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Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars 
Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not 
thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a 
resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel 
computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the 
supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node 
failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built 
on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and 
Titan.  
 

Index Terms—Cloud Computing, Space Exploration, Distributed Computing, Cycle Stealing 
 

1. INTRODUCTION 
LOUD COMPUTING is a boon for various applications in 

industry and academia. It has unleashed a virtually limitless 
level of compute capacity that various research projects can 
leverage due to the affordable pricing. The NASA Jet 
Propulsion Laboratory (JPL) is NASA’s premier facility for 
robotics exploration of our solar system. JPL spacecraft have 
roamed throughout the solar system, visiting all of the planets 
in the process. JPL is the first NASA center to partner with 
commercial cloud computing vendors to investigate cloud 
computing in its role to revolutionize spacecraft operations.  
 
 The motivation for Polyphony is to provide a 
framework that helps to streamline the operations of Mars 
rovers by processing and delivering Mars images with 
remarkably low turn around times. Prior to the advent of cloud 
computing, our image processing pipeline for missions like  
MER was designed to rely on a single machine with lots of 
compute power. Although we have exploited the multiple 
cores available to us on our machine, we have been bound by 
the limitations of the machine, which has resulted in extended 
bottlenecks in the image-processing pipeline.  Although the 
machine has been remarkably reliable, we have run the risk of 
a single point of failure in the face of hardware or even OS 
level issues with our processing machine. Prior to cloud 
computing, adding another machine was untenable strictly 
from a cost perspective: it did not make sense to add one or 
five more machines when the current single machine sat idle 
for roughly 20 hours a day. On the other hand, cloud 
computing has enabled us to employ hundreds of machines for 
durations as small as an hour.  
 
While JPL is working with several cloud vendors on our IAAS 
needs, the bulk of this research was performed on 

Amazon.com’s Elastic Compute Cloud (EC2). EC2 allows us 
to programmatically request appropriate computing capacity 
based on the current demands.  With cloud computing, it is 
important to note “using 1000 EC2 machines for 1 hour costs 
the same as using 1 machine for 1000 hours” [1].  This is a 
crucial benefit to any application; expediency of 
computational result comes for free simply due to the 
elasticity available in the cloud. 

2. POLYPHONY 
Polyphony is composed of several components that work in 
harmony. First of all, there is a distributed queue that is used 
to publish tasks and distribute them to nodes that can perform 
them. Secondly, we must have at least one subscriber that 
polls the queue for tasks and performs them: we will refer to 
this subscriber as a worker node. Polyphony makes no 
assumption about the number of nodes working on the tasks. 
Furthermore, it does not have a central component that 
attempts to track any or all nodes. Moreover, there are no 
assumptions about physical characteristics of the worker 
nodes: they can be Linux servers, personal laptops, machines 
in the cloud, or even supercomputing resources. Lastly, each 
worker node has a software application that interacts with the 
queue. This application extensively utilizes Eclipse Equinox 
[4], a popular implementation of the OSGi [2] specification, 
for modularity. The OSGi specification enables software 
developers to componentize their applications. These 
components, also referred to as plugins, allow clear separation 
of concern, drastically reduce the complexity of the software, 
and foster easy reuse of code. In order to integrate an 
application into the Polyphony framework, a develop has to 
simply write one module and include it in the Polyphony 
distributions without having to know anything else about the 
underlying details of task allocation, scheduling, or distributed 
computational resources. This is discussed in more detail in 
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2C.  

2A. TASK ALLOCATION AND DISTRIBUTION 
 The distributed queue is a core component of 
Polyphony. In the initial implementation, we employ Simple 
Queuing Service (SQS) available as part of Amazon Web 
Services (AWS). However, since a dedicated module is tasked 
with handling all transactions with SQS, we can replace SQS 
with another queuing service very easily without impacting 
any other part of the software.  
 
 SQS is a distributed queue with some elegant concepts that 
facilitate resilient behavior. It provides a Restful interface to 
interact with the queue: tasks can be added via an HTTP PUT 
method, obtained via GET method, and deleted upon 
completion via the HTTP DELETE method.  SQS provides 
guaranteed-once delivery semantics: each task added to the 
queue is delivered to at least one node. Upon retrieving a task, 
the worker node sets the visibility of the message, with a 
timeout, so that it is invisible to other nodes while it is being 
performed. Upon completion of the task, the worker node 
deletes the task from the queue. If a worker node faces a 
failure that prevents it from completing a task, the task 
eventually becomes visible to and obtained by another worker 
node.  
 
