
Client-Side Dynamic Metadata in Web 2.0

John Stamey, Jean-Louis Lassez, Daniel Boorn, Ryan Rossi
Department of Computer Science, Coastal Carolina University, Conway, SC 29528

{jwstamey, jlassez, deboorn, raross} @ coastal.edu

ABSTRACT
Web 2.0 brings with it new opportunities for deploying highly
interactive webpages. A challenge for Web 2.0 developers is
capturing information to document the user experience. Client-
side dynamic metadata provides one solution to capturing and
logging information on the client-side, while lowering the
bandwidth requirements for communication with the server.
This paper discusses the architecture of a proof-of-concept
system, the Dynamic Metadata Prototype. The architecture is
described as an AJAX Design Pattern.

Categories and Subject Descriptors
D.2.2 [Software Engineering]:
Requirements/Specifications - Methodologies

General Terms: Design, Documentation

Keywords: Metadata, Design Patterns, Dynamic
Metadata

1. INTRODUCTION
An important characteristic of Web 2.0 is the dramatically
increased interactivity users experience through RIAs or Rich
Internet Applications. [1, 2] Development of RIAs such as
Gmail, Flickr.com, and NetVibes.com have been accomplished
with AJAX, a suite of technologies originally described by Jesse
James Garrett in his essay "Ajax: A New Approach to Web
Applications." [3] AJAX is an assemblage of XHTML and
CSS, the W3C Document Object Model, XML and XSLT,
JavaScript and the XMLHttpRequest Object.

Classic webpages, still widely in use, are developed without
extensive interactivity. They are created on the server-side and
delivered to the browser in HTML/XHTML. While much of the
content of classic webpages may be produced by middleware
such as PHP, ASP and ColdFusion, there is usually minimal
client-side interactivity. [2] Classic webpages are based on a
multi-page interface model, [4] where new content or changes
in content requires delivery of a different webpage to reflect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC’07, October 22–24, 2007, El Paso, Texas, USA.
Copyright 2007 ACM 978-1-59593-588-5/07/0010...$5.00.

each change. RIAs are delivered with a single-page interface,
where changes are made to individual components in the
webpage, as opposed to refreshing the entire webpage.

Along with increased interactivity, an additional advantage for
Web 2.0 applications is better performance. Due to the growing
complexity of web presentation technologies, Internet traffic has
increased to the point that websites built around the multi-page
interface model take longer and longer to load. The heart of this
problem is network latency, a measure of how fast a network is
running. Network latency is traditionally measured as the time
elapsed between sending a Remote Procedure Call to a router
and the time it takes for the message to return. The development
of Web 2.0 RIAs has worked to help mitigate problems
stemming from increased network latency with classic
webpages, by reducing data transfer from the server to the client.
[5]

A distinct advantage of the Web 2.0 experience is a superior,
interactive, user experience. [1] The user experience in the
classic multi-page user model is recorded as a sequence of
webpages as they are delivered to the browser. [6] Capturing the
user experience in the single-page model of Web 2.0 is a more
difficult proposition, due to the separation of the client and the
server. [7] The alternative to a bandwidth-heavy connection
between the client and the server is a true fat client /thin server
approach.

This paper discusses an architecture and prototype for a fat
client/thin server Web 2.0 application that facilitates logging of
the user experience and addresses the problem of network
latency. Section 2 discusses server-side metadata, which is
currently in use. The Dynamic Metadata Prototype featuring
client-side metadata collection is introduced, along with the
format used for the metadata. Section 3 introduces the AJAX
design pattern, in preparation for its use in describing a reusable
solution to implementing client-side dynamic metadata. Section
4 describes the Client-Side Dynamic Metadata Pattern. Section 5
gives the direction for future development with the Pattern.

2. METADATA
2.1 Server-side Dynamic Metadata
The idea of tracking user actions has been important since the
beginning of the web. [8] However, the bandwidth requirements
for constant communication between the client and the server to
track and log every user’s actions on a webpage can become
prohibitive.

