
Higher-Order Clustering for Heterogeneous Networks
via Typed Motifs

Aldo G. Carranza

Stanford University

Ryan A. Rossi

Adobe Research

Anup Rao

Adobe Research

Eunyee Koh

Adobe Research

ABSTRACT

Higher-order connectivity patterns such as small induced sub-

graphs called graphlets (network motifs) are vital to understand the

important components (modules/functional units) governing the

configuration and behavior of complex networks. Existing work in

higher-order clustering has focused on simple homogeneous graphs
with a single node/edge type. However, heterogeneous graphs con-

sisting of nodes and edges of different types are seemingly ubiq-

uitous in the real-world. In this work, we introduce the notion of

typed-graphlet that explicitly captures the rich (typed) connectivity

patterns in heterogeneous networks. Using typed-graphlets as a

basis, we develop a general principled framework for higher-order

clustering in heterogeneous networks. The framework provides

mathematical guarantees on the optimality of the higher-order

clustering obtained. The experiments demonstrate the effectiveness

of the framework quantitatively for three important applications

including (i) clustering, (ii) link prediction, and (iii) graph com-

pression. In particular, the approach achieves a mean improvement

of 43x over all methods and graphs for clustering while achiev-

ing a 18.7% and 20.8% improvement for link prediction and graph

compression, respectively.

KEYWORDS

Clustering, higher-order clustering, heterogeneous networks, typed

graphlets, network motifs, spectral clustering, node embedding,

graph mining

1 INTRODUCTION

Clustering in graphs has been one of the most fundamental tools

for analyzing and understanding the components of complex net-

works. It has been used extensively in many important applications

to distributed systems [40, 81, 86], compression [19, 68], image

segmentation [30, 78], document and word clustering [28], among

others. Most clustering methods focus on simple flat/homogeneous
graphs where nodes and edges represent a single entity and relation-

ship type, respectively. However, heterogeneous graphs consisting

of nodes and edges of different types are seemingly ubiquitous in

the real-world. In fact, most real-world systems give rise to rich

heterogeneous networks that consist of multiple types of diversely

interdependent entities [77, 83]. This heterogeneity of real systems

is often due to the fact that, in applications, data usually contains se-

mantic information. For example in research publication networks,

nodes can represent authors, papers, or venues and edges can repre-

sent coauthorships, references, or journal/conference appearances.

Such heterogeneous graph data can be represented by an arbitrary

number of matrices and tensors that are coupled with respect to

one or more types as shown in Figure 1.

Clusters in heterogeneous graphs that contain multiple types of

nodes give rise to communities that are significantly more complex.

Joint analysis of multiple graphs may capture fine-grained clusters

that would not be captured by clustering each graph individually

as shown in [13, 69]. For instance, simultaneously clustering differ-

ent types of entities/nodes in the heterogeneous graph based on

multiple relations where each relation is represented as a matrix or

a tensor (Figure 1). It is due to this complexity and the importance

of explicitly modeling how those entity types mix to form com-

plex communities that make the problem of heterogeneous graph

clustering a lot more challenging. Moreover, the complexity, repre-

sentation, and modeling of the heterogeneous graph data itself also

makes this problem challenging (See Figure 1). Extensions of cluster-

ing methods for homogeneous graphs to heterogeneous graphs are

often nontrivial. Many methods require complex schemas and are

very specialized, allowing for two graphs with particular structure.

Furthermore, most clustering methods only consider first order

structures in graphs, i.e., edge connectivity information. However,

higher-order structures play a non-negligible role in the organiza-

tion of a network.

Higher-order connectivity patterns such as small induced sub-

graphs called graphlets (network motifs) are known to be the fun-

damental building blocks of simple homogeneous networks [54]

and are essential for modeling and understanding the fundamen-

tal components of these networks [3, 4, 14]. However, such (un-

typed) graphlets are unable to capture the rich (typed) connectivity

patterns in more complex networks such as those that are hetero-

geneous, labeled, signed, or attributed. In heterogeneous graphs

(Figure 1), nodes and edges can be of different types and explic-

itly modeling such types is crucial. In this work, we introduce the

notion of a typed-graphlet and use it to uncover the higher-order

organization of rich heterogeneous networks. The notion of a typed-

graphlet captures both the connectivity pattern of interest and the

types. We argue that typed-graphlets are the fundamental build-
ing blocks of heterogeneous networks. Note homogeneous, labeled,

signed, and attributed graphs are all special cases of heterogeneous

graphs as shown in Section 2.

In this paper, we propose a general framework for higher-order
clustering in heterogeneous graphs. The framework explicitly in-

corporates heterogeneous higher-order information by counting

1

Carranza, A.G. et al.

typed graphlets that explicitly capture node and edge types. Typed

graphlets generalize the notion of graphlets to rich heterogeneous

networks as they explicitly capture the higher-order typed con-

nectivity patterns in such networks. Using these as a basis, we

propose the notion of typed-graphlet conductance that generalizes
the traditional conductance to higher-order structures in hetero-

geneous graphs. The proposed approach reveals the higher-order

organization and composition of rich heterogeneous complex net-

works. Given a graph and a typed-graphlet of interest H , the frame-

work forms the weighted typed-graphlet adjacency matrixWGH

by counting the frequency that two nodes co-occur in an instance

of the typed-graphlet. Next, the typed-graphlet Laplacian matrix

is formed from WGH and the eigenvector corresponding to the

second smallest eigenvalue is computed. The components of the

eigenvector provide an ordering σ of the nodes that produce nested

sets Sk = {σ1,σ2, . . . ,σk } of increasing size k . We demonstrate the-

oretically that Sk with the minimum typed-graphlet conductance

is a near-optimal higher-order cluster.

The framework provides mathematical guarantees on the op-

timality of the higher-order clustering obtained. The theoretical

results extend to typed graphlets of arbitrary size and avoids re-

strictive special cases required in prior work. Specifically, we prove

a Cheeger-like inequality for typed-graphlet conductance. This gives
bounds OPT ≤ APPX ≤ C

√
OPT where OPT is the minimum

typed-graphlet conductance,APPX is the value given by Algorithm

1, and C is a constant—at least as small as

√
OPT which depends

on the number of edges in the chosen typed graphlet. Notably, the

bounds of the method depend directly on the number of edges of

the arbitrarily chosen typed graphlet (as opposed to the number of

nodes) and inversely on the quality of connectivity of occurrences

of the typed graphlet in a heterogeneous graph. This is notable as

the formulation for homogeneous graphs and untyped graphlets

proposed in [14] is in terms of nodes and requires different theory

for untyped-graphlets with a different amount of nodes (e.g., un-
typed graphlets with 3 nodes vs. 4 nodes and so on). In this work,

we argue that it is not the number of nodes in a graphlet that are

important, but the number of edges. This leads to a more powerful,

simpler, and general framework that can serve as a basis for analyz-

ing higher-order spectral methods. Furthermore, even in the case

of untyped graphlets and homogeneous graphs, the formulation

in this work leads to tighter bounds for certain untyped graphlets.

Consider a 4-node star and 3-node clique (triangle), both have 3

edges, and therefore would have the same bounds in our frame-

work even though the number of nodes differ. However, in [14],

the bounds for the 4-node star would be different (and larger) than

the 3-node clique. This makes the proposed formulation and cor-

responding bounds more general and in the above case provides

tighter bounds compared to [14].

The experiments demonstrate the effectiveness of the approach

quantitatively for three important tasks. First, we demonstrate the

approach for revealing high quality clusters across a wide variety of

graphs from different domains. In all cases, it outperforms a number

of state-of-the-art methods with an overall improvement of 43x over

all graphs andmethods. Second, we investigate the approach for link

prediction. In this task, we derive higher-order typed-graphlet node

embeddings (as opposed to clustering) and use these embeddings

us
er

tag category user

ite
m Y 𝓧

Z

Figure 1: Heterogeneous graph represented as a third-order

tensor and two matrices that all share at least one type. The

third-order tensorX can be coupled with the item by tagma-

trix Y and the social network (user by user) matrix Z.

to learn a predictive model. Compared to state-of-the-art methods,

the approach achieves an overall improvement in F1 and AUC of

18.7% and 14.4%, respectively. Finally, we also demonstrate the

effectiveness of the approach quantitatively for graph compression

where it is shown to achieve amean improvement of 20.8% across all

graphs and methods. Notably, these application tasks all leverage

different aspects of the proposed framework. For instance, link

prediction uses the higher-order node embeddings given by our

approachwhereas graph compression leverages the proposed typed-

graphlet spectral ordering (Definition 11).

