

Polyphony: A Workflow Orchestration Framework for Cloud
Computing

Khawaja S Shams1, Dr. Mark W. Powell.1, Tom M. Crockett1, Dr. Jeffrey S. Norris1, Ryan Rossi1, Tom Soderstrom1

1NASA Jet Propulsion Laboratory – California Institute of Technology, Pasadena, CA 91109, USA

KSSHAMS@JPL.NASA.GOV

Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars
Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not
thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a
resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel
computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the
supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node
failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built
on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and
Titan.

Index Terms—Cloud Computing, Space Exploration, Distributed Computing, Cycle Stealing

1. INTRODUCTION
LOUD COMPUTING is a boon for various applications in

industry and academia. It has unleashed a virtually limitless
level of compute capacity that various research projects can
leverage due to the affordable pricing. The NASA Jet
Propulsion Laboratory (JPL) is NASA’s premier facility for
robotics exploration of our solar system. JPL spacecraft have
roamed throughout the solar system, visiting all of the planets
in the process. JPL is the first NASA center to partner with
commercial cloud computing vendors to investigate cloud
computing in its role to revolutionize spacecraft operations.

 The motivation for Polyphony is to provide a
framework that helps to streamline the operations of Mars
rovers by processing and delivering Mars images with
remarkably low turn around times. Prior to the advent of cloud
computing, our image processing pipeline for missions like
MER was designed to rely on a single machine with lots of
compute power. Although we have exploited the multiple
cores available to us on our machine, we have been bound by
the limitations of the machine, which has resulted in extended
bottlenecks in the image-processing pipeline. Although the
machine has been remarkably reliable, we have run the risk of
a single point of failure in the face of hardware or even OS
level issues with our processing machine. Prior to cloud
computing, adding another machine was untenable strictly
from a cost perspective: it did not make sense to add one or
five more machines when the current single machine sat idle
for roughly 20 hours a day. On the other hand, cloud
computing has enabled us to employ hundreds of machines for
durations as small as an hour.

While JPL is working with several cloud vendors on our IAAS
needs, the bulk of this research was performed on

Amazon.com’s Elastic Compute Cloud (EC2). EC2 allows us
to programmatically request appropriate computing capacity
based on the current demands. With cloud computing, it is
important to note “using 1000 EC2 machines for 1 hour costs
the same as using 1 machine for 1000 hours” [1]. This is a
crucial benefit to any application; expediency of
computational result comes for free simply due to the
elasticity available in the cloud.

2. POLYPHONY
Polyphony is composed of several components that work in
harmony. First of all, there is a distributed queue that is used
to publish tasks and distribute them to nodes that can perform
them. Secondly, we must have at least one subscriber that
polls the queue for tasks and performs them: we will refer to
this subscriber as a worker node. Polyphony makes no
assumption about the number of nodes working on the tasks.
Furthermore, it does not have a central component that
attempts to track any or all nodes. Moreover, there are no
assumptions about physical characteristics of the worker
nodes: they can be Linux servers, personal laptops, machines
in the cloud, or even supercomputing resources. Lastly, each
worker node has a software application that interacts with the
queue. This application extensively utilizes Eclipse Equinox
[4], a popular implementation of the OSGi [2] specification,
for modularity. The OSGi specification enables software
developers to componentize their applications. These
components, also referred to as plugins, allow clear separation
of concern, drastically reduce the complexity of the software,
and foster easy reuse of code. In order to integrate an
application into the Polyphony framework, a develop has to
simply write one module and include it in the Polyphony
distributions without having to know anything else about the
underlying details of task allocation, scheduling, or distributed
computational resources. This is discussed in more detail in

C

2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

978-0-7695-4039-9/10 $26.00 © 2010 IEEE

DOI 10.1109/CCGRID.2010.117

606

2C.

2A. TASK ALLOCATION AND DISTRIBUTION
 The distributed queue is a core component of
Polyphony. In the initial implementation, we employ Simple
Queuing Service (SQS) available as part of Amazon Web
Services (AWS). However, since a dedicated module is tasked
with handling all transactions with SQS, we can replace SQS
with another queuing service very easily without impacting
any other part of the software.