Due to the distributed and eventually consistent nature of the 
queue, some of the tasks may be assigned to multiple nodes 
and be performed multiple times. While this may seem 
inefficient, it is a trade off that most applications are willing to 
make to gain better reliability with node failures and higher 
throughput. In practice, we have rarely observed a task 
executing multiple times. Nonetheless, this important 
characteristic forces the application designer to create 
idempotent tasks that do not have side effects if they are 
executed more than once. 

2B.  WORKER NODES 
 This section describes the worker nodes and the 
software architecture of the application that runs on them. As 
stated earlier, Polyphony makes no assumption about the 
worker nodes. 
 
 In the experiments that we have conducted thus far, the 
majority of the compute capacity comes from machines rented 
on the cloud. On the AWS cloud, we profiled our application 
with a variety of nodes from the small instances (1 core at 1 
GHz with 1.7GB of memory) to the quadruple extra large 
instances (8 cores with 2.5 GHz each and 68GB of memory). 
While the individual performance of a particular machine size 
depends on specific applications, we have observed that the 
larger instances not only offer higher CPU and RAM capacity, 
but they have provided significantly higher I/O throughput to 
the disk as well as the network. 
 
Any organization with desktop computers and servers has 
significant compute capacity that is unutilized or wasted when 
machines are idle. One of the goals of Polyphony is to 
leverage the spare cycles and perform tasks to assist the 

worker nodes in the cloud. We started with the assumption 
that these nodes and the results they provide can be trusted. 
On our Linux servers, we ran the Polyphony client with the 
Unix Nice command, with a priority of 10. This simple 
process allows Polyphony clients to steal spare cycles and 
enable workstations to contribute work at their own pace. 
Should a server become busy in the middle of the 
computation, the overall infrastructure will not be impacted as 
the computation will eventually time out and be assigned to a 
node that can finish it faster. However, in scenarios where the 
queue may have thousands or millions of tasks in it, 
contribution at any pace can be extremely valuable.  
 
We are integrating the supercomputer center nodes as 
Polyphony clients. While this may not be the most effective 
approach to scheduling jobs on a super computer, it will 
enable us to leverage excess capacity on the super computer: 
in production environment, we would control the number of 
jobs spawned dynamically based on how busy the super 
computing cluster is at a given time.  
 
Polyphony makes no assumption about the worker nodes, and 
our initial runs have served as a proof of concept that 
dedicated cloud machines and spare capacity on JPL 
computers. The JPL machines access the NFS server over the 
Internet. However, we judiciously utilize the security settings 
to allow network access only to other nodes in our security 
group and specific CIDRs (Classless Inter-Domain Routing) in 
the JPL space. 

 
Figure 1. Architecture of Polyphony 
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2C.  SOFTWARE ARCHITECTURE FOR POLYPHONY CLIENT 
 
 The Polyphony client is written entirely in Java, and 
it utilized the Eclipse Equinox, an implementation of the OSGi 
specification. Equinox and OSGi offer an unparalleled level of 
modularity by allowing developers to write modules, or plug-
ins that work in harmony in the context of an application. For 
instance, the Eclipse IDE (Integrated Development 
Environment) is built on top of this framework, which allows 
third-party developers to contribute plug-ins to enhance or add 
functionality to the IDE. Similarly, Ensemble Rest, a modular 
framework for developing Restful applications open sourced 
by OPS Lab, leverages Equinox to provide simple hooks that 
enable developers to deploy a Restlet with a few lines of code 
and XML configuration. Equinox allows plug-ins to be added 
even after an application has started and can incorporate a 
contribution without restarting the application. For example, 
Ensemble Rest allows developers to add or update a specific 
set of web applications without restarting the server and 
exposes the new or updated services immediately.  
 