The paper is organized as follows. Section 2 describes the gen-

eral framework for higher-order spectral clustering whereas Sec-

tion 3 proves a number of important results including mathematical

guarantees on the optimality of the higher-order clustering. Next,

Section 4 demonstrate the effectiveness of the approach quantita-

tively for a variety of important applications including clustering,

link prediction, and graph compression. Section 5 discusses and

summarizes related work. Finally, Section 6 concludes.

2 FRAMEWORK

In this work, we propose a general framework for higher-order

clustering in heterogeneous graphs. Table 1 lists all our notation.

2.1 Heterogeneous Graph Model

We represent a heterogeneous complex system using the following

heterogeneous graph model.

Definition 1 (Heterogeneous Graph). A heterogeneous graph
is an ordered tuple G = (V ,E,ψ , ξ) comprised of

(1) a graph (V ,E) where V is the node set and E is the edge set,
(2) a mappingψ : V → TV referred to as the node-type mapping

where TV is a set of node types,
(3) a mapping ξ : E → TE referred to as the edge-type mapping

where TE is a set of edge types.

We denote the node set of a heterogeneous graph G as V (G) and its
edge set as E(G).

A homogeneous graph can be seen as a special case of a hetero-

geneous graph where |TV | = |TE | = 1. Note that a heterogeneous

graph may be unweighted or weighted and it may be undirected

or directed, depending on the underlying graph structure. More-

over, it may also be signed or labeled Y = {y1,y2, . . .} where yi
corresponds to a label assigned to node vi (or edge ei).

2

Higher-Order Clustering for Heterogeneous Networks
via Typed Motifs

In general, a heterogeneous network can be represented by an

arbitrary number of matrices and tensors that are coupled, i.e., the
tensors and matrices share at least one type with each other [1, 70].

See Figure 1 for an example of a heterogeneous network represented

as a coupled matrix-tensor.

2.2 Graphlets

Graphlets are small connected induced subgraphs [3, 61]. The sim-

plest nontrivial graphlet is the 1st-order structure of a node pair con-

nected by an edge. Higher-order graphlets correspond to graphlets

with greater number of nodes and edges. Most graph clustering algo-

rithms only take into account edge connectivity, 1st-order graphlet

structure, when determining clusters. Moreover, these methods are

only applicable for homogeneous graphs. For example, spectral

clustering on the normalized Laplacian of the adjacency matrix of a

graph partitions it in a way that attempts to minimize the amount

of edges, 1st-order structures, cut [42].

In this section, we introduce a more general notion of graphlet

called typed-graphlet that naturally extends to both homogeneous

and heterogeneous networks. In this paper, we will use G to repre-

sent a graph and H or F to represent graphlets.

2.2.1 Untyped graphlets. We begin by defining graphlets for

homogeneous graphs with a single type.

Definition 2 (Untyped Graphlet). An untyped graphlet of a
homogeneous graph G is a connected, induced subgraph of G.

Given an untyped graphlet in some homogeneous graph, it may

be the case that we can find other topologically identical “appear-

ances" of this structure in that graph. We call these appearances

untyped-graphlet instances.

Definition 3 (Untyped-Graphlet Instance). An instance of an
untyped graphlet H in homogeneous graph G is an untyped graphlet
F in G that is isomorphic to H .

As we shall soon see, it will be important to refer to the set of

all instances of a given graphlet in a graph. Forming this set is

equivalent to determining the subgraphs of a graph isomorphic to

the given graphlet. Nevertheless, we usually only consider graphlets

with up to four or five nodes, and have fast methods for discovering

instances of such graphlets [2–4, 6, 72].

2.2.2 Typed graphlets. In heterogeneous graphs, nodes and

edges can be of different types and so explicitly (and jointly) mod-

eling such types is essential (Figure 1). To generalize higher-order

clustering to handle such networks, we introduce the notion of a

typed-graphlet that explicitly captures both the connectivity pat-

tern of interest and the types. Notice that typed-graphlets are a

generalization of untyped-graphlets and thus are a more powerful

representation.

Definition 4 (Typed Graphlet). A typed graphlet of a hetero-
geneous graph G = (V ,E,ψ , ξ) is a connected induced heterogeneous
subgraph H = (V ′,E ′,ψ ′, ξ ′) of G in the following sense:

(1) (V ′,E ′) is an untyped graphlet of (V ,E),
(2) ψ ′ = ψ |V ′ , that is,ψ ′ is the restriction ofψ to V ′

(3) ξ ′ = ξ |E′ , that is, ξ ′ is the restriction of ξ to E ′.

We can consider the topologically identical “appearances" of a

typed graphlet in a graph that preserve the type structure.

Definition 5 (Typed-Graphlet Instance). An instance of a
typed graphlet H = (V ′,E ′,ψ ′, ξ ′) of heterogeneous graph G is a
typed graphlet F = (V ′′,E ′′,ψ ′′, ξ ′′) of G such that:

(1) (V ′′,E ′′) is isomorphic to (V ′,E ′),
(2) TV ′′ = TV ′ and TE′′ = TE′ , that is, the sets of node and edge

types are correspondingly equal.

The set of unique typed-graphlet instances of H in G is denoted as
IG (H).

Note that we are not interested in preserving the type structure

via the isomorphism, only its existence, that is, we are not imposing

the condition that the node and edge types coincide via the graph

isomorphism. This condition is too restrictive.

2.2.3 Motifs. Before we proceed, we briefly address some dis-

crepancies between our definition of graphlets and that of papers

such as [11, 14]. Although it might be a simple matter of semantics,

the differences should be noted and clarified to avoid confusion.

Some papers refer to what we refer to graphlets as motifs. Yet, mo-

tifs usually refer to recurrent and statistically significant induced
subgraphs [54, 61].

To find the motifs of a graph, one must compare the frequency

of appearances of a graphlet in the graph to the expected frequency

of appearances in an ensemble of random graphs in a null model

associated to the underlying graph. Current techniques for comput-

ing the expected frequency in a null model requires us to generate

a graph that follows the null distribution and then compute the

graphlet frequencies in this sample graph [7, 54]. These tasks are

computationally expensive for large networks as we have to sample

many graphs from the null distribution. On the other hand, any

graphlet can be arbitrarily specified in a graph and does not depend

on being able to determine whether it is is statistically significant.

In any case, a motif is a special type of graphlet, so we prefer to

work with this more general object.

2.3 Typed-Graphlet Conductance

In this section, we introduce the measure that will score the quality

of a heterogeneous graph clustering built from typed graphlets. It

is extended from the notion of conductance defined as:

ϕ(S, S̄) =
cut(S, S̄)

min

(
vol(S), vol(S̄)

)
where (S, S̄) is a cut of a graph, cut(S, S̄) is the number of edges

crossing cut (S, S̄) and vol(S) is the total degrees of the vertices in
cluster S [31, 42]. Note that its minimization achieves the sparsest

balanced cut in terms of the total degree of a cluster.

The following definitions apply for a fixed heterogeneous graph

and typed graphlet. Assume we have a heterogeneous graphG and

a typed graphlet H of G.

Note. We denote the set of unique instances of H in G as IG (H).

Definition 6 (Typed-Graphlet Degree). The typed-graphlet
degree based on H of a node v ∈ V (G) is the total number of incident
edges to v over all unique instances of H . We denote and compute this

3

Carranza, A.G. et al.

Table 1: Summary of notation. Matrices are bold, upright ro-

man letters.