 SQS is a distributed queue with some elegant concepts that
facilitate resilient behavior. It provides a Restful interface to
interact with the queue: tasks can be added via an HTTP PUT
method, obtained via GET method, and deleted upon
completion via the HTTP DELETE method. SQS provides
guaranteed-once delivery semantics: each task added to the
queue is delivered to at least one node. Upon retrieving a task,
the worker node sets the visibility of the message, with a
timeout, so that it is invisible to other nodes while it is being
performed. Upon completion of the task, the worker node
deletes the task from the queue. If a worker node faces a
failure that prevents it from completing a task, the task
eventually becomes visible to and obtained by another worker
node.

Due to the distributed and eventually consistent nature of the
queue, some of the tasks may be assigned to multiple nodes
and be performed multiple times. While this may seem
inefficient, it is a trade off that most applications are willing to
make to gain better reliability with node failures and higher
throughput. In practice, we have rarely observed a task
executing multiple times. Nonetheless, this important
characteristic forces the application designer to create
idempotent tasks that do not have side effects if they are
executed more than once.

2B. WORKER NODES
 This section describes the worker nodes and the
software architecture of the application that runs on them. As
stated earlier, Polyphony makes no assumption about the
worker nodes.

 In the experiments that we have conducted thus far, the
majority of the compute capacity comes from machines rented
on the cloud. On the AWS cloud, we profiled our application
with a variety of nodes from the small instances (1 core at 1
GHz with 1.7GB of memory) to the quadruple extra large
instances (8 cores with 2.5 GHz each and 68GB of memory).
While the individual performance of a particular machine size
depends on specific applications, we have observed that the
larger instances not only offer higher CPU and RAM capacity,
but they have provided significantly higher I/O throughput to
the disk as well as the network.

Any organization with desktop computers and servers has
significant compute capacity that is unutilized or wasted when
machines are idle. One of the goals of Polyphony is to
leverage the spare cycles and perform tasks to assist the

worker nodes in the cloud. We started with the assumption
that these nodes and the results they provide can be trusted.
On our Linux servers, we ran the Polyphony client with the
Unix Nice command, with a priority of 10. This simple
process allows Polyphony clients to steal spare cycles and
enable workstations to contribute work at their own pace.
Should a server become busy in the middle of the
computation, the overall infrastructure will not be impacted as
the computation will eventually time out and be assigned to a
node that can finish it faster. However, in scenarios where the
queue may have thousands or millions of tasks in it,
contribution at any pace can be extremely valuable.

We are integrating the supercomputer center nodes as
Polyphony clients. While this may not be the most effective
approach to scheduling jobs on a super computer, it will
enable us to leverage excess capacity on the super computer:
in production environment, we would control the number of
jobs spawned dynamically based on how busy the super
computing cluster is at a given time.

Polyphony makes no assumption about the worker nodes, and
our initial runs have served as a proof of concept that
dedicated cloud machines and spare capacity on JPL
computers. The JPL machines access the NFS server over the
Internet. However, we judiciously utilize the security settings
to allow network access only to other nodes in our security
group and specific CIDRs (Classless Inter-Domain Routing) in
the JPL space.

Figure 1. Architecture of Polyphony

607

2C. SOFTWARE ARCHITECTURE FOR POLYPHONY CLIENT

 The Polyphony client is written entirely in Java, and
it utilized the Eclipse Equinox, an implementation of the OSGi
specification. Equinox and OSGi offer an unparalleled level of
modularity by allowing developers to write modules, or plug-
ins that work in harmony in the context of an application. For
instance, the Eclipse IDE (Integrated Development
Environment) is built on top of this framework, which allows
third-party developers to contribute plug-ins to enhance or add
functionality to the IDE. Similarly, Ensemble Rest, a modular
framework for developing Restful applications open sourced
by OPS Lab, leverages Equinox to provide simple hooks that
enable developers to deploy a Restlet with a few lines of code
and XML configuration. Equinox allows plug-ins to be added
even after an application has started and can incorporate a
contribution without restarting the application. For example,
Ensemble Rest allows developers to add or update a specific
set of web applications without restarting the server and
exposes the new or updated services immediately.

At the heart of the Polyphony client is the Polyphony engine.
Upon the start of the application, the engine solicits all
available plug-ins for a distributed queue. In our original
prototype, the queuing plug-in interacts with SQS. However,
replacing SQS with a different distributed queue would be as
simple as replacing a single JAR (Java archive) in our
application. The Polyphony engine then acquires tasks in bulk
from the queue and attempts to accomplish them. To make this
application completely modular, the Polyphony engine makes
no assumption about the tasks that it would be able to perform.
Instead, it maintains a registry of task handlers that are
available to it as an application from the included plug-ins.
Each task handler is a Java class that implements the
ITaskHandler interface with the following methods:

• boolean handles(String task);
• void handle(String task) throws Exceptions

In order to add one or more task handlers to Polyphony, a
developer can create a plug-in with implementations of
ITaskHandler and register them via an XML configuration
file. By simply adding this plug-in to the client, new
capabilities are introduced without any need for redeployment
or recompilation.