At the heart of the Polyphony client is the Polyphony engine. 
Upon the start of the application, the engine solicits all 
available plug-ins for a distributed queue. In our original 
prototype, the queuing plug-in interacts with SQS. However, 
replacing SQS with a different distributed queue would be as 
simple as replacing a single JAR (Java archive) in our 
application. The Polyphony engine then acquires tasks in bulk 
from the queue and attempts to accomplish them. To make this 
application completely modular, the Polyphony engine makes 
no assumption about the tasks that it would be able to perform. 
Instead, it maintains a registry of task handlers that are 
available to it as an application from the included plug-ins. 
Each task handler is a Java class that implements the 
ITaskHandler interface with the following methods: 

• boolean handles(String task); 
• void handle(String task) throws Exceptions 

In order to add one or more task handlers to Polyphony, a 
developer can create a plug-in with implementations of 
ITaskHandler and register them via an XML configuration 
file. By simply adding this plug-in to the client, new 
capabilities are introduced without any need for redeployment 
or recompilation.    
 
After receiving a task, the Polyphony engine asks each class in 
the registry if it knows how to handle the task. Upon finding 
the first handler that can handle the job, the engine assigns the 
job to the handler. If the job is completed successfully, no 
exceptions would be thrown and the engine deletes the task 
from the queue. As part of the execution, a task may chose to 
add more tasks to the queue, or it may simply terminate 
successfully by not throwing an exception. If an exception is 
thrown, the engine simply moves on to the next task so that 
the failed task can be tried again. The exception could be due 
to a temporary failure, so it is important to retry the task. 
Nonetheless, we intend to add functionality that will remove a 
task from the queue after a predetermined, configurable 
number of failures. 
 

The Polyphony client is easy to extend, and it enables 
developers to write TaskHandlers without having any 
knowledge or assumptions about the distributed queuing 
system. With this framework, new TaskHandlers can be added 
to existing Polyphony applications or the underlying queue 
can be changed seamlessly without impacting any other part of 
the system.  

3. HARMONIC: PARALLELIZED IMAGE TILING FOR 
PLANETARY IMAGES 

 
 Embarrassingly parallel problems are the norm in 
almost any satellite or panoramic image processing 
application. When a particular operation needs to be applied to 
every single image in a large collection, it is easy to perform 
the tasks in parallel across a large number of machines. 
Similarly, if there is an operation that needs to be applied to an 
extremely large image, it is often natural to recursively divide 
the image into smaller regions and perform the task on each 
region on a different machine.  
 
When dealing with large images, it is typical for an image to 
have more resolution than what is available at the screen of 
our end users. Since our operations software runs around the 
world with laptops with wireless connectivity, it is wasteful to 
transfer an entire image when the user is only viewing a small 
part of it or has zoomed out to view the image at a much lower 
resolution. To make this process more efficient, we tile our 
images are different resolutions so that we can deliver only 
what the end user has on the screen. This allows us to 
effectively utilize the bandwidth and improve the user-
experience by delivering the images faster.  
 
Harmonic is an application built on top of the Polyphony 
framework to streamline the production of tiles by employing 
a large number of machines. For our initial run of Harmonic, 
our goal was to tile and scale 184,000 images from the Cassini 
spacecraft as quickly as possible. When running the tiling 
software on production machine in serial, it took more than 
two weeks for the job to finish. For this application, we only 
processed one image at a time to avoid overwhelming the 
server.  On the other hand, when employing cloud machines, 
our goal is to utilize every cycle that is available to us. The 
Polyphony client on the cloud employs thread pools to ensure 
efficient utilization of all our resources, especially in the face 
of I/O intensive tasks.  
 
Harmonic was originally designed to run on a single machine, 
and we modified it to work in a distributed environment. 
However, due to the embarrassingly parallel nature of the 
problem, it was very easy to integrate it with Polyphony. To 
kick off the process, we add 184,000 tasks to the queue: one 
task for each image that we need to process. The task 
description has two parts: a prefix that contains a unique ID 
recognized by the tiling task handler and a URI of the image. 
For the purposes of our tests, all images were stored on a 
central server that exposed the storage device via NFS to each 
worker node. When a worker node receives the task, it reads in 
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the image, generates the tiles, and writes them back to the 
central file system.  
 
Harmonic demonstrates that Polyphony can be easily extended 
to do parallel operations on images. We are currently working 
on a very similar application that analyzes each image with 
machine vision algorithms to recognize salient features in 
images. While we have numerous features and algorithms that 
we want to execute on our image collection, plugging in the 
capability into Polyphony is straightforward and streamlines 
the processing of each image.  