G graph

V (G) node set of G
E(G) edge set of G
H, F graphlet of G

IG (H) set of unique instances of H in G
WGH typed-graphlet adjacency matrix of G based on H
LGH typed-graphlet normalized Laplacian of G based on H
GH

weighted heterogeneous graph induced by WH
G

S subset of V (G)
(S, S̄) cut of G where S̄ = V (G)\S

degG (v) degree of node v ∈ V (G)
deg

H
G (v) typed-graphlet degree of node v ∈ V (G) based on H

volG (S) volume of S under G
vol

H
G (S) typed-graphlet volume of S based on H under G

cutG (S, S̄) cut size of (S, S̄) under G
cut

H
G (S, S̄) typed-graphlet cut size of (S, S̄) based on H under G

ϕG (S, S̄) conductance of (S, S̄) under G
ϕHG (S, S̄) typed-graphlet conductance of (S, S̄) based on H under G

ϕ(G) conductance of G
ϕH (G) typed-graphlet conductance of G based on H

as
deg

H
G (v) =

∑
F ∈IG (H)

|{e ∈ E(F) | v ∈ e}| .

Definition 7 (Typed-Graphlet Volume). The typed-graphlet
volume based on H of a subset of nodes S ⊂ V (G) is the total number
of incident edges to any node in S over all instances of H . In other
words, it is the sum of the typed-graphlet degrees based on H over all
nodes in S . We denote and compute this as

vol
H
G (S) =

∑
v ∈S

deg
H
G (v).

Recall that a cut in a graph G is a partition of the underlying

node set V (G) into two proper, nonempty subsets S and S̄ where

S̄ = V (G)\S . We denote such a cut as an ordered pair (S, S̄). For any
given cut in a graph, we can define a notion of cut size.

Definition 8 (Typed-Graphlet Cut Size). The typed-graphlet
cut size based on H of a cut (S, S̄) in G is the number of unique
instances of H crossing the cut. We denote and compute this as

cut
H
G (S, S̄) =

��{F ∈ IG (H) | V (F) ∩ S , ∅,V (F) ∩ S̄ , ∅}
�� .

Note that a graphlet can cross a cut with any of its edges. There-

fore, it has more ways in which it can add to the cut size than just

an edge.

Having extended notions of volume and cut size for higher-order

typed substructures, we can naturally introduce a corresponding

notion of conductance.

Definition 9 (Typed-GraphletConductance). The typed-graphlet
conductance based on H of a cut (S, S̄) in G is

ϕHG (S, S̄) =
cut

H
G (S, S̄)

min

(
vol

H
G (S), vol

H
G (S̄)

) ,

and the typed-graphlet conductance based on H of G is defined to
be the minimum typed-graphlet conductance based on H over all
possible cuts in G:

ϕH (G) = min

S ⊂V (G)
ϕHG (S, S̄). (1)

The cut which achieves the minimal typed-graphlet conductance

corresponds to the cut that minimizes the amount of times instances

of H are cut and still achieves a balanced partition in terms of

instances of H in the clusters.

2.4 Typed-Graphlet Laplacian

In this section, we introduce a notion of a higher-order Laplacian

of a graph. Assume we have a heterogeneous graph G and a typed

graphlet H of G.

2.4.1 Typed-graphlet adjacencymatrix. Supposewe have the
set IG (H). Then, we can form a matrix that has the same dimen-

sions as the adjacency matrix of G and has its entries defined by

the count of unique instances of H containing edges in G.

Definition 10 (Typed-Graphlet Adjacency Matrix). Suppose
that V (G) = {v1, . . . ,vn }. The typed-graphlet adjacency matrix
WGH of G based on H is a weighted matrix defined by

(WGH)i j =
∑

F ∈IG (H)

1
(
{vi ,vj } ∈ E(F)

)
for i, j = 1, . . . ,n. That is, the ij-entry of WGH is equal to the number
of unique instances of H that contain nodes {vi ,vj } ⊂ V (G) as an
edge.

Having definedWGH , a weighted adjacency matrix on the set

of nodes V (G), we can induce a weighted graph. We refer to this

graph as the graph induced byWGH and denote it as GH
.

Note. From the definition of WGH , we can easily show that E(F) ⊂
E(GH) for any F ∈ IG (H).

2.4.2 Typed-graphlet Laplacian. We can construct theweighted

normalized Laplacian ofWGH :

LGH = I − D−1/2

GH WGHD
−1/2

GH

where DGH is defined by

(DGH)ii =
∑
j
(WGH)i j

for i = 1, . . . ,n. We also refer to this Laplacian as the typed-graphlet
normalized Laplacian based on H of G. The normalized typed-

graphlet Laplacian is the fundamental structure for the method

we present in Section 2.5.

2.5 Typed-Graphlet Spectral Clustering

In this section, we present an algorithm for approximating the

optimal solution to the minimum typed-graphlet conductance opti-

mization problem:

S
best
= argmin

S ⊂V (G)
ϕHG (S, S̄) (2)

Minimizing the typed-graphlet conductance encapsulates what

we want: the solution achieves a bipartition of G that minimizes

the number of instances of H that are cut and is balanced in terms

4

Higher-Order Clustering for Heterogeneous Networks
via Typed Motifs

of the total graphlet degree contribution of all instances of H on

each partition.

The issue is that minimizing typed-graphlet conductance is NP-
hard. To see this, consider the case where your graphlet is the

1st-order graphlet, that is, a pair of nodes connected by an edge.

Minimizing the standard notion of conductance, which is known to

be NP-hard [26], reduces to minimizing this special case of 1st-order

untyped-graphlet conductance minimization. Therefore, obtaining

the best graphlet-preserving clustering for large graphs is an in-

tractible problem. We can only hope to achieve a near-optimal

approximation.

2.5.1 Algorithm. We present a typed-graphlet spectral cluster-

ing algorithm for finding a provably near-optimal bipartition in

Algorithm 1. We build a sweeping cluster in a greedy manner ac-

cording to the typed-graphlet spectral ordering defined as follows.

Definition 11 (Typed-Graphlet Spectral Ordering). Let v
denote the eigenvector corresponding to the 2nd smallest eigenvalue
of the normalized typed-graphlet Laplacian LGH . The typed-graphlet
spectral ordering is the permutation

σ = (i1, i2, . . . , in)

of coordinate indices (1, 2, . . . ,n) such that

vi1 ≤ vi2 ≤ · · · ≤ vin ,

that is, σ is the permutation of coordinate indices of v that sorts the
corresponding coordinate values from smallest to largest.

Algorithm 1: Typed-Graphlet Spectral Clustering

Input: Heterogeneous graph G, typed graphlet H
Output: Near-optimal cluster

WGH ← typed-graphlet adjacency matrix of G based on H

N ← number of connected components of GH

ϕmin ←∞

S
best
← initialize space for best cluster

for i ← 1 to N do

W← submatrix of WGH on connected component i
L← typed-graphlet normalized Laplacian ofW
v2 ← eigenvector of L with 2nd smallest eigenvalue

σ ← argsort(v2)

ϕ ← mink ϕGH (Sk , S̄k), where Sk = {σ1, . . . ,σk }

if ϕ < ϕmin then

ϕmin ← ϕ
S ← argmink ϕGH (Sk , S̄k)

if |S | < |S̄ | then
S
best
← S

else

S
best
← S̄

end

end

end

return Sbest

2.5.2 Extensions. Algorithm 1 generalizes the spectral cluster-

ingmethod for standard conductanceminimization [78] and untyped-

graphlet conductance minimization. We demonstrated the reduc-

tion of standard conductanceminimization above. Untyped-graphlet

conductance minimization is also generalized since homogeneous

graphs can be seen as heterogeneous graphs with a single node and

edge type. It is straightforward to adapt the framework to other

arbitrary (sparse) cut functions such as ratio cuts [34], normalized

cuts [78], bisectors [34], normalized association cuts [78], among

others [31, 75, 78].