After receiving a task, the Polyphony engine asks each class in
the registry if it knows how to handle the task. Upon finding
the first handler that can handle the job, the engine assigns the
job to the handler. If the job is completed successfully, no
exceptions would be thrown and the engine deletes the task
from the queue. As part of the execution, a task may chose to
add more tasks to the queue, or it may simply terminate
successfully by not throwing an exception. If an exception is
thrown, the engine simply moves on to the next task so that
the failed task can be tried again. The exception could be due
to a temporary failure, so it is important to retry the task.
Nonetheless, we intend to add functionality that will remove a
task from the queue after a predetermined, configurable
number of failures.

The Polyphony client is easy to extend, and it enables
developers to write TaskHandlers without having any
knowledge or assumptions about the distributed queuing
system. With this framework, new TaskHandlers can be added
to existing Polyphony applications or the underlying queue
can be changed seamlessly without impacting any other part of
the system.

3. HARMONIC: PARALLELIZED IMAGE TILING FOR
PLANETARY IMAGES

 Embarrassingly parallel problems are the norm in
almost any satellite or panoramic image processing
application. When a particular operation needs to be applied to
every single image in a large collection, it is easy to perform
the tasks in parallel across a large number of machines.
Similarly, if there is an operation that needs to be applied to an
extremely large image, it is often natural to recursively divide
the image into smaller regions and perform the task on each
region on a different machine.

When dealing with large images, it is typical for an image to
have more resolution than what is available at the screen of
our end users. Since our operations software runs around the
world with laptops with wireless connectivity, it is wasteful to
transfer an entire image when the user is only viewing a small
part of it or has zoomed out to view the image at a much lower
resolution. To make this process more efficient, we tile our
images are different resolutions so that we can deliver only
what the end user has on the screen. This allows us to
effectively utilize the bandwidth and improve the user-
experience by delivering the images faster.

Harmonic is an application built on top of the Polyphony
framework to streamline the production of tiles by employing
a large number of machines. For our initial run of Harmonic,
our goal was to tile and scale 184,000 images from the Cassini
spacecraft as quickly as possible. When running the tiling
software on production machine in serial, it took more than
two weeks for the job to finish. For this application, we only
processed one image at a time to avoid overwhelming the
server. On the other hand, when employing cloud machines,
our goal is to utilize every cycle that is available to us. The
Polyphony client on the cloud employs thread pools to ensure
efficient utilization of all our resources, especially in the face
of I/O intensive tasks.

Harmonic was originally designed to run on a single machine,
and we modified it to work in a distributed environment.
However, due to the embarrassingly parallel nature of the
problem, it was very easy to integrate it with Polyphony. To
kick off the process, we add 184,000 tasks to the queue: one
task for each image that we need to process. The task
description has two parts: a prefix that contains a unique ID
recognized by the tiling task handler and a URI of the image.
For the purposes of our tests, all images were stored on a
central server that exposed the storage device via NFS to each
worker node. When a worker node receives the task, it reads in

608

the image, generates the tiles, and writes them back to the
central file system.

Harmonic demonstrates that Polyphony can be easily extended
to do parallel operations on images. We are currently working
on a very similar application that analyzes each image with
machine vision algorithms to recognize salient features in
images. While we have numerous features and algorithms that
we want to execute on our image collection, plugging in the
capability into Polyphony is straightforward and streamlines
the processing of each image.

3A. QUEUE AS A SERVICE
AWS SQS provides a very natural interface to interact with
the queue. We were able to integrate Polyphony with SQS as a
queue fairly easily, and we were fairly pleased with the
performance and robustness it provides. To streamline the
operation, SQS provides the ability for a client to request up to
ten tasks from a single request. This facilitates a Polyphony
client running with a thread pool to handle multiple requests
simultaneously.

A few key features are lacking in SQS that we may see in the
near future, if not in SQS, then in other competing queues.
The biggest missing feature is the lack of bulk PUTs. In our
application, we had to make 184,000 individual PUTs even
though we knew the tasks a priori. Meanwhile, we find the
artificial limit of ten tasks in the bulk GETs are an
inconvenience. Similarly, bulk DELETEs would be nice to
coalesce the delete requests on a client. The lack of these bulk
features is not a showstopper. Appropriate ways of dealing
with this is to create larger tasks. For instance, in our case,
instead of making a task to handle each image, we could make
a task to handle a set of arbitrary number of images.

