application programming interface.

5.1 Processing Levels of Detail in Parallel

As a first instance we could have assigned every level of
detail to a machine in the cloud. Since the scaling is
incremental the level of details has a dependency requiring
the scaling of the k level of detail to be completed before
other level of details can begin processing. The processing
time of all levels of details is bounded by the amount of
time it takes to complete the k level of detail. Therefore
given an arbitrary level of detail we can decouple the
scaling and writing of tiles to disk. This strategy provides a
decent solution where only a limited amount of machines
are needed.

5.2 Distributing Regions of Tiles in the Cloud

A set of tiles from an image operation in the operation

Figure 5 – Opportunity Rover Tracks at Victoria Crater
(2.03GP [GigaPixels] : 67643 by 30015 : 1274.3MB),
Surface Hazards of Possible MSL Rover Landing Site
(5.71GP : 126021 by 45357 : 2047.4MB), Possible MSL
Landing Site Mawrth Vallis (2.29GP : 71319 by 32248 :
1158.9MB) and Possible Location of Spirit Rover in
Columbia Hills (1.17GP : 44364 by 26522 : 693MB).

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 9

pipeline can be assigned to a machine in the cloud where
the number of machines is constrained by the time in which
we need the task completed. This assumes the time it takes
to process one tile in the operation pipeline is less than the
time constraint. This strategy requires a job handler that on
demand assigns machines to the processing of tile regions
within the image given some time constraint.

In the above oversimplified example our image operation
pipeline has only reading, scaling, brightness and writing
operations. We are simply scaling the image down using
bilinear interpolation with a factor of 0.75 in both the x and
y axes and brightening the resulting image. Every tile Ti,j ∈
{R, S, B} can be processed independently. Therefore we
could assign a machine in the cloud to every tile in the last
image operation in the pipeline. In this example we would
assign a machine to each of the tiles Bi,j. We show a
diagram of the process below.

The figure above shows that the tiles {B1,1, B2,1, …} are
processed in parallel on machines in the cloud where the
tiles needed from the other image operations in the
operation pipeline are processed on demand and
independently.

This strategy can be applied to the level of detail tiling
algorithm. Suppose we are performing the level of detail
tiling algorithm on an arbitrary image I of size n x m tiles
where k is the maximum number of levels of detail. We still
have the previously defined dependency where the k – 1
level of detail cannot begin until the k level scaling is
completed. The solution is to distribute the scaling
operation (Bilinear Interpolation) and the writing of tiles.
The scaling and writing operations are easily distributable
since they operate on tiles and not the image itself.
Therefore we do not need to modify the operation or the

framework. Informally we simply divide the image into
regions and distribute these regions to machines on the
cloud.

Let R be a matrix of tiles corresponding to an image region
where (u, v) are the coordinates of the region with respect to
the image matrix denoted as I and nr x mr are the width and
height of the region, respectively. Therefore we have a new
mathematical object I of regions where a region Ru,v is a
matrix of tiles Ti,j. Furthermore let c be the number of
regions and consequently the initial number of machines.
The number of regions can be defined as a function of time.

Every region in I is sent to a machine to scale the region and
another machine writes the tiles in the region to disk. The
more regions we have the less amount of time to process the
image and consequently the more machines needed. As
soon as these regions are scaled by half the next level of
detail can begin writing the tiles and scaling these new
regions.

Only the most significant level of detail from I should be
divided into regions as combinatorial problems are
encountered otherwise and resources are often wasted. At a
certain level of detail we must stitch together the regions to
avoid the size of the region becoming less than the size of a
tile. This depends on the number of regions defined in the
image. Given enough resources it is easy to see that by
using this strategy the 6 gigapixel image (Mars Science
Laboratory Landing Site Surface Hazards) could be
processed within seconds.

6. CONCLUSION
We have developed a Scalable Image Processing
Framework capable of performing image operations on
gigapixel images. A mathematical framework for the
scalable image operations is defined to give insight into the
considerations needed with each class of image operations.
We show how we used the Deferred Execution Pattern as a
basis to design our Scalable Image Processing Framework.
Distributed and Cloud Computing technologies are applied

Figure 6 – Regions of an image are distributed and
scalably processed by machines on a supercomputer.

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 10

naturally with our framework. The Scalable Image
Processing Framework will be used to process incoming
images from the Mars Exploration Rovers and eventually
the Mars Science Laboratory. It will also be integrated with
the Maestro software tools used to operate missions and
technology concept studies for the Moon, Mars, and other
celestial bodies.

7. FUTURE WORK
Image data is sometimes lost due to transmission problems
when the data is sent from Mars to Earth using the Deep
Space Network. Therefore an image region might be corrupt
causing artifacts in the image or part of the image might
even be lost. A future direction will be to explore the use of
Singular Value Decomposition to automatically
approximate the missing or corrupt pixel values. The error
in approximation depends on the size of the region. If the
region is small the approximation is likely to be very
accurate. This would allow scientists to view data more
accurately without obvious mistakes or artifacts.

We will also explore how to integrate this framework with
advanced visualization hardware such as the large multi-
touch display and CAVE augmented reality venues.

8. ACKNOWLEDGEMENTS
The research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration and the NASA Undergraduate Research
Fellowship.