Multiple clusters can be found through simple recursive bipar-

titioning [42]. We could also embed the lower k eigenvectors of

the normalized typed-graphlet Laplacian into a lower dimensional

Euclidean space and perform k-means, or any other Euclidean clus-

tering algorithm, then associate to each node its corresponding

cluster in this space [42, 58]. It is also straightforward to use mul-

tiple typed-graphlets for clustering or embeddings as opposed to

using only a single typed-graphlet independently. For instance, the

higher-order typed-graphlet adjacency matrices can be combined in

some fashion (e.g., summation) and may even be assigned weights

based on the importance of the typed-graphlet. Moreover, the typed-

graphlet conductance can be adapted in a straightforward fashion

to handle multiple typed-graphlets.

2.5.3 Discussion. Benson et al. [14] refers to their higher-order

balanced cut measure as motif conductance and it differs from our

proposed notion of typed-graphlet conductance. However, the defi-

nition used matches more with a generalization known as the edge
expansion. The edge expansion of a cut (S, S̄) is defined as

ψ (S, S̄) =
cut(S, S̄)

min(|S |, |S̄ |)
. (3)

The balancing is in terms of the number of vertices in a cluster.

Motif conductance was defined with a balancing in terms of the

number of vertices in any graphlet instance. To be precise, for any

set of vertices S , let the cluster size of S in G based on H be

|S |HG =
∑

F ∈IG (H)

∑
v ∈V (F)

1(v ∈ S) =
∑
v ∈S

∑
F ∈IG (H)

1 (v ∈ V (F)) . (4)

Note that this does not take into account the degree contributions

of each graphlet, only its node count contributions to a cluster S . In
terms of our notation, untyped “motif conductance" of a cut (S, S̄)
is defined in that work as

ψH
G (S, S̄) =

cut
H
G (S, S̄)

min

(
|S |HG , |S̄ |

H
G

) .
Since this does not take into account node degree information, this

is more of a generalization of edge expansion [9, 41], “graphlet

expansion", if you will, rather than conductance. The difference is

worth noting because it has been shown that conductance mini-

mization gives better partitions than expansion minimization [42].

By only counting nodes, we give equal importance to all the vertices

in a graphlet. Arguably, it is more reasonable to give greater impor-

tance to the vertices that not only participate in many graphlets but

also have many neighbors within a graphlet and give lesser impor-

tance to vertices that have more neighbors that do not participate

in a graphlet or do not have many neighbors within a graphlet. Our

5

Carranza, A.G. et al.

definition of typed-graphlet volume captures this idea to give an

appropriate general notion of conductance.

2.6 Typed-Graphlet Node Embeddings

Algorithm 2 summarizes the method for deriving higher-order

typedmotif-based node embeddings (as opposed to clusters/partitions

of nodes, or an ordering for compression/analysis, see Section 4.3).

In particular, given a typed-graphlet adjacency matrix, Algorithm 2

outputs a N × D matrix Z of node embeddings. For graphs with

many connected components, Algorithm 2 is called for each con-

nected component ofGH
and the resulting embeddings are stored

in the appropriate locations in the overall embedding matrix Z.
Multiple typed-graphlets can also be used to derive node em-

beddings. One approach that follows from [66] is to derive low-

dimensional node embeddings for each typed-graphlet of interest

using Algorithm 2. After obtaining all the node embeddings for

each typed-graphlet, we can simply concatenate them all into one

single matrix Y. Given Y, we can simply compute another low-

dimensional embedding to obtain the final node embeddings that

capture the important latent features from the node embeddings

from different typed-graphlets.

Algorithm 2: Typed-Graphlet Spectral Embedding

Input: Heterogeneous graph G, typed graphlet H , embedding

dimension D
Output: Higher-order embedding matrix Z ∈ RN×D for H

1

(
WGH

)
i j← # instances of H containing i and j, ∀(i, j) ∈ E

2 DGH ← typed-graphlet degree matrix

(
DGH

)
ii =

∑
j
(
WGH

)
i j

3 x1, x2, . . . , xD ← eigenvectors of D smallest eigenvalues of

LGH = I − D−1/2

GH WGHD−1/2

GH

4 Zi j ← Xi j
/√∑D

j=1
X 2

i j

5 return Z =
[
z1 z2 · · · zn

]T
∈ RN×D

3 THEORETICAL ANALYSIS

In this section, we show the near-optimality of Algorithm 1. The

idea is to translate what we know about ordinary conductance for

weighted homogeneous graphs, for which there has been substan-

tial theory developed [22–24], to this new measure we introduce

of typed-graphlet conductance by relating these two quantities.

Through this association, we can derive Cheeger-like results for

ϕH (G) and for the approximation given by the typed-graphlet spec-

tral clustering algorithm (Algorithm 1). As in the previous section,

assume we have a heterogeneous graph G and a typed graphlet H .

Also, assume we have the weighted graph GH
induced from the

typed-graphlet adjacency matrixWH
G .

We prove two lemmas from which our main theorem will im-

mediately hold. Lemma 1 shows that the typed-graphlet volume

and ordinary volume measures match: total typed-graphlet degree

contributions of typed-graphlet instances matches with total counts

of typed-graphlet instances on edges for any given subset of nodes.

In contrast, Lemma 2 shows that equality does not hold for the

notions of cut size. The reason lies in the fact that for any typed-

graphlet instance, typed-graphlet cut size on G only counts the

number of typed-graphlet instances cut whereas ordinary cut size

on GH
counts the number of times typed-graphlet instances are

cut. Therefore, these two measure at least match and at most differ

by a factor equal to the size of the H , which is a fixed value that

is small for the typed graphlets we are interested in, of size 3 or 4.

Thus, we are able to reasonably bound the discrepancy between

the notions of cut sizes.

Using these two lemmas, we immediately get our main result

in Theorem 1 which shows the relationship between ϕH (G) and
ϕ(GH) in the form of tightly bound inequality that is dependent

only on the number of edges in H . From this theorem, we arrive at

two important corollaries. In Corollary 1, we prove Cheeger-like

bounds for typed-graphlet conductance. In Corollary 2, we show

that the output of Algorithm 1 gives a near-optimal solution up to

a square root factor and it goes further to show bounds in terms of

the optimal value ϕH (G) to show the constant of the approximation

algorithm which depends on the second smallest eigenvalue of the

typed-graphlet adjacencymatrix and the number of edges inH . This

last result does not give a purely constant-factor approximation to

the graph conductance because of their dependence on G and H ,

yet it still gives a very efficient, and non-trivial, approximation for

fixed G and H . Moreover, the second part of Corollary 2 provides

intuition as to what makes a specific typed-graphlet a suitable

choice for higher-order clustering. Typed-graphlets that have a

good balance of small edge set size and strong connectivity in the

heterogeneous graph—in the sense that the second eigenvalue of the

normalized typed-graphlet Laplacian is large—will have a tighter

upper bound to their approximation for minimum typed-graphlet

conductance. Therefore, this last result in Corollary 2 provides

a way to quickly and quantitatively measure how good a typed

graphlet is for determining higher-order organization before even

executing the clustering algorithm.

Note. In the case of the simple 1st-order untyped graphlet, i.e., a node
pair with an interconnecting edge, we recover the results for traditional
spectral clustering since |E(H)| = 1 in this case. Furthermore, if G
is a homogeneous graph, i.e., |TV | = |TE | = 1, we get the special
case of untyped graphlet-based spectral clustering. Therefore, our
framework generalizes the methods of traditional spectral clustering
and untyped-graphlet spectral clustering for homogeneous graphs.

In the following analysis, we let 1(·) represent the Boolean pred-

icate function and let (WGH)e be the edge weight of edge e in

GH
.

Lemma 1. Let S be a subset of nodes in V (G). Then,

volGH (S) = vol
H
G (S).