3A.  QUEUE AS A SERVICE 
AWS SQS provides a very natural interface to interact with 
the queue. We were able to integrate Polyphony with SQS as a 
queue fairly easily, and we were fairly pleased with the 
performance and robustness it provides. To streamline the 
operation, SQS provides the ability for a client to request up to 
ten tasks from a single request. This facilitates a Polyphony 
client running with a thread pool to handle multiple requests 
simultaneously.  
 
A few key features are lacking in SQS that we may see in the 
near future, if not in SQS, then in other competing queues. 
The biggest missing feature is the lack of bulk PUTs. In our 
application, we had to make 184,000 individual PUTs even 
though we knew the tasks a priori. Meanwhile, we find the 
artificial limit of ten tasks in the bulk GETs are an 
inconvenience. Similarly, bulk DELETEs would be nice to 
coalesce the delete requests on a client. The lack of these bulk 
features is not a showstopper. Appropriate ways of dealing 
with this is to create larger tasks. For instance, in our case, 
instead of making a task to handle each image, we could make 
a task to handle a set of arbitrary number of images.  
 

SQS is designed to have virtually infinite scalability. It 
supports a large number of clients and can handle any number 
of messages without a hiccup. However, for small queues like 
the ones Polyphony has handled so far, we must pose the 
following question: does the queue really need to be 
distributed? Aside from the fault tolerance and high 
availability, a distributed queue offers little more to most 
applications. A single server, with persistence storage, can 
easily handle thousands of Polyphony clients, without 
suffering other side effects of a distributed queue. For 
instance, SQS’ eventual consistency prevents clients from 
getting accurate estimates of how many messages are in the 
queue.  
 
When working with a queue, it is tough to assign a task to the 
client that may be optimally suited to handle the task. The lack 
of this capability makes it hard to enjoy the move-
computation-to-data paradigm offered by Hadoop.  A client 
may have all the data cached required to do the computation or 
it may be able to receive this data from a neighboring node on 
the same rack or even the same data center. However, the 
queuing paradigm effectively trades this functionality for the 
added simplicity offered by a queue.  

3B.  INFRASTRUCTURE AS A SERVICE – EC2 
Polyphony leverages EC2 resources extensively to improve 
throughput. We start with a central storage server that exposes 
EBS based storage to all other Polyphony worker nodes via 
NFS. After configuring this server and setting up the storage 
that needs to be exposed, we create a snapshot of this node as 
an AMI (Amazon Machine Image). The snapshot works as a 
backup in case something goes wrong with the instance. 
Nonetheless, we employ instances that are booted with EBS, 
which allows us to stop the instance when it is not in use to 
save money and restart the machine when we are ready for 
computation.  
 
The AMIs are a great tool for creating a snapshot and 
launching more instances of the snapshot as needed. This 
came in very handy for the Polyphony client nodes on EC2. 
We configured an EC2 machine to mount the proper NFS 
mounts from the NFS server and to start Polyphony java client 
at boot-time. After testing this instance with several reboots, 
we used the AWS Management Console to create an AMI of 
the image; it takes 15 minutes to create the snapshot. After we 
have the AMI, we can launch N instances of the AMI with two 
clicks. When we launch 30 clients, each of the clients wakes 
up, mounts the NFS storage, and starts asking SQS for tasks to 
complete.  
 
EC2 nodes are also available in the form of Spot instances. 
Spot instances are a new feature by AWS that enables 
customers to bid on the excess capacity in AWS’s data 
centers. Spot prices vary based on the demand on the capacity 
available. AWS customers set the maximum price they are 
willing to pay for the compute power. At any point, if the spot 
rate goes above the max price, the Spot instance is terminated 
without notice. Spot prices are often at less than half of the 
EC2 prices. In order to effectively utilize Spot instances as a 

Figure 2. The Yellow Regions Indicate Generated Tiles in an 
Image Pyramid at Different Resolutions [3]. 
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worker node, one needs an architecture that is designed for 
failure and is tolerant of an arbitrary number of node failures.  
Fortunately, Polyphony works even if all the worker nodes fail 
for extended durations and come back online at a later time. 
Furthermore, it degrades gracefully in the face of partial 
failures. Polyphony is well suited for Spot instances and can 
deliver significant cost savings by leveraging computation at 
lower prices.  

3C.  STORAGE AS A SERVICE – EBS, S3, AND NFS 
Harmony currently utilizes a single central server, which can 
potentially become an I/O bottleneck and prevents scalability 
beyond a certain number of nodes. In this section, we discuss 
the issues encountered with the bottleneck, how we 
approached the issue.  
 