SQS is designed to have virtually infinite scalability. It
supports a large number of clients and can handle any number
of messages without a hiccup. However, for small queues like
the ones Polyphony has handled so far, we must pose the
following question: does the queue really need to be
distributed? Aside from the fault tolerance and high
availability, a distributed queue offers little more to most
applications. A single server, with persistence storage, can
easily handle thousands of Polyphony clients, without
suffering other side effects of a distributed queue. For
instance, SQS’ eventual consistency prevents clients from
getting accurate estimates of how many messages are in the
queue.

When working with a queue, it is tough to assign a task to the
client that may be optimally suited to handle the task. The lack
of this capability makes it hard to enjoy the move-
computation-to-data paradigm offered by Hadoop. A client
may have all the data cached required to do the computation or
it may be able to receive this data from a neighboring node on
the same rack or even the same data center. However, the
queuing paradigm effectively trades this functionality for the
added simplicity offered by a queue.

3B. INFRASTRUCTURE AS A SERVICE – EC2
Polyphony leverages EC2 resources extensively to improve
throughput. We start with a central storage server that exposes
EBS based storage to all other Polyphony worker nodes via
NFS. After configuring this server and setting up the storage
that needs to be exposed, we create a snapshot of this node as
an AMI (Amazon Machine Image). The snapshot works as a
backup in case something goes wrong with the instance.
Nonetheless, we employ instances that are booted with EBS,
which allows us to stop the instance when it is not in use to
save money and restart the machine when we are ready for
computation.

The AMIs are a great tool for creating a snapshot and
launching more instances of the snapshot as needed. This
came in very handy for the Polyphony client nodes on EC2.
We configured an EC2 machine to mount the proper NFS
mounts from the NFS server and to start Polyphony java client
at boot-time. After testing this instance with several reboots,
we used the AWS Management Console to create an AMI of
the image; it takes 15 minutes to create the snapshot. After we
have the AMI, we can launch N instances of the AMI with two
clicks. When we launch 30 clients, each of the clients wakes
up, mounts the NFS storage, and starts asking SQS for tasks to
complete.

EC2 nodes are also available in the form of Spot instances.
Spot instances are a new feature by AWS that enables
customers to bid on the excess capacity in AWS’s data
centers. Spot prices vary based on the demand on the capacity
available. AWS customers set the maximum price they are
willing to pay for the compute power. At any point, if the spot
rate goes above the max price, the Spot instance is terminated
without notice. Spot prices are often at less than half of the
EC2 prices. In order to effectively utilize Spot instances as a

Figure 2. The Yellow Regions Indicate Generated Tiles in an
Image Pyramid at Different Resolutions [3].

609

worker node, one needs an architecture that is designed for
failure and is tolerant of an arbitrary number of node failures.
Fortunately, Polyphony works even if all the worker nodes fail
for extended durations and come back online at a later time.
Furthermore, it degrades gracefully in the face of partial
failures. Polyphony is well suited for Spot instances and can
deliver significant cost savings by leveraging computation at
lower prices.

3C. STORAGE AS A SERVICE – EBS, S3, AND NFS
Harmony currently utilizes a single central server, which can
potentially become an I/O bottleneck and prevents scalability
beyond a certain number of nodes. In this section, we discuss
the issues encountered with the bottleneck, how we
approached the issue.

Our central server initially exposed an EBS (Elastic Block
Storage) volume via NFS on a large EC2 instance. This
approach enabled us to tile our benchmark Cassini ISS image
set in 11 hours using 20 machines. While performing
something that originally took half a month in half a day was
nice, we wanted to explore simple optimizations that could
streamline our process. We quickly found out that with tens of
clients, the IOWait grew as we added more clients. We availed
three I/O based optimizations: moving to a larger instance,
employing RAID, and configuring NFS parameters on both
the server and client.