REFERENCES
[1] Powell, M., Crockett, T., Fox, J., Joswig, C., Norris, J.,

Shams, K., Torres, R., Delivering Images for Mars Rover
Science Planning, IEEE Aerospace, 2008.

[2] Fox, J., Norris, J., Powell, M., Rabe, K., Shams, K., Advances
in Distributed Operations and Mission Activity Planning for
Mars Surface Exploration, Jet Propulsion Laboratory, 2006.

[3] Powell, M., Crockett, T., Fox, J., Joswig, C., Norris, J., Rabe,
J., McCurdy, M., Pyrzak, G., Targeting and Localization for
Mars Rover Operations, IEEE Information Reuse and
Integration, 2006.

[4] Norris, J., Powell, M., Fox, J., Rabe, J., Shu, I., Science
Operations Interfaces for Mars Surface Exploration, IEEE
Systems, Man, and Cybernetics, 2005.

[5] Norris, J., Powell, M., Vona, M., Backes, P., Wick, J., Mars
Exploration Rover Operations with the Science Activity
Planner, IEEE Robotics and Automation, 2005.

[6] McAffer, J. and Lemieux, J-M, Eclipse Rich Client Platform:
Designing, Coding, and Packaging Java Applications,
Addison-Wesley 2005.

[7] Skodras, A., Christopoulos, T., Ebrahimi, T., The JPEG 2000
Still Image Compression Standard, IEEE Signal Processing
Magazine, 2001.

[8] Kopf, J., Uyttendaele, M., Deussen, O., Cohen, MF.,
Capturing and viewing Gigapixel images, ACM Transactions
on Graphics, 2007.

[9] McEwen, A., Delamere, W., Eliason, E., Grant, J., Gulick, V.,
Hansen, C., Herkenhoff, K., Keszthelyi, L., Kirk, R., Mellon,
M. et al., The High Resolution Imaging Science Experiment
for Mars Reconnaissance Orbiter, 33rd Lunar and Planetary
Science Conference, 2002.

[10] Johnston, M., Graf, J., Zurek, R., Eisen, H., Jai, B., The Mars
Reconnaissance Orbiter Mission, IEEE Aerospace
Conference, 2005.

[11] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
patterns: elements of reusable object-oriented software,
Addison-Wesley 1995.

[12] Taubman, D., Marcellin, M., JPEG2000: Standard for
Interactive Imaging, Proceedings of IEEE, 2002.

[13] Luck, G., Ehcache 1.5 Guide & Reference, Lulu Publishing,
2008.

BIOGRAPHY
Mark W. Powell is a Senior Member of
Technical Staff at the Jet Propulsion

Laboratory, Pasadena, CA since
2001. He received his Ph.D. in
Computer Science and Engineering in
2000 from the University of South
Florida, Tampa. His dissertation work
was in the area of advanced
illumination modeling, color and range

image processing applied to robotics and medical imaging
and received the award for Outstanding Dissertation from
the University of South Florida. At JPL his area of focus is
science data visualization and science planning for
telerobotics. He supported the 2004 Mars Exploration
Rover (MER) mission operations as a Science Downlink
Coordinator, facilitating the timely downlink and analysis
of science data from the rovers. He received the NASA
Software of the Year Award for his work on the Science
Activity Planner science visualization and activity planning
software used for MER operations. He also received the
Imager of the Year award from Advanced Imaging
Magazine for his work on Maestro, the publicly available
version of the Science Activity Planner for MER. Mark has
been programming in Java and loving every minute of it
since it was first used in web browsers in 1995. He, his wife
Nina, and daughters Gwendolyn and Jacquelyn live in
Tujunga, CA.

Ryan A. Rossi is a research assistant in
the Operations Planning Software
Research group at the NASA Jet
Propulsion Laboratory and will be
pursuing a Ph.D. in Computer Science
at Purdue University. He received three
graduate fellowships for his research in
machine learning and artificial
intelligence. His research is supported

by the National Defense Science and Engineering Graduate
Fellowship, National Science Foundation Graduate
Research Fellowship and the Purdue Andrews Fellowship.
He is sponsored by the Department of Defense and the Air

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

 11

Force Research Laboratory. He has worked on research
developing machine learning algorithms for problems in
security, link-analysis, search engines and bioinformatics.
He was previously a research assistant at University of
Massachusetts Amherst, New Mexico Tech and Coastal
Carolina University.

Khawaja Shams joined the Planning
Software Systems group at the NASA
Jet Propulsion Laboratory in 2005,
and he has since been focused on
development of OSGI-based web
services to enable Maestro's rich client
applications. His prior work
experience includes employment at
Malin Space Science Systems and the

Internet Protocol Team at Nokia Mobile Phones. Khawaja
earned a Master's degree in Computer Sciencetfom Cornell
University, and a Bachelors degree in Computer Science
from University of California, San Diego. Khawajaes
current research interests include browser-based telemetry
monitoring systems for robotics, peer-to-peer systems, and
RESTful web based services.

1533

Authorized licensed use limited to: NRL. Downloaded on June 24,2010 at 15:20:26 UTC from IEEE Xplore. Restrictions apply.