Our central server initially exposed an EBS (Elastic Block 
Storage) volume via NFS on a large EC2 instance. This 
approach enabled us to tile our benchmark Cassini ISS image 
set in 11 hours using 20 machines. While performing 
something that originally took half a month in half a day was 
nice, we wanted to explore simple optimizations that could 
streamline our process. We quickly found out that with tens of 
clients, the IOWait grew as we added more clients. We availed 
three I/O based optimizations: moving to a larger instance, 
employing RAID, and configuring NFS parameters on both 
the server and client. 
 
Moving from a large EC2 instance to a double extra-large 
instance gave us a much higher throughput to the EBS 
volume. In order to further improve the throughput on the 
local disk, we employed 6 EBS volumes and configured them 
as RAID 0 by using Linux mdadm utility. Lastly, we 
optimized NFS to support the large number of Polyphony 
clients that we intend to support. We changed the rsize and 
wsize (the chunk size of data as exchanged by the client and 
server) on the clients that mounted the file system. Since we 
are using NFSv3 and we read the entire image at a time, we 
experienced the highest performance with rsize and wsize to 
be 32K.  The default rsize is 4K, which requires lots of 
individual exchanges that fail to fully leverage the available 
bandwidth over TCP.  On the server side, we increased the 
number of NFS daemons to from 8 to 256. This enabled our 
server to serve more simultaneous requests. We also increased 
the memory limit available to the NFS queues on the server 
side.  
 
With these minor optimizations, we were able to finish 
processing the same set of images in 5.5 hours instead of 11 
hours. We expect this time to reduce as we add more 
instances, but after a certain number, we will run into a 
bottleneck with the I/O. We would like to accomplish the 
same task within tens of minutes instead of hours. In order to 
accomplish this goal, we would need to employ more 
machines and a distributed file system.  
 
In our tests, we tried using s3fs, a FUSE based file system that 
exposes an S3 bucket as a mount on the local machine, but we 
ran into several limitations. First of all, s3fs does not yet 

support S3 buckets located in N. California region. Second, 
s3fs is designed to read entire files at a time instead of only the 
parts requested by a read operation. While s3fs would work 
for tiling small images, it would not work for large images 
where the responsibilities may be distributed by regions of the 
image. A block-based FUSE system built on top of S3 would 
be more suitable for these applications. From S3’s perspective, 
this can be supported through partial GETs.  In the near future, 
we hope to employ a distributed file system like S3 or HDFS 
to enable us to add an infinite number of Polyphony clients.  

4. RESULTS   

 
To test the scalability of Polyphony, we tested it on various 
AWS EC2 nodes. We first started testing the bandwidth 
throughput of each type of instance in our environment. As 
expected, the throughput for a single transfer correlated with 
the instance price: larger instances had better network 
performance for single transfers. However, this difference, for 
single transfers, was not as drastic as we expected. Small 
instances were able to get roughly 30MB/sec of throughput to 
our NFS server, while the 2XL instances, which cost an order 
of magnitude more only experienced 50 MB/sec of throughput 
for single transfers. That said, these results should be taken 
with a grain of salt as they were acquired in a virtualized 
environment with varying loads. Locally, we were able to 
reliably obtain write speeds of nearly 500MB/seconds.  
 

 
Figure 3. Write Speed over NFS 
 
For the rest of the testing, we used the large instances for 
consistency. We observed that, for the number of instances we 
tested, there was not a significant degradation. Although the 
improvement was not linear, we noticed that adding machines 
helped us improve our throughput. It is important to note that 
while the small instances may have better network throughput 
for the price, they lack CPU capacity that the large instances 
can provide.  
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Figure 4. Cassini VIMS Throughput / Instances 
 

5. CONCLUSION  
In this paper, we outline the underlying details of Polyphony: 
a framework designed to handle a variety of parallel tasks for 
NASA mission operations via distributed computations. 
Polyphony is more than just an application built around SQS 
because it provides a modular framework that makes it easy to 
application developers to add task handlers. Furthermore, we 
demonstrate that Polyphony can be used to effectively utilize 
idle machines in our organization. This paper also provides an 
analysis of the various components of Polyphony and outlines 
various ideas to optimize the process by improve individual 
components.   
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