Dynamic creation of metadata has been described for a handful
of applications; however, all of the applications have been
created, used or delivered on the server side. Dognac [9]

155

describes the creation of metadata to tag information from
ecommerce applications, in lieu of direct database updates.
Metadata fields are inserted and updated in a database on the
server-side.

Farrel [10] describes a set of components assembled
dynamically to create learning objects. Metadata, along with
content and contextual information about the learner, is
assembled at run-time. Again, the metadata resides on the
server, and is updated based on information gathered about the
learner during the use of the learning object. Bainbridge [11]
describes the configuration and construction of dynamic digital
libraries. Metadata is treated as a dynamic part of the digital
library insomuch as it can be freely updated as necessary to
reflect current information about digital holdings.

Metadata used to hold contextual information is described by
Atkas, Fox and Pierce. [12] As information in P2P/Grid
Computing environments changes frequently, metadata is an
ideal format in which to store information. The P2P/Grid
information is stored in a server-side repository. In a related
idea, server-side metadata is updated to describe distributed
storage systems by Kaul, et. al., implanted in Java with Aspects.
[13]

2.2 Dynamic Metadata Prototype (DMP)
The client-side Dynamic Metadata [14] Prototype, DMP, takes
approach of logging a user’s interactions with a webpage on the
client, then storing the information with one connection to the
server when the user moves off of a page. This approach is
useful with the single-page interface model, because essentially
all of a users’ activity while they are on a website would be
recorded before they move to another website.

DMP is an AJAX-driven website that logs changes in content
with client-side dynamic metadata. The current prototype,
Version 1.1, is found at www.DynamicMetadata.org. Data from
Yahoo weather feed is periodically updated in a DIV. Metadata
is created on the client-side to record the changes in content, as
well as a timestamp of the change event. The index page of
DMP, is seen in Figure 1.

Figure 1

Several advantages are found in the client-side dynamic
metadata prototype system presented herein:

• The processing for all logging is accomplished on the
client side, eliminating need to access the server until
the very end to store logging information.

• A relatively complete picture of the user can be
created by tracking client-side events by taking

advantage of client-side processing cycles using Web
2.0 applications.

• User behavior such as mouse movements cannot be
accurately relayed to the server without being first
stored on the client-side as they occur.

2.3 Dynamic Metadata Format
A two-part format for the dynamic metadata is created on the
client-side. Part I uses elements of Dublin Core Metadata,
whose specifications may be found at www.DublinCore.org, as
a basis from which to start. Dublin Core Metadata has been
traditionally used to describe information about learning objects.
The online-nature of learning objects lends suitability to a
majority of the Dublin Core elements. We present a list of
Dublin Core metadata elements that have been modified for use
as Part I of dynamic metadata, including any changes necessary
for more accurate recording of information:

• Title: name and key of website URL;
• Creator: creator of website URL;
• Publisher: entity responsible for making the resource

available;
• Contributor: entity responsible for making

contributions to the content of the URL;
• Date: creation date or date of last update of URL;
• Format: resource platform version of URL and server,

if delivery comes from multiple load-balanced servers
(optional);

• Identifier: session variable or unique identifier of user;
• Source: reference to a source providing the content, in

whole or in part; if the material has been derived from
more than one contributing source, there will be more
than one source element;

• Language: native language of the content, in two or
three letter, such as EN or ENG for English;

• Coverage: location of resource, and/or dates for which
the content is valid; and,

• Rights: rights held by the creator such as a copyright.

The Document Type Definition for Part II of our client-side
metadata is found below:

• Sequence_No: sequential order of an event
• DateTime: timestamp of an event, split into Date and

Time
• Contents: information that has changed or movements

recorded, in the form of a name-value pair –
Element_ID, the DIV receiving new information; and,
Element_value, the actual value or movement to be
recorded

2.4 Sample Dynamic Metadata
Executing the DMP produced the following metadata. In Figure
2, we see the metadata created when the URL was first visited.
In Figure 3, five minutes later, additional information was
appended to the metadata in Figure 2 as a result of an update to
DIV with id= weatherDiv.

