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Abstract—Higher-order network modeling and analysis is vital
to understand the structures governing the configuration and
behavior of complex networks. While network motifs are known
to be fundamental building blocks of complex networks, the
higher-order configuration and organization of complex networks
remains widely unknown. In this work, we develop interactive
visual higher-order network mining and modeling techniques to
gain insight into the higher-order structure and composition of
complex networks. The approach uncovers higher-order con-
figurations including important phenotypes in a human gene
interaction network and hubs in a power grid network.

Index Terms—Graph mining, higher-order network analysis,
network motifs, graphlets, interactive visual graph mining

I. INTRODUCTION

Complex networks (graphs) arise ubiquitously in the nat-
ural world where entities (nodes) and their interactions
(edges) are observed, e.g., between humans [2], proteins [3],
chemical compounds [4], neurons [5], [6], routers [7], web
pages [8], devices & sensors [9], infrastructure (roads, airports,
power stations) [1], economies [10], vehicles (cars, satelites,
UAVs) [11], and information in general [12], [13]. Graphs
(networks) also arise in a more unnatural and heuristic fashion
by deriving a metric space between entities and retaining only
the node pairs that are significantly “similar” [14].

Higher-order connectivity patterns are crucial to understand
the structures governing the configuration and behavior of
complex networks [15], [16]. The most common higher-
order structures are small induced subgraphs referred to as
network motifs (graphlets). More formally, a network motif
(graphlet) Ht = (Vk, Ek) is an induced subgraph consisting
of a subset Vk ⊂ V of k vertices from G = (V,E)
together with all edges whose endpoints are both in this subset
Ek = {∀e ∈ E | e = (u, v) ∧ u, v ∈ Vk}. Network motifs
are building blocks of complex networks with applications
in network alignment [17], classification [18], [19], dynamic
network analysis [20], and link prediction [21]. The goal of
higher-order network analysis is to gain new insights into the
higher-order organization of complex networks.

In this work, we present a fast, flexible, and completely
interactive visual network analytics platform that facilitates
higher-order network modeling and analysis by allowing users
to quickly uncover important higher-order structures as well
as obtain insights into the higher-order organization of the
network in real-time. To the best of our knowledge, this work
is the first to define and investigate the problem of interactive
visual higher-order network analysis that combines visual
representations and interaction techniques with state-of-the-art

higher-order network analysis, modeling, and transformation
methods. The goal of interactive higher-order network analysis
is to enable users to quickly uncover important higher-order
structures in networks to facilitate rapid situation assessment,
planning, and decision making in real-time with minimum
effort. Therefore, the platform is designed to be fast, easy-
to-use, and intuitive allowing users to reveal the structure
and higher-order organization of network data via intuitive
visual representations and easy-to-use interaction techniques to
explore higher-order network patterns in a free-flowing fashion
in real-time (Figure 1).

This work enables users to interactively explore the higher-
order structures and organization of networks in real-time by
combining novel higher-order network modeling and analysis
techniques with interactive visualizations. Previous work in
interactive network visualization have used only rudimen-
tary structural properties such as degree distribution and the
ilk [22]–[27] and have not considered more advanced struc-
tural properties such as graphlet counts and other features
derived from them.

II. APPROACH

The emergence and utility of graphlets (network motifs,
induced subgraphs) in a variety of applications has given
rise to many exact algorithms [19], [28]–[31] and estimation
methods [32]–[36]. To derive the subgraph frequencies, we use
fast parallel exact algorithms [15] or recent provably accurate
estimation methods [32], [33]. The user has the ability to
specify between either exact or estimation methods and if
estimation is chosen the user can specify an error tolerance to
ensure all estimates are within a guaranteed level of accuracy.