6

Higher-Order Clustering for Heterogeneous Networks
via Typed Motifs

Proof.

volGH (S) =
∑
v ∈S

degGH (v) (5)

=
∑
v ∈S

∑
e ∈E(GH)

1(v ∈ e) · (WGH)e (6)

=
∑
v ∈S

∑
e ∈E(GH)

1(v ∈ e) ·
∑

F ∈IG (H)

1(e ∈ E(F)) (7)

=
∑
v ∈S

∑
F ∈IG (H)

∑
e ∈E(GH)

1(v ∈ e) · 1(e ∈ E(F)) (8)

=
∑
v ∈S

∑
F ∈IG (H)

∑
e ∈E(F)

1(v ∈ e) (9)

=
∑
v ∈S

∑
F ∈IG (H)

|{e ∈ E(F) | v ∈ e}| (10)

=
∑
v ∈S

deg
H
G (v) (11)

= vol
H
G (S). (12)

■

Lemma 2. Let (S, S̄) be a cut in G. Then,

1

|E(H)|
cutGH (S, S̄) ≤ cut

H
G (S, S̄) ≤ cutGH (S, S̄).

Proof. For subsequent simplification, we define [S, S̄] to be the

set of edges in E(GH) that cross cut (S, S̄):

[S, S̄] := {e ∈ E(GH) | e ∩ S , ∅, e ∩ S̄ , ∅}. (13)

Then,

cutGH (S, S̄) =
∑

e ∈E(GH)

1
(
e ∈ [S, S̄]

)
· (WGH)e (14)

=
∑

e ∈E(GH)

1
(
e ∈ [S, S̄]

)
·

∑
F ∈IG (H)

1(e ∈ E(F)) (15)

=
∑

F ∈IG (H)

∑
e ∈E(GH)

1
(
e ∈ [S, S̄]

)
· 1(e ∈ E(F)) (16)

=
∑

F ∈IG (H)

∑
e ∈E(F)

1
(
e ∈ [S, S̄]

)
(17)

=
∑

F ∈IG (H)

|E(F) ∩ [S, S̄]| (18)

Note that for an instance F ∈ IG (H) such that E(F) ∩ [S, S̄] , ∅,

there exists at least one edge in E(F) cut by (S, S̄) and at most all

edges in E(F) are cut by (S, S̄). Clearly, if E(F) ∩ [S, S̄] = ∅, then no

edge is cut by (S, S̄). This shows that for such an instance we have

1 ≤ |E(F) ∩ [S, S̄]| ≤ |E(F)| = |E(H)|. (19)

Therefore, Equation 18 satisfies the following inequalities:∑
F ∈IG (H)

1
(
E(F) ∩ [S, S̄] , ∅

)
≤ cutGH (S, S̄) (20)

|E(H)| ·
∑

F ∈IG (H)

1
(
E(F) ∩ [S, S̄] , ∅

)
≥ cutGH (S, S̄). (21)

Referring to Definition 8 for typed-graphlet cut size and noting that

since H is a connected graph,

1(E(F) ∩ [S, S̄] , ∅) = 1(V (F) ∩ S , ∅,V (F) ∩ S̄ , ∅), (22)

we find that ∑
F ∈IG (H)

1(E(F) ∩ [S, S̄]) = cut
H
G (S, S̄). (23)

Plugging this into Inequalities 20-21, we get

cut
H
G (S, S̄) ≤ cutGH (S, S̄) ≤ |E(H)| cut

H
G (S, S̄) (24)

or, equivalently,

1

|E(H)|
cutGH (S, S̄) ≤ cut

H
G (S, S̄) ≤ cutGH (S, S̄) (25)

■

Theorem 1.

1

|E(H)|
· ϕ(GH) ≤ ϕH (G) ≤ ϕ(GH)

Proof. Let (S, S̄) be any cut in G. From Lemma 2, we have that

1

|E(H)|
cutGH (S, S̄) ≤ cut

H
G (S, S̄) ≤ cutGH (S, S̄). (26)

Lemma 1 shows that volGH (S) = vol
H
G (S). Therefore, if we divide

these inequalities above by volGH (S) = vol
H
G (S), we get that

1

|E(H)|
ϕGH (S, S̄) ≤ ϕHG (S, S̄) ≤ ϕGH (S, S̄) (27)

by the definitions of conductance and typed-graphlet conductance.

Since this result holds for any subset S ⊂ V (G), it implies that

1

|E(H)|
· ϕ(GH) ≤ ϕH (G) ≤ ϕ(GH). (28)

■

Corollary 1. Let λ2 be the second smallest eigenvalue of LGH .
Then,

λ2

2|E(H)|
≤ ϕH (G) ≤

√
2λ2.

Proof. Cheeger’s inequality for weighted undirected graphs

(see proof in [23]) gives

λ2

2

≤ ϕ(GH) ≤
√

2λ2. (29)

Using these bounds for ϕ(GH) and applying them to Theorem 1,

we find that

λ2

2|E(H)|
≤ ϕH (G) ≤

√
2λ2. (30)

■

Corollary 2. Let S be the cluster output of Algorithm 1 and let
α = ϕHG (S, S̄) be its corresponding typed-graphlet conductance onG
based on H . Then,

ϕH (G) ≤ α ≤
√

4|E(H)|ϕH (G).

Moreover, if we let λ2 be the second smallest eigenvalue of LGH , then

ϕH (G) ≤ α ≤ β · ϕH (G),

7

Carranza, A.G. et al.

where

β =

√
8

λ2

· |E(H)|,

showing that, for a fixedG and H , Algorithm 1 is a β-approximation
algorithm to the typed-graphlet conductance minimization problem.

Proof. Clearly ϕH (G) ≤ α since ϕH (G) is the minimal typed-

graphlet conductance. To prove the upper bound, let (T , T̄) be
the cut that achieves the minimal conductance on GH

, that is,

ϕGH (T , T̄) = ϕ(GH). Then,

α ≤ ϕHG (T , T̄) (31)

≤ ϕGH (T , T̄) (32)

≤
√

2λ2 (33)

≤

√
4|E(H)|ϕH (G). (34)

Inequality 31 follows from the fact that α achieves the minimal

typed-graphlet conductance. Inequality 32 follows from Inequality

27 in Theorem 1. Inequality 33 follows from Cheeger’s inequality

for weighted graphs (see [22] for a proof). Inequality 34 follows

from the lower bound in Corollary 1.

We can go a bit further to express the bounds entirely in terms of

ϕH (G) by noting that

α ≤
√

4|E(H)|ϕH (G) (35)

=

√
4|E(H)|

ϕH (G)
· ϕH (G) (36)

≤

√
8

λ2

· |E(H)| · ϕH (G) (37)

where Inequality 37 follows from the fact that

√
ϕH (G) ≥ λ2

2 |E(H) |
by the lower bound of Corollary 1.

■

4 EXPERIMENTS

This section empirically investigates the effectiveness of the pro-

posed approach quantitatively for typed-graphlet spectral clus-

tering (Section 4.1), link prediction using the higher-order node

embeddings from our approach (Section 4.2) and the typed-graphlet

spectral ordering for graph compression (Section 4.3). Unless oth-

erwise mentioned, we use all 3 and 4-node graphlets.

4.1 Clustering

We quantitatively evaluate the proposed approach by comparing it

against a wide range of state-of-the-art community detection meth-

ods on multiple heterogeneous graphs from a variety of application

domains with fundamentally different structural properties [64].

• Densest Subgraph (DS-H) [44]: This baseline finds an approx-

imation of the densest subgraph in G using degeneracy order-

ing [29, 63]. Given a graph G with n nodes, let Hi be the sub-

graph induced by i nodes. At the start, i = n and thus Hi = G.
At each step, node vi with smallest degree is selected from Hi

Table 2: Network properties and statistics. Note |TV | = # of

node types. Comparing the number of unique typed motifs

that occur for each induced subgraph (e.g., there are 3 differ-
ent typed 3-path graphlets that appear in yahoo).