156

3. PATTERNS
3.1 Alexander Patterns
Design patterns originated with Christopher Alexander [15, 16]
in 1977 as a way to describe fundamental building blocks of
towns, buildings and construction. Alexander's classic pattern
has five parts: [16, pp. x-xi]

<metadata xmlns="http://example.org/myapp/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://example.org/myapp/schema.xsd"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title>www.DynamicMetadata.com</dc:title>
<dc:creator>Stamey, Lassez, Boorn and Rossi</dc:creator>
<dc:publisher>Herald Hosting, Inc.</dc:publisher>
<dc:contributor>Boorn</dc:contributor>
<dc:date>May 1, 2007</dc:date>
<dc:format>LAMP (Linux, Apache, MySQL, PHP)</dc:format>

<dc:identifier>b91442d8d20bfafa2d6f92a8578bd8e9</dc:identifier>
<dc:source>www.yahoo.com, www.lipsum.com</dc:source>
<dc:language>EN</dc:language>
<dc:coverage>No expiration</dc:coverage>
<dc:rights> (c) 2006-2007, Stamey, Lassez, Boorn</dc:rights>

<dm:info>
<dm:sequence_no>1</dm:sequence_no>
<dm:datetime>
 <date>2007-05-30</date>
 <time>1180556912</time>
</dm:datetime>
<dm:contents>
 <dm:element_id>weatherDiv</dm:element_id>
 <dm:element_value>
 <rssweather city="El Paso" condition="Fair"
 temp="87" units="F"
 wspubdate="Wed, 30 May 2007 12:51 pm MDT">
 </rssweather>
 </dm:element_value>
</dm:contents>
</dm:info>

Figure 2

<dm:info>
<dm:sequence_no>2</dm:sequence_no>
<dm:datetime>
 <date>2007-05-30</date>
 <time>1180556917</time>
</dm:datetime>
<dm:contents>
 <dm:element_id>weatherDiv</dm:element_id>
 <dm:element_value>
 <rssweather city="El Paso" condition="Sunny"
 temp="88" units="F"
 wspubdate="Wed, 30 May 2007 12:56 pm MDT">
 </rssweather>
 </dm:element_value>
</dm:contents>
</dm:info>

Figure 3

1. A picture to show an architectural example of the pattern;
2. An introductory paragraph to set the context of the pattern –
giving the essence of the problem in one or two sentences;

3. The body of the problem, describing the empirical
background of the pattern, evidence of its validity, and the
manner in which the pattern can physically manifest;
4. A set of instructions explaining the solution to the problem,
along with a diagram showing the main components of the
solution; and,
5. Identification of related patterns that form a (usually small)
pattern language.

3.2 Gang of Four Design Patterns
Gamma, Helm, Vlissides and Johnson, the Gang of Four [17]
introduced the notion of design patterns in object-oriented
programming. Their platform was C++ and Smalltalk, and their
diagramming technique was an early version of UML (referred
to as the Object Modeling Technique, or OMT). Design Patterns
were used to describe reusable solutions in object-oriented
programming. Design Patterns were expanded to contain
thirteen descriptive sections, the additional granularity needed
when the context changed from architecture (Alexander) to
Object-Oriented Programming (Gang of Four).

1. Pattern Name and Classification as creational, structural or
behavioral;
2. Intent -- what does the pattern do and what problem is
addressed;
3. Also Known As -- other well-known names of the pattern;
4. Motivation -- a scenario illustrating a design problem and
how the class and object structure of this particular pattern solve
the problem;
5. Applicability -- situations in which the design pattern can be
applied;
6. Structure -- an OMT diagram of the pattern;
7. Participants -- a list of the classes and objects embodied in the
Structure;
8. Collaboration -- a scheme of how the Participants work
together in the solution;
9. Consequences -- potential trade-offs and results of using the
pattern;
10. Implementation -- issues that would arise in the
implementation of the patter, along with potential language-
specific issues;
11. Sample code -- code fragments of the solution;
12. Known Uses -- at least two examples, from different
domains, of the pattern used in real-world systems; and,
13. Related Patterns -- other patterns that are frequently used in
conjunction with the pattern being explained.