Moving from a large EC2 instance to a double extra-large
instance gave us a much higher throughput to the EBS
volume. In order to further improve the throughput on the
local disk, we employed 6 EBS volumes and configured them
as RAID 0 by using Linux mdadm utility. Lastly, we
optimized NFS to support the large number of Polyphony
clients that we intend to support. We changed the rsize and
wsize (the chunk size of data as exchanged by the client and
server) on the clients that mounted the file system. Since we
are using NFSv3 and we read the entire image at a time, we
experienced the highest performance with rsize and wsize to
be 32K. The default rsize is 4K, which requires lots of
individual exchanges that fail to fully leverage the available
bandwidth over TCP. On the server side, we increased the
number of NFS daemons to from 8 to 256. This enabled our
server to serve more simultaneous requests. We also increased
the memory limit available to the NFS queues on the server
side.

With these minor optimizations, we were able to finish
processing the same set of images in 5.5 hours instead of 11
hours. We expect this time to reduce as we add more
instances, but after a certain number, we will run into a
bottleneck with the I/O. We would like to accomplish the
same task within tens of minutes instead of hours. In order to
accomplish this goal, we would need to employ more
machines and a distributed file system.

In our tests, we tried using s3fs, a FUSE based file system that
exposes an S3 bucket as a mount on the local machine, but we
ran into several limitations. First of all, s3fs does not yet

support S3 buckets located in N. California region. Second,
s3fs is designed to read entire files at a time instead of only the
parts requested by a read operation. While s3fs would work
for tiling small images, it would not work for large images
where the responsibilities may be distributed by regions of the
image. A block-based FUSE system built on top of S3 would
be more suitable for these applications. From S3’s perspective,
this can be supported through partial GETs. In the near future,
we hope to employ a distributed file system like S3 or HDFS
to enable us to add an infinite number of Polyphony clients.

4. RESULTS

To test the scalability of Polyphony, we tested it on various
AWS EC2 nodes. We first started testing the bandwidth
throughput of each type of instance in our environment. As
expected, the throughput for a single transfer correlated with
the instance price: larger instances had better network
performance for single transfers. However, this difference, for
single transfers, was not as drastic as we expected. Small
instances were able to get roughly 30MB/sec of throughput to
our NFS server, while the 2XL instances, which cost an order
of magnitude more only experienced 50 MB/sec of throughput
for single transfers. That said, these results should be taken
with a grain of salt as they were acquired in a virtualized
environment with varying loads. Locally, we were able to
reliably obtain write speeds of nearly 500MB/seconds.

Figure 3. Write Speed over NFS

For the rest of the testing, we used the large instances for
consistency. We observed that, for the number of instances we
tested, there was not a significant degradation. Although the
improvement was not linear, we noticed that adding machines
helped us improve our throughput. It is important to note that
while the small instances may have better network throughput
for the price, they lack CPU capacity that the large instances
can provide.

0

15

30

45

60

Small Large XL 2XL

Write Speed to NFS Drive on 2XL Machine

610

Figure 4. Cassini VIMS Throughput / Instances

5. CONCLUSION
In this paper, we outline the underlying details of Polyphony:
a framework designed to handle a variety of parallel tasks for
NASA mission operations via distributed computations.
Polyphony is more than just an application built around SQS
because it provides a modular framework that makes it easy to
application developers to add task handlers. Furthermore, we
demonstrate that Polyphony can be used to effectively utilize
idle machines in our organization. This paper also provides an
analysis of the various components of Polyphony and outlines
various ideas to optimize the process by improve individual
components.

6. REFERENCES
[1] Michael Armbrust et al. Above the Clouds: A Berkeley View of Cloud

computing. Technical Report No. UCB/EECS-2009-28, University of
California at Berkley, USA, Feb. 10, 2009

[2] OSGi Alliance. (2010 February). The OSGi Architecture Available:
http://www.osgi.org/About/WhatIsOSGi

[3] Mark Powell, Thomas M. Crockett, Jason M. Fox, Joseph Joswig,

Jeffrey S. Norris, Khawaja Shams, Recaredo Jay Torres, “Delivering
Images for Mars Rover Science Planning,” IEEE Aerospace 2008.

[4] Eclipse Equinox (2010 February). Equinox. Available:

http://www.eclipse.org/equinox/

[5] AWS (2010 February). Amazon Web Services. Available:

http://aws.amazon.com

[6] AWS S3 (2010 February). Amazon Simple Storage Service. Available:

http://aws.amazon.com/s3

[7] AWS SQS (2010 February). Amazon Simple Queuing Service.

Available: http://aws.amazon.com/sqs/

7. ACKNOWLEDGEMENTS
 The research described in this (publication or paper) was carried out at

the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration.

0	
50	
100	
150	
200	
250	
300	
350	
400	

1	 2	 4	 8	 16	 32	 64	

Throughput	 	

611