Graph |V | |E | |TV |H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

H1 H2 H3 H4 H6 H7H5

H8 H13H11H9 H10 H12

To print go to file, print, then PDF, Adobe PDF, and select Highest Quality Print
-saveas-print-AdobeHighQualityPrint.pdf

yahoo-msg 100.1k 739.8k 2 3 2 3 4 3 3 3 2

dbpedia 495.9k 921.7k 4 8 0 6 10 5 0 0 0

digg 283.2k 4.6M 2 4 3 4 5 4 4 4 2

movielens 28.1k 170.4k 3 7 1 6 9 6 3 3 0

citeulike 907.8k 1.4M 3 5 0 3 6 3 0 0 0

fb-CMU 6.6k 250k 3 10 10 15 15 15 15 15 15

reality 6.8k 7.7k 2 4 3 4 5 4 4 4 2

gene 1.1k 1.7k 2 4 4 5 5 5 5 5 5

citeseer 3.3k 4.5k 6 56 40 124 119 66 98 56 19

cora 2.7k 5.3k 7 82 49 202 190 76 157 73 19

webkb 262 459 5 31 21 59 59 23 51 32 8

pol-retweet 18.5k 48.1k 2 4 4 5 5 5 5 5 4

web-spam 9.1k 465k 3 10 10 15 15 15 15 15 15

fb-relationship 7.3k 44.9k 6 50 47 112 109 85 106 89 77

Enzymes-g123 90 127 2 4 3 5 5 5 4 3 0

Enzymes-g279 60 107 2 4 4 5 5 5 5 5 0

Enzymes-g293 96 109 2 4 1 5 5 1 2 1 0

Enzymes-g296 125 141 2 4 1 4 5 2 1 1 0

NCI109-g4008 90 105 2 3 0 3 3 0 0 0 0

NCI109-g1709 102 106 3 5 0 5 5 1 0 0 0

NCI109-g3713 111 119 3 4 0 6 4 0 0 0 0

NCI1-g3700 111 119 3 4 0 6 4 0 0 0 0

and removed to obtain Hi−1. Afterwards, we update the corre-

sponding degrees of Hi−1 and density ρ(Hi−1). This is repeated

to obtain Hn ,Hn−1, . . . ,H1. From Hn ,Hn−1, . . . ,H1, we select

the subgraph Hk with maximum density ρ(Hk).

• KCoreCommunities (KCore-H) [68, 79]:Many have observed

the maximum k-core subgraph of a real-world network to be a

highly dense subgraph that often contains themaximum clique [68].

The KCore baseline simply uses the maximum k-core subgraph

as S and S̄ = V \ S .
• Label Propagation (LP-H) [62]: Label propagation takes a la-

beling of the graph, then for each node, the node label is updated

according to the label with maximal frequency among its neigh-

bors. This is repeated until the node labeling does not change.

The final labeling induces a clustering of the graph and the

cluster with maximum modularity is selected.

• Louvain (Louv-H) [15]: Louvain performs a greedy optimiza-

tion of modularity by forming small, locally optimal communi-

ties then grouping each community into one node. It iterates

over this two-phase process until modularity cannot be max-

imized locally. The community with maximum modularity is

selected.

• Spectral Clustering (Spec-H) [23]: This baseline executes spec-

tral clustering on the normalized Laplacian of the adjacency

matrix to greedily build the sweeping cluster that minimizes

conductance.

• Untyped-Graphlet Spec. Clustering (GSpec-H) [14]: This

baseline computes the untyped-graphlet adjacency matrix and

executes spectral clustering on the normalized Laplacian of this

8

Higher-Order Clustering for Heterogeneous Networks
via Typed Motifs

Table 3: Quantitative evaluation of the methods (external

conductance [8]). Note TGS is the approach proposed in this

work. The best result for each graph is bold.

D
S
-
H

K
C
o
r
e
-
H

L
P
-
H

L
o
u
v
-
H

S
p
e
c
-
H

G
S
p
e
c
-
H

T
G
S

yahoo-msg 0.5697 0.6624 0.2339 0.3288 0.0716 0.2000 0.0588

dbpedia 0.7414 0.5586 0.4502 0.8252 0.9714 0.9404 0.0249

digg 0.4122 0.4443 0.7555 0.3232 0.0006 0.0004 0.0004

movielens 0.9048 0.9659 0.7681 0.8620 0.9999 0.6009 0.5000

citeulike 0.9898 0.9963 0.9620 0.8634 0.9982 0.9969 0.7159

fb-CMU 0.6738 0.9546 0.9905 0.8761 0.5724 0.8571 0.5000

reality 0.7619 0.3135 0.2322 0.1594 0.6027 0.0164 0.0080

gene 0.8108 0.9298 0.9151 0.8342 0.4201 0.1667 0.1429

citeseer 0.5000 0.6667 0.6800 0.6220 0.0526 0.0526 0.0333

cora 0.0800 0.9057 0.8611 0.8178 0.0870 0.0870 0.0500

webkb 0.2222 0.9286 0.6154 0.8646 0.6667 0.3333 0.2222

pol-retweet 0.5686 0.6492 0.0291 0.0918 0.6676 0.0421 0.0220

web-spam 0.8551 0.9331 0.9844 0.7382 0.9918 0.5312 0.5015

fb-relationship 0.6249 0.9948 0.5390 0.8392 0.9999 0.5866 0.4972

Enzymes-123 0.8667 0.8889 0.5696 0.6364 0.6768 0.5204 0.3902

Enzymes-279 0.9999 0.4444 0.5179 0.4444 0.2929 0.3298 0.2747

Enzymes-293 1.0000 0.4857 0.9444 0.3793 0.7677 0.5000 0.3023

Enzymes-296 1.0000 0.7073 0.9286 0.7344 0.6406 0.5000 0.3212

NCI109-4008 0.7619 0.4324 0.8462 0.8235 0.3500 0.4556 0.3204

NCI109-1709 0.4000 0.3171 0.1429 0.4615 0.3922 0.3654 0.1333

NCI109-3713 0.4074 0.3793 0.7500 0.4583 0.6667 1.0000 0.2000

NCI1-3700 0.4074 0.3793 0.7500 0.4583 0.3333 0.6667 0.2500

Avg. Rank 4.59 4.77 4.64 4.32 4.27 3.27 1

matrix to greedily build the sweeping cluster that minimizes the

untyped-graphlet conductance.

Note that we append the original method name with −H to indicate

that it was adapted to support community detection in arbitrary

heterogeneous graphs (Figure 1) since the original methods were

not designed for such graph data.

We evaluate the quality of communities using their external

conductance score [8, 36]. This measure has been identified as one

of the most important cut-based measures in a seminal survey

by Schaeffer [75] and extensively studied in many disciplines and

applications [8, 23, 36, 42, 75, 78, 88]. Results are reported in Table 3.

As an aside, all methods take as input the same heterogeneous graph

G . Overall, the results in Table 3 indicate that the proposed approach
is able to reveal better high quality clusters across a wide range of

heterogeneous graphs. The heterogeneous network statistics and

properties including the number of unique typed motifs for each

induced subgraph pattern is shown in Table 2.

We also provide the improvement (gain) achieved by TGS clus-

tering over the other methods in Table 4. Note improvement is

simply
E(Ai)
E(A∗)

where E(Ai) is the external conductance of the so-

lution given by algorithm Ai and A∗ denotes the TGS algorithm.

Values less than 1 indicate that TGS performed worse than the

other method whereas values > 1 indicate the improvement factor

achieved by TGS. Overall, TGS achieves a mean improvement of

43.53x over all graph data and baseline methods (Table 4). Note the

last column of Table 4 reports the mean improvement achieved by

TGS over all methods for each graph whereas the last row reports

the mean improvement achieved by TGS over all graphs for each

method. Figure 2 shows how typed graphlet conductance (Eq. 1)
changes as a function of community size |S | for three different

typed-graphlets.

4.2 Link Prediction in Heterogeneous Graphs

This section quantitatively demonstrates the effectiveness of TGS

for link prediction.