3.3 AJAX Design Patterns
Expanded design needs for Web 2.0 applications have
necessitated a further expansion of design patterns used with
AJAX [18, 19] Mahemoff’s AJAX Design Pattern contains most
of the elements of both Alexander and Gang of Four patterns, as
well as additional information to guide the implementation.

1. Evidence – On a zero-to-three scale, the author of the pattern
is asked to propose the pattern is speculative (0), in existence as
a proof-of-concept (1), exists in several examples (2), or claim
the pattern is in widespread usage. The claim of evidence in
AJAX patterns actually allows the creation and development of
patterns without Alexander’s criteria of widespread existence.

157

The actual number assigned to the pattern is based on how many
of three small round circles are filled-in.

2. Tags – Tags, or keywords, help convey a sense of focus for
the pattern. The Gang of Four’s Also Known As… section,
describing other names for a pattern, is a similar construct.

3. In a Blink – Reminiscent of Alexander’s picture at the
beginning of his pattern, AJAX patterns begin with a hand-
drawn sketch or very brief sentence fragment describing the
intent of the pattern. The informality of the hand-drawn sketch
and/or sentence fragment is also like the Gang of Four’s Intent, a
short statement about the purpose and intent of the pattern.

4. Goal Story – AJAX patterns relate an actual success story
that will be made possible once a RIA, featuring an AJAX
pattern has been implemented. The success stories use personae
drawn from a cast of nine "typical characters" found in the
information technology world, ranging from end users to senior
application development programmers. An early and successful
use of the personae technique to explain problems and solutions
in highly quantitative fields is found in S.J. Simon's classic book
on contract bridge strategy, "Why You Lose at Bridge." [20]
The idea of getting to know certain personae and their
behavioral characteristics to help with understanding
quantitative concepts has found its way into the practice of
programming. [21] Personae have been used to help explain
concepts in the area of software engineering pedagogy. [22, 23]

5. Forces – Forces identify appropriate advantages of RIAs over
classic webpages. These include increased application speed
(overcoming network latency), increased usability, and the
availability of technology for implementation. Forces can be
thought of as The Gang of Four’s Consequences, that discuss
how the pattern supports its objectives.

6. Solution – The solution in an AJAX pattern is a one to two
sentence summary followed by a general elaboration, including
implementation details, rationale, programming aspects, caveats,
and potential problems found in the implementation. This
scheme is much like Alexander’s approach to presenting the
solution solved by a design problem. It also embodies the
Structure, Participants, and Collaborations from the Gang of
Four’s pattern.

7. Decisions – Decisions are posed as questions. They describe
problems and ideas for their resolution during implementation.
Decisions have elements of the Gang of Four’s Implementation.

8. Real-World Examples - This section gives real-world
examples of the pattern at work. For instances where real-world
examples are lacking, a proof-of-concept is appropriate. This
section is very much like the Gang of Four’s Known Uses, as
well as the body of Alexander’s “solution” section in his pattern.

9. Code Example – AJAX patterns require code, the same as the
Gang of Four’s Sample Code and Alexander’s diagram
requirement in his “solutions” section.

10. Refactoring Illustration – In the spirit of Martin Fowler, who
originally defined refactoring as a change in code that would not
lead to any user-observable behavior change, [24] this section

describes the effect of the pattern to provide traditional
refactoring efficiencies on the application.

11. Related Patterns – In this section, AJAX patterns converge
perfectly with the Gang of Four and Christopher Alexander.

12. Metaphor – Metaphors are useful to remember patterns.
Metaphors blend in with the Gang of Four’s Also Known As…,
which was also associated with AJAX pattern Tags.