An overview of the platform is provided in Figure 1. We
designed the interactive higher-order network modeling and
analysis platform to be consistent with the way humans learn
via immediate-feedback upon every user interaction [37]–[39].
For example, suppose the user begins lasso-selecting the nodes
of interest by directly interacting with the node-link diagram,
we immediately update all statistics, properties, models, and
visual representations that require updating in real-time. Users
have rapid, incremental, and reversible control over all visual
graph queries with immediate and continuous visual feedback
by strongly following the rules of direct manipulation [40] and
dynamic (visual) querying [37], [41]. The web-based platform
enables users to move from raw data to insights within
seconds by simply dropping a graph file into the visualization
window [39]. Despite the obvious advantages of a web-based
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Fig. 1. Interactive higher-order network analysis of the US Power Grid network [1] consisting of substations (nodes) connected by high-voltage transmission
lines (links). The main visualization window (a)-(h) includes (a) an interactive node-link diagram; (b) global higher-order network statistics of the entire
graph and (c) the selected subgraph(s); (d) a legend summarizing the network motifs used to map the color, size, and opacity of nodes and edges; (e)
an interactive interface for customizing and tuning interactive filters, visual properties of nodes and edges, etc; (f)-(g) interactive visual graph queries by
lasso-selecting/brushing over a subgraph of interest by directly interacting with the node-link diagram; and (h) local higher-order network properties of a
selected edge (or node). On the right of the main visualization window is (i) a linked interactive pairwise feature correlation matrix for the current set of
higher-order features and (j) an interactive correlation matrix for the selected subgraph(s); (k) a two-dimensional higher-order embedding of the nodes; and
(l) an interactive scatter plot matrix for exploring the local higher-order edge statistics; (m) interactive data table for local higher-order edge statistics and (n)
global higher-order edge statistics (node data tables were removed for brevity); and (o) a cumulative distribution function (CDF) for a user-specified motif.

platform (e.g., it can be used directly in seconds, requires no
installation, updates, etc.), previous work has mostly focused
on offline platforms that must be downloaded and installed
before using it [22], [24], [26].

The user can easily explore a variety of network motifs
to gain insight into the higher-order organization by simply
mapping the color, size, and opacity of nodes and edges to
different network motifs and higher-order features derived
by the user (Figure 1). Further, the user can generate new
higher-order features from the current set using a variety of
transformation functions, relational aggregations, and scaling
functions. The higher-order features can also be used in
interactive visual relational learning techniques for predictive
modeling tasks such as node and link classification and
prediction. To understand the relationships among the nodes
(and edges), we embed the nodes into a K-dimensional
space using network motifs [42] and then project back to
two dimensional space for visualization; see Figure 1(k). All
visualizations are interactive and support direct manipulation,
brushing, linking, zooming, panning, tooltips, among oth-
ers [43], [44]. To analyze the higher-order connectivity of
nodes, links, and subgraphs (e.g., 4-clique motifs), one can
simply select the ones of interest directly in the visualization
window. Subgraphs may be directly selected by brushing over
interesting regions of the network visually in the node-link
diagram shown in Figure 1(a), scatter plot matrices shown in
Figure 1(m), or one of the other interactive visual representa-
tions shown in Figure 1. Multiple selections from different
regions of the graph are also supported and linked across
the different interactive visual representations. Selected nodes,

links, and subgraphs may be removed, induced, or even moved
by easily dragging them to the desired location. All global
and local higher-order network properties are automatically
updated in an efficient manner after each graph manipulation.
Visualizations can be exported easily as high-quality images as
well as (generated/transformed/filtered) graph data, attributes,
learned models, among others. Visualizations can be exported
easily as high-quality images as well as (generated/trans-
formed/filtered) graph data, attributes, learned models, new
features from various transformations, among other useful data
derived through the visual analytic process. Graph file(s) can
be quickly visualized and interactively explored in seconds by
simply dropping them in the visualization window. A wide
variety of graph formats are also supported including edge
lists, adjacency lists, XML-based formats (gexf, graphml), and
others (gml, json, net/pajek, mtx).

Interactive Motif-based Graph Exploration: Weighted mo-
tif graphs can often be used to uncover the important higher-
order structures in a network. Given a network G = (V,E)
with N = |V | nodes, M = |E| edges, and a set H =
{H1, . . . ,HT } of T network motifs, we define W as a
motif tensor where Wijt = number of instances of motif
(induced subgraph) Ht ∈ H that contain (i, j) ∈ E and
Wijt = 0 if (i, j) 6∈ E or if the motif Ht ∈ H does not co-
occur between nodes i and j. For convenience, let Wt denote
the sparse weighted motif adjacency matrix for motif Ht ∈ H.
To generalize the above weighted motif graph formulation, we
replace the edge constraint that ensures an edge exists between
i and j if the number of instances of motif Ht ∈ H that contain
nodes i and j is 1 or larger, with a constraint that requires each
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Fig. 2. Interactive higher-order network analysis using the weighted
motif graphs of interest (web-google). Rich higher-order network structures
are revealed immediately to the user in real-time upon selection of the motif
graph of interest. Observe that as λ grows large, the number of disconnected
components generally increases. Size (weight) of nodes and edges in the 4-
clique
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motif graphs correspond to the frequency of 4-node
cliques and 4-node paths, respectively.