4.2.1 Higher-order Typed-Graphlet Embeddings. In Section
4.1 we used the approach for higher-order clustering and quantita-

tively evaluated the quality of them. In this section, we use the ap-

proach proposed in Section 2 to derive higher-order typed-graphlet

node embeddings and quantitatively evaluate them for link pre-

diction. Algorithm 2 summarizes the method for deriving higher-

order typed motif-based node embeddings (as opposed to clus-

ters/partitions of nodes, or an ordering for compression/analysis,

see Section 4.3). In particular, given a typed-graphlet adjacency

matrix, Algorithm 2 outputs a N ×D matrix Z of node embeddings.

For graphs with many connected components, Algorithm 2 is called

for each connected component ofGH
and the resulting embeddings

Table 4: Gain/loss achieved by TGS over the other methods.

Overall, TGS achieves a mean improvement of 43.53x over

all graph data and baselinemethods. Note the last column re-

ports themean improvement achieved by TGS over allmeth-

ods for each graphwhereas the last row reports themean im-

provement achieved byTGSover all graphs for eachmethod.

Mean

DS KC LP Louv Spec GSpec Gain

yahoo-msg 9.69x 11.27x 3.98x 5.59x 1.22x 3.40x 5.86x

dbpedia 29.78x 22.43x 18.08x 33.14x 39.01x 37.77x 30.03x

digg 1030x 1110x 1888x 808x 1.50x 1.00x 806.75x

movielens 1.81x 1.93x 1.54x 1.72x 2.00x 1.20x 1.70x

citeulike 1.38x 1.39x 1.34x 1.21x 1.39x 1.39x 1.35x

fb-CMU 1.35x 1.91x 1.98x 1.75x 1.14x 1.71x 1.64x

reality 95.24x 39.19x 29.02x 19.92x 75.34x 2.05x 43.46x

gene 5.67x 6.51x 6.40x 5.84x 2.94x 1.17x 4.75x

citeseer 15.02x 20.02x 20.42x 18.68x 1.58x 1.58x 12.88x

cora 10.00x 13.33x 17.22x 16.36x 1.74x 1.74x 10.07x

webkb 1.00x 4.18x 2.77x 3.89x 3.00x 1.50x 2.72x

pol-retweet 25.85x 29.51x 1.32x 4.17x 30.35x 1.91x 15.52x

webkb-spam 1.71x 1.86x 1.96x 1.47x 1.98x 1.06x 1.67x

fb-relationship 1.26x 2.00x 1.08x 1.69x 2.01x 1.18x 1.54x

Enzymes-g123 2.22x 2.28x 1.46x 1.63x 1.73x 1.33x 1.78x

Enzymes-g279 3.64x 1.62x 1.89x 1.62x 1.07x 1.20x 1.84x

Enzymes-g293 3.31x 1.61x 3.12x 1.25x 2.54x 1.65x 2.25x

Enzymes-g296 3.11x 2.20x 2.89x 2.29x 1.99x 1.56x 2.34x

NCI109-g4008 2.38x 1.35x 2.64x 2.57x 1.09x 1.42x 1.91x

NCI109-g1709 3.00x 2.38x 1.07x 3.46x 2.94x 2.74x 2.60x

NCI109-g3713 2.04x 1.90x 3.75x 2.29x 3.33x 5.00x 3.05x

NCI1-g3700 1.63x 1.52x 3.00x 1.83x 1.33x 2.67x 2.00x

Mean Gain 56.89x 58.23x 91.62x 42.74x 8.24x 3.47x (43.53x)

9

Carranza, A.G. et al.

10
0

10
1

10
2

10
3

10
4

10
5

Sets S

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
y
p
e
d
 M

o
ti
f
C

o
n
d
u
c
ta

n
c
e

movielens (4-tailed-triangles)

3321

3221

3211

10
0

10
1

10
2

10
3

Sets S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
y
p
e
d
 M

o
ti
f
C

o
n
d
u
c
ta

n
c
e

citeseer (4-path)

4222

6555

5555

Figure 2: Typed graphlet conductance as a function of S

from the sweep in Algorithm 1 for a variety of typed 4-path

graphlets and typed 4-tailed-triangle graphlets. For this ex-

periment, we consider the largest connected component for

the graph derived from each typed graphlet.

are stored in the appropriate locations in the overall embedding

matrix Z.

Table 5: Link prediction edge types and semantics. We bold

the edge type that is predicted by the models.

Graph |TV | Heterogeneous Edge Types

movielens 3 user-by-movie, user-by-tag

tag-by-movie

dbpedia 4 person-by-work (produced work),

person-has-occupation,

work-by-genre (work-associated-with-genre)

yahoo-msg 2 user-by-user (communicated with),

user-by-location (communication location)

4.2.2 Experimental Setup. We evaluate the higher-order typed-

graphlet node embedding approach (Algorithm 2) against the fol-

lowingmethods: DeepWalk (DW) [60], LINE [84], GraRep [20], spec-

tral embedding (untyped edge motif) [58], and spectral embedding

using untyped-graphlets. All methods output (D=128)-dimensional

node embeddings Z =
[
z1 · · · zn

]T
where zi ∈ RD . For DeepWalk

(DW) [60], we perform 10 random walks per node of length 80 as

mentioned in [38]. For LINE [84], we use 2nd-order proximity and

perform 60 million samples. For GraRep (GR) [20], we use K = 2. In

contrast, the spectral embedding methods do not have any hyper-

parameters besides D which is fixed for all methods. As an aside,

all methods used for comparison were modified to support hetero-

geneous graphs (similar to how the other baseline methods from

Section 4.1 were modified). In particular, we adapted the methods

to allow multiple graphs as input consisting of homogeneous or

bipartite graphs that all share at least one node type (See Table 5

and Figure 1) and from these graphs we construct a single large

graph by simply ignoring the node and edge types and relabeling

the nodes to avoid conflicts.

4.2.3 Comparison. Given a partially observed graphG with a

fraction of missing/unobserved edges, the link prediction task is

to predict these missing edges. We generate a labeled dataset of

edges. Positive examples are obtained by removing 50% of edges

uniformly at random, whereas negative examples are generated

by randomly sampling an equal number of node pairs (i, j) < E.
For each method, we learn embeddings using the remaining graph.

Using the embeddings from each method, we then learn a logistic

regression (LR) model to predict whether a given edge in the test

set exists in E or not. Experiments are repeated for 10 random seed

initializations and the average performance is reported. All methods

are evaluated against four different evaluation metrics including

F1, Precision, Recall, and AUC.

Table 6: Link prediction results.

DW LINE GR Spec GSpec TGS

m
ov
ie
le
ns

F1 0.8544 0.8638 0.8550 0.8774 0.8728 0.9409

Prec. 0.9136 0.8785 0.9235 0.9409 0.9454 0.9747

Recall 0.7844 0.8444 0.7760 0.8066 0.7930 0.9055

AUC 0.9406 0.9313 0.9310 0.9515 0.9564 0.9900

db
pe
di
a

F1 0.8414 0.7242 0.7136 0.8366 0.8768 0.9640

Prec. 0.8215 0.7754 0.7060 0.7703 0.8209 0.9555

Recall 0.8726 0.6375 0.7323 0.9669 0.9665 0.9733

AUC 0.8852 0.8122 0.7375 0.9222 0.9414 0.9894

ya
ho
o

F1 0.6927 0.6269 0.6949 0.9140 0.8410 0.9303

Prec. 0.7391 0.6360 0.7263 0.9346 0.8226 0.9432

Recall 0.5956 0.5933 0.6300 0.8904 0.8699 0.9158

AUC 0.7715 0.6745 0.7551 0.9709 0.9272 0.9827

⋆
Note DW=DeepWalk and GR=GraRep.