13. "Want to Learn More?" – This section contain links to any
original references and other relevant material. The purpose for
hyperlinks stems from the www.Ajaxpatterns.org website, a wiki
that is constantly updated with new AJAX patterns and
resources.

14. Acknowledgements – Attribution is given to individuals
who contributed to the discovery and/or development of the
pattern.

4. THE CLIENT-SIDE DYNAMIC
METADATA DESIGN PATTERN
We now explain the generation of Dynamic Metadata with an
AJAX Design Pattern.
1. Evidence –

2. Tags – Metadata, Dynamic Metadata, Client-side metadata

3. In a Blink – Generate a log to track user behaviors in a
browser in a well-defined metadata format on the client-side

4. Goal Story – Mamehoff's character, Stuart, is a student with
lots of time to listen to music and other hobbies not related in
any way to his studies. While Stuart has his web browser open, a
number of items on www.dynamicmetadata.com change. New
management at Dynamic Metadata want to know what Stuart
actually sees in his browser as well as his navigation patterns
throughout the website, without having the costly overhead of
logging everything server-side. Dynamic Metadata is generated
on Stuart's computer to track his activities as well as the changes
he experiences in his webpage. When Stuart leaves the website,
the tracking data is sent to the server for archival and data
analysis.

5. Forces:

• Dynamic Metadata has been developed to provide a
standard for sending logging data to the server arising
from Web 2.0 sites developed with AJAX. Working
within a standard format should lead to uniformity of
data throughout the archive.

• Data in DIV elements will be changed as a result of
values being placed in the innerHTML property of a
DIV. A rapid succession of DIV changes will be
handled with the XMLHttpRequest Object that can
easily write the metadata. User browsing patterns
(mouse clicks and other activities) will also be
captured.

158

• A full page-refresh for each DIV change would
consume server resources. Thousands of users could
crash a server with rapid-fire page refreshes.

6. Solution – Information encoded in the Dynamic Metadata
format will be appended to a text string for each change of
content and for each recordable browsing action. This text string
will be sent to the server using the JavaScript OnUnload event
handler when the user leaves the webpage. A diagram of the
program flow of the solution may be seen in Figure 4.

The DMP system consists of four files:

• index.html – loads the weather information from
Yahoo using the fetch_weather() function, and
uploads the accumulated logging metadata to the
server with the onUnload property..

• fetchpage.php – forwards XML weather data from
Yahoo for parsing.

• logdm.php - saves metadata to the server.
• metadata.js - has AJAX code, XML parsing code, and

concatenates each additional dynamic metadata entries
into a string.

Figure 4

7. Decisions
How can metadata be accumulated on the client-side? One
strategy is by simple concatenation into a text string to be
returned to the server. A different strategy involves creation of
an XML object that can be updated in a straightforward manner.
While either would work, the implementation chosen was
simple string concatenation.

What are disadvantages of client-side dynamic metadata?
Every time the user refreshes an AJAX-driven RIA, the server
will receive information as if there was more than one session.
However, identifying the session with a cookie can solve this
problem. The other problem is when the computer on the client
side is shut down before they leave the page. There is no known
solution for this problem, unless some mechanism can be set up

so that when the computer is rebooted and connected to the
Internet that the server is notified of a session that was lost.

8. Real-World Examples – A proof-of-concept has been
developed and may be found at
http://www.DynamicMetadata.org.

9. Code Example – An important part of this implementation is
the use of the Yahoo namespace in the RSS weather feed.
Appendix 1 shows how this was accomplished in the actual code
from the metadata.js file. The importance of using Yahoo’s
namespace is that if their data changed, the data on the website
could change automatically.

10. Refactoring Illustration – AJAX is important to the
efficiencies to be achieved in this dynamic Web 2.0 application.
More specifically:

• Foundational AJAX technologies are exhibited with
DIVs changing from the use of the innerHTML
property, as well as the dynamic metadata being sent
to the server OnUnload.

• Many of the DIVs will be receiving data via XML.
This will be parsed on the client-side, therefore the
server will have no knowledge of the content.