edge to have at least λ motifs. Given an arbitrary weighted
motif graph W, we define W(λ) for λ > 0 as:

W
(λ)
ij =

{
Wij if Wij ≥ λ
0 otherwise

(1)

More generally, the user can define a constraint visually (i.e.,
via a slider) as a type of range-based selection query that
consists of two parameters including λ and ∆. One example
of such a query is as follows: select all edges (i, j) ∈ E such
that λt ≤ Wijt ≤ ∆t for an arbitrary weighted motif graph
Wt. Such (λ,∆)-weighted motif graphs are essentially the
weighted motif graph resulting from a user-defined constraint
encoded as a range-based selection query. The platform also
allows the user to construct and visually explore new weighted
graphs using one or more weighted motif graphs. For instance,
ES = {(i, j) ∈ E | (Wij1 ≥ λ1∧Wij1 ≤ ∆1)∧· · ·∧ (Wijt ≥
λt ∧ Wijt ≤ ∆t)} where ES is all the edges that satisfy
the conjunctive motif-based query. However, we can also
construct motif-based graphs using existential quantification
that requires at least one of the user-defined constraints to be
satisfied.

The above formulation allows the user to interactively
explore new graphs that arise using the higher-order motif-
based structures as a basis. The user can easily explore this
space by adjusting a few simple sliders that control λt and
∆t for each network motif of interest. As we have shown
above, multiple interactive motif-based graph filters can also
be visually configured by the user (e.g., by adjusting a slider
for each motif of interest). The visual representations are

updated immediately upon any change of the slider by the
user. This makes it easy and intuitive for the user to visually
explore and understand the impact of the user-defined motif-
based range queries.

Motif graphs can be used to reveal the important higher-
order structures (Figure 5). The motif graphs also facilitate
navigation and exploration of large graphs. Visualizing large
graphs using node-link diagrams suffer from visual clutter
and computational issues that prohibit real-time visual graph
mining and exploration. Many techniques have been proposed
to navigate and explore large graphs using other types of
visual representations [45]–[47]. Most of these approaches rely
on other visual representations of the graph data such as a
table of node attribute information, scatter plots, and cluster-
ing. However, motif graphs typically have a lot less nodes
and edges (depending on the user-defined λ’s for the motif
graph) and often gives rise to many interesting disconnected
components that can be interactively explored (Figure 2). The
interactive higher-order network analysis platform also pro-
vides techniques for interactive motif-based semi-supervised
learning (SSL) [48]. These techniques can be used to explore
the utility of motifs and higher-order features derived by the
user for node and link classification.

III. RESULTS

The platform enables users to identify higher-order orga-
nization of complex networks in a completely visual and
interactive fashion in real-time. Important hubs in the US
power grid are identified by the approach (Figure 1). These

Fig. 3. Higher-order analysis of a human gene disease interaction
network [49]. The interactive higher-order network analysis platform reveals
the important phenotypes associated with diseases such as Leukemia, color
cancer, and deafness (ordered by size). These phenotypes correspond to hubs
(large stars) that connect to a number of distinct disorders which is consistent
with [49].



appear as extrema when 4-node star motifs are used to capture
hub-like structures in the US power grid. Results on a network
of routers demonstrate how it reveals highly robust and fault
tolerant systems of routers in the network topology (Figure 4).
Other network motifs reveal potential congestion points and
vulnerabilities in the router-level topology. The higher-order
organizational structures identified from the approach can
facilitate the design, planning, and vulnerability assessment
of an organizations router-level topology. The topology of
a network (connectivity of autonomous systems (ASes) or
routers) has significant implications on the design of protocols
and applications, and on the placement of services and data
centers. Other applications of the interactive higher-order net-
work analysis approach shown on the right in Figure 1 include
detecting key transportation hubs in the international E-road
network (Figure 6), identifying fundamental phenotypes in
a human gene disease network, and finding important brain
regions in the C. elegans neuronal network (Figure 7).

Fig. 4. Higher-order analysis of a network of routers [50]. The approach
reveals highly robust and fault tolerant systems of routers. Routers & links
are colored/weighted by 4-cliques.

Using the human gene disease network, we immediately
uncover the important phenotypes such as leukemia, color
cancer, and deafness (Figure 3). These phenotypes correspond
to hubs (large stars) that connect to a number of distinct
disorders which is consistent with [49].