• The only way that content can be logged is on the
client-side through generation of logging data.

11. Related Patterns: AJAX App, Web Remoting

12. Metaphor: Client-side logging

13. "Want to Learn More?"
 www.Ajaxpatterns.org
 www.DynamicMetadata.org

14. Acknowledgements -- Lassez and Stamey (dynamic
metadata concept), Stamey (system design), Boorn (code),
Rossi (pattern analysis and sequence analysis)

5. FURTHER WORK
We describe a first step toward capturing and documenting the
user experience in Web 2.0 applications by taking advantages of
the AJAX architecture of Rich Internet Applications. The
system architecture we propose uses client-side, dynamically
generated metadata to log content changes and user actions. A
continual connection to the server is avoided, thus decreasing
the amount of bandwidth needed to capture this information.
The DMP system currently captures changes in DIV tags. A
second version, 2.0, will also record mouse movements and
clicks, thus providing moredetailed data about user sessions in a
single-page interface model.

6. REFERENCES
[1] O'Reilly, T. "What Is Web 2.0: Design Patterns and

Business Models for the Next Generation of Software,"
Sept. 30, 2005. Retrieved May 1, 2007 from

 http://www.oreillynet.com/pub/a/oreilly/tim/
 news/2005/09/30/what-is-web-20.html/.

159

[2] Lin, K-J Building Web 2.0. IEEE Computer, May 2007, pp.
101-102.

[3] Garrett, J.J., (2005) "Ajax: A New Approach to Web
Applications," retrieved May 1, 2007 from
http://www.adaptivepath.com/publications/essays/archives/
000385.php/.

[4] Mesbah, A. & van Derusen, An Architectural Style for
AJAX. The Working IEEE/IFIP Conference on Software
Architecture (WICSA'07).

[5] Stamey, J.W. & Richardson, T. Middleware development
with AJAX. Journal of Computing Sciences in Colleges,
Volume 22, Issue 2 (December 2006) Pages: 281 - 287.

[6] Ho, S.Y., An Exploratory Study of Using a User Remote
Tracker to Examine Web Users’ Personality Traits.
Proceedings of ACM ICEC 05.

[7] Lewandowski, S. Frameworks for component-based
client/server computing. ACM Computing Surveys, March
1998.

[8] Srivastava, J., Cooley, R., Deshpande, R. & Tan, P-N.
(2000) Web usage mining: discovery and application of
usage patterns from Web data. Proceedings of ACM
SIGKDD 2000, pp. 12=23.

[9] Dogac, A. et al., A Workflow-based Electronic
Marketplace on the Web. Proceedings of SIGMOD, Vol.
27, No 4. December 1998, pages: 24-31.

[10] Farrell, R., Liburd, S. D., Thomas, J.C., Dynamic
Assembly of Learning Objects. Proceedings of WWW
2004, ACM Press, pages: 162-169.

[11] Bainbridge, D. et al., Dynamic digital library construction
and configuration, Proceedings of The European
conference on Digital Libraries. 2004.

[12] Aktas, M.S., Fox, G., Pierce, M., Managing Dynamic
Metadata as Context. Proceedings of 2005 Istanbul
International Computational Science and Engineering
Conference.

[13] Kaul, D., Gokhale, A., Dawson, L., Tackett, A., &
McCauley, K. Applying Aspect Oriented Programming to

Distributed Storage Metadata Management. Proceedings of
ACM BPOAOSD 2007.

[14] Lassez, J-L, Stamey, J.W., Patterns in the Digital
Bibliotheque City. Invited Presentation, Digital
Bibliotheque City Workshop, Hokkaido University,
Sapporo, JP. March, 2006.

[15] Alexander, C. The Timeless Way of Building. Oxford
University Press, 1977.

[16] Alexander, C. A Pattern Language. Oxford University
Press, 1977.

[17] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1995.

[18] Mamehoff, M. (2006) AJAX Design Patterns. Sebastapol,
CA: O'Reilly Media, Inc.