In Figure 5, the four-star
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-graph immediately reveals the
important higher-order structures. Using interactive filters, the
user can explore combinations of the various motif graphs
in real-time by adding any arbitrary combination of motif
constraints, e.g., show only the edges that are contained within
at least one 4-star and 4-path. Hence, given a subgraph pattern
of interest, the approach provides techniques for the user to
interactively visualize and explore the space of potential motif
graphs in real-time. In Figure 5, the researchers at the center
of the three largest stars are Barabási, Newman, and Jeong
(ordered by the size of the star). These researchers are hub-
like in the sense that they connect many researchers whom
would otherwise be disconnected. Obviously, removing these
researchers would fracture the network into many disconnected
components.

Fig. 3 and Fig. 5 demonstrate how the user can easily
uncover the important higher-order structures and organization
of the network by encoding the color and weight of nodes and
links in the network using the counts of a few network motifs.
In this way, we can leverage motifs to find and rank large stars,
cliques, and other complex higher-order structures that are of
fundamental importance in many types of networks [32].

Interactive higher-order graph mining also allows the user
to quickly detect anomalies of interest in the graph. In Fig-
ure 2(b), we immediately obtain the large cliques in a web
graph by deriving in real-time the λ-weighted 4-clique motif
graph where λ is the cutoff such that if Wijt is less than λ than
it is removed. The edge set Et for motif Ht ∈ H parameterized
by λ is defined as Et = {(i, j) ∈ E | Wijt ≥ λ} where
λ = 1 in Figure 2(b)- 2(c). These large cliques observed
in Figure 2(b) may pertain to link farms and collusion in
the web hyperlink graph [52]. The large cliques are made
up of many smaller 4-cliques (Figure 2(b)). In the platform,
the user can explore the space of weighted motif graphs by
simply using an interactive edge filter with the specific motif
of interest. In Figure 2(b), this corresponds to simply using an
interactive 4-clique filter to remove any edge with Wij < λ
where Wij = # of 4-cliques that contain (i, j) ∈ E. Using
this interactive edge filter, the user can quickly understand the
impact of different λ’s by simply adjusting a slider in real-
time. This allows the user to explore in real-time the space
of weighted motif graphs that arise from different choices
of λ. Furthermore, this interactive exploration helps uncover
the higher-order network organization and provides important
insights into the motifs that are important for the particular

Fig. 5. Interactively uncovering the higher-order network organization
of a co-authorship graph (ca-netscience) [2]. Nodes and links are colored
and weighted by 4-stars. Important higher-order structures such as large stars
and cliques can be uncovered in real-time and explored interactively by the
user. Strikingly, the motif graphs clearly reveal the important higher-order
structures. Large star subgraph patterns are immediately detected in the above
figure and ranked from the largest star (blue) to smallest (red).



(a) Transportation Network Hubs (b) Higher-Order Percolation

Fig. 6. Higher-order network analysis of a European transportation
network [51]. Using the 4-node star motif the higher-order network analysis
techniques reveal essential hubs in the European international road network.
The impact on the network structure when these large hubs are removed
is shown on the right. Using the higher-order structures identified by our
approach in such investigations are important and useful for planning, simu-
lations, and other important decision-making tasks.

network of interest. Although the original graph is connected
(Figure 2(a)), the weighted motif graphs in Figure 2(b)-2(c)
are shattered into many connected components that represent
the largest cliques and stars in the network, respectively.

Fig. 7. Higher-order network analysis of c. elegans neural activity.
Observe that the weighted 4-star motif graph immediately reveals the large
stars in the graph as they are composed of many smaller 4-star motifs. In
the above visualization, the links and nodes are colored and sized by the
frequency of 4-star motifs.

Interactive higher-order network analysis is also useful for
percolation studies [53]. By removing the largest hubs, the
road network shatters into many disconnected components
(Figure 6(b)). Depending on the structure of the network
and the underlying process that governs the formation of
the network, different motifs will be important for different
graphs. Thus, interactive higher-order network analysis allows
us to quickly understand the important motifs behind the
structure of the network of interest as well as gain insights
into the underlying process that governs the formation of
the network that ultimately determines the motifs deemed
important.

IV. CONCLUSION

We formulated interactive higher-order network analysis and
introduced a visual network analytics platform for uncover-
ing the higher-order configuration of complex networks. The
platform allows the user to gain new insights into the higher-
order configuration and organization of the network. Results
indicate that complex networks contain non-trivial higher-
order structural configurations that are quickly uncovered
by the interactive visual analytic platform for higher-order
network analysis. A video demo is also provided at:

https://youtu.be/VE-GsP4p9n8
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