[19] Mamehoff, M. (2006-7) Pattern Template. Retrieved May
31, 2007 from http://Ajaxpatterns.org/Pattern_Template/.

[20] Simon, S.J. (1946) Why You Lose at Bridge. New York:
Simon & Schuster.

[21] Rosenberg, A.N. (2001) A Description of One
Programmer's Programming Style Revisited. Retrieved
May 31, 2007 from http://the-adam.dyndns.org:2069/
adam/rantrave/st02.pdf/.

[22] Moritz, S.H., Wei, F., Parvez, S.M. & Blank. G.D. (2005)
From Objects-First to Design-First with Multimedia and
Intelligent Tutoring. Proceedings of ACM ITiCSE 2005.

[23] Pollice, G. (Feb. 15, 2006) Software Development 101. The
Rational Edge, February 2006. Retrieved May 31, 2007
from
http://www.ibm.com/developerworks/rational/library/feb06
/pollice/index.html/.

[24] Fowler, M. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

160

APPENDIX 1

Code for Parsing Yahoo Namespace and
Building Dynamic Metadata

/* Parse Weather Module (xml document object) */
function parseWeather(xmlDoc){
 //Fetch Yahoo Weather namespace URI
 var weatherNsUri = xmlDoc.getAttribute('xmlns:yweather');
 //Create weather node to store weather information from Yahoo’s namespace
 var weatherNode = new Object();
 //Fetch user tracking data
 var userid = xmlDoc.getAttribute('userid');
 var sdate = xmlDoc.getAttribute('date');
 var stime = xmlDoc.getAttribute('time');
 //Fetch weather data
 weatherNode.city =

xmlDoc.getElementsByTagNameNS(weatherNsUri,'location')[0].getAttribute('city'); //City
Name (e.g. Myrtle Beaach)

 weatherNode.condition =
xmlDoc.getElementsByTagNameNS(weatherNsUri,'condition')[0].getAttribute('text');
//Current condition (e.g. sunny)

 weatherNode.temp = xmlDoc.getElementsByTagNameNS(weatherNsUri,
'condition')[0].getAttribute('temp'); // temperature number (e.g. 88)

 weatherNode.units = xmlDoc.getElementsByTagNameNS(weatherNsUri,
'units')[0].getAttribute('temperature'); // temperature units (e.g. F)

 weatherNode.wsPubDate = xmlDoc.getElementsByTagNameNS(weatherNsUri,
'condition')[0].getAttribute('date'); // weather service publish date time

 weatherNode.rssTitle =
xmlDoc.getElementsByTagName('item')[0].getElementsByTagName('title')[0].firstChild.nodeVa
lue;

 weatherNode.rssDescription =
xmlDoc.getElementsByTagName('item')[0].getElementsByTagName('description')[0].firstChild.
nodeValue;

 //Update weather div
 document.getElementById('weatherDiv').innerHTML = "<div

class='weatherTitle'>"+weatherNode.rssTitle+"</h2>";
 document.getElementById('weatherDiv').innerHTML += "<div

class='weatherDescription'>"+weatherNode.rssDescription+"</div>";
ode.rssDescription+"</div>";

 //Build dynamic metadata
 var str = "<dm:info>\n";
 str += " <dm:session_id>"+userid+"</dm:session_id>\n";
 str += " <dm:sequence_no>"+sequenceNum+"</dm:sequence_no>\n";
 str += " <dm:datetime><date>"+sdate+"</date><time>"+stime+"</time></dm:datetime>\n";
 str += "<dm:contents>\n";
 str += " <dm:element_id>weatherDiv</dm:element_id>\n";
 str += " <dm:element_value>\n";
 str += " <rssweather city='"+weatherNode.city+"' condition='"+weatherNode.condition+"'

temp='"+weatherNode.temp+"'

units='"+weatherNode.units+"' wspubdate='"+weatherNode.wsPubDate+"'/>\n";
 str += " </dm:element_value>\n";
 str += "</dm:contents>\n";
 str += "</dm:info>\n";

161