For link prediction [5, 50], entity resolution/network alignment,

recommendation and other machine learning tasks that require

edge embeddings (features) [73], we derive edge embedding vec-

tors by combining the learned node embedding vectors of the

corresponding nodes using an edge embedding function Φ. More

formally, given D-dimensional embedding vectors zi and zj for
node i and j, we derive a D-dimensional edge embedding vector

zi j = Φ(zi , zj) where Φ is defined as one of the following edge

10

Higher-Order Clustering for Heterogeneous Networks
via Typed Motifs

embedding functions:

Φ ∈

{
zi + zj

2

, zi ⊙ zj ,
��zi − zj �� , (zi − zj)◦2, max(zi , zj), zi + zj

}
Note zi ⊙ zj is the element-wise (Hadamard) product, z◦2 is the

Hadamard power, and max(zi , zj) is the element-wise max.

Table 5 summarizes the heterogeneous network data used for link

prediction. In particular, the types used in each of the heterogeneous

networks are shown in Table 5 as well as the specific types involved

in the edges that are predicted (e.g., the edge type being predicted).

The results are provided in Table 6. Results are shown for the best

edge embedding function. In Table 6, TGS is shown to outperform

all other methods across all four evaluation metrics. In all cases, the

higher-order typed-graphlet spectral embedding outperforms the

other methods (Table 6) with an overall mean gain (improvement) in

F1 of 18.7% (and up to 48.4% improvement) across all graph data. In

terms of AUC, TGS achieves a mean gain of 14.4% (and up to 45.7%

improvement) over all methods. We posit that an approach similar

to the one proposed in [66] could be used with the typed-graphlet

node embeddings to achieve even better predictive performance.

This approach would allow us to leverage multiple typed-graphlet

Laplacianmatrices for learningmore appropriate higher-order node

embeddings.

4.3 Graph Compression

In Section 4.1 we used the approach for higher-order clustering

whereas Section 4.2 demonstrated the effectiveness of the approach

for link prediction. However, the framework can be leveraged

for many other important applications including graph compres-

sion [16, 17, 21, 49, 71]. In this section, we explore the proposed

approach for graph compression. Compression has two key ben-

efits. First, it reduces the amount of IO traffic [71]. Second, it can

speed up existing algorithms by reducing the amount of work re-

quired [43]. Graph compression methods rely on a “good” ordering

of the vertices in the graph to achieve a good compression [16, 17].

Table 7: Graph compression results. Size in bytes required to

store heterogeneous graphs using the bvgraph compression

scheme with different orderings.

Bytes

Graph Native Spec GSpec TGS Gain

movielens 585588 471246 464904 444252 14.18%

yahoo-msg 3065499 2694151 2708700 2427325 16.29%

dbpedia 4800584 3520721 3469878 3111728 26.31%

digg 15989475 10462874 10296144 9677741 26.57%

In this work, we order the vertices by the typed-graphlet spectral
ordering introduced previously in Definition 11. Notice in this case,

the output of our approach is the typed-graphlet spectral ordering

(Definition 11) as opposed to clusters (Section 4.1) or node embed-

dings (Section 4.2). We then evaluate how well the bvgraph [17]

compression method reduces the graph size using this ordering.

Given an ordering, we permute the graph to use this ordering and

use the bvgraph compression algorithm [17] with all the default

settings to compress the networks. Results are reported in Table 7

for four large heterogeneous graphs. We compare the compression

obtained by reporting the size of each heterogeneous graph in bytes

after compression. We evaluate four orderings of the vertices: the

native order, spectral ordering (untyped edge), untyped-graphlet

ordering and the typed-graphlet spectral ordering proposed in this

work. For untyped-graphlet and typed-graphlet spectral ordering

we report the best result given by an ordering from any untyped or

typed-graphlet. We find that the typed-graphlet ordering results in

better compression across all other methods and graphs. Overall,

typed-graphlet spectral ordering achieves a mean improvement of

20.8% over all graphs and all orderings.

In addition to the quantitative compression results shown in

Table 7, we use the proposed ordering for exploratory analysis.

In particular, we use the orderings to permute the rows/columns

of the original adjacency matrix and visualize the nonzero struc-

ture of the resulting matrices in Figure 3. Using the ordering from

TGS (Definition 11) gives rise to partitions (sub-matrices) that are

significantly more homogeneous (completely connected or discon-

nected) than the other methods as shown in Figure 3 and thus

are able to achieve a better compression as shown quantitatively

in Table 7. Furthermore, TGS is able to uncover the type of the

nodes by grouping nodes into partitions based on their types (users,

movies, tags). Moreover, the partitions are also meaningful as they

partition movies and the tags used to describe those movies into

genres. This allows us to understand the tags that best describe that

genre as well as the movies from that genre that align with those

tags. Other typed-graphlet spectral orderings from different typed

graphlets were removed due to space, though many of them also

gave interesting and explainable block partitions as well.

5 RELATEDWORK

Community Detection in Homogeneous Graphs. Most research

in community detection has traditionally focused on homogeneous

graphs [18]. This problem has been extensively researched as ev-

idenced by the multiple survey papers [27, 31, 33, 52, 56, 75] and

empirical comparisons of algorithms [11, 39, 46, 48] on this topic.

Many works have focused on community detection techniques

using modularity-based optimization. Modularity was introduced

in the seminal paper [57] as a quantitative measure for assigning

scores to a community structure. It became a standard measure for

comparing clustering algorithms and suggested a framework for

community detection as an optimization task of a quality function.

Modularity maximization is an NP-hard problem, but there exist

efficient heuristics such as greedy methods, semidefinite program-

ming, simulated annealing, and spectral methods [56]. Nevertheless,

it suffers from many drawbacks such as runtime dependence on

the size of graph [33], resolution limit [32], and nonuse of between-

community connectivity information [56].

Graph conductance is another very popular community quality

function [23, 42]. Computing the conductance of a graph is an NP-

hard problem as well [80], but there exist spectral methods that give

good, theoretically-supported approximations [23, 42, 47, 58, 87] and

have only weak runtime dependence on the size of the graph since

there exist fast methods for computing eigenvalues [37]. Moreover,

11

Carranza, A.G. et al.

(a) Spectral clustering (untyped edge) (b) Untyped 3-path (c) Typed 4-cycle

Figure 3: Typed graphlet-based spectral ordering achieves significant compression by partitioning users, tags, and movies

(from themovielens data) into homogeneous groups that are either nearly fully-connected (near-clique) or fully-disconnected.

Strikingly, TGS partitions the rows/columns according to types without explicitly leveraging types (i.e., types are not used

when deriving the typed-graphlet spectral ordering). For instance, the first ≈5k rows/columns correspond to tags, whereas

the following ≈4k rows/columns are users, and so on. This is in contrast to the other methods where the rows/columns of

different types are mixed with one another in a seemingly random fashion. Moreover, these approaches fail to partition the

graph into homogeneous groups that are dense or completely empty. The typed 4-cycle graphlet used above consists of 2 nodes

representing movies and the other two representing tags assigned to the movies. Other typed-graphlets gave other interesting

results with comparable compression.

conductance takes into account the internal and external connected-

ness of a community [33]. As an aside, existing higher-order cluster-

ing methods that extend modularity [10] and conductance [14, 85]

are all designed for homogeneous graphs with a single node/edge

type and are also based on the existing notion of untyped graphlets.
However, we discuss these methods along side other higher-order

methods that leverage untyped graphlets. In this work, we propose

a higher-order clustering framework that generalizes to heteroge-

neous graphs. However, since homogeneous graphs are a special

case of heterogeneous graphs (where nodes/edges have a single

type), the proposed framework can be used for higher-order clus-

tering in homogeneous graphs as well.

Community Detection in Heterogeneous Graphs. Recently, re-
searchers have started to extend community detection methods for

multi-relational, multi-typed graphs [18, 77]. In the literature, these

graphs are referred to as heterogeneous graphs or heterogeneous in-
formation networks [77]. In recent years, many methods have been

proposed for community detection in heterogeneous networks in

ways that consolidate both structural and compositional informa-

tion. Weight modification methods reduce a heterogeneous graph

to a weighted homogeneous graph through an edge-weighting

function based on node types. Afterwards, any homogeneous com-

munity detection algorithm can be applied to this modified graph.

For example, [55] and [82] use a matching coefficient function

that quantifies the number of similar node types. Under a certain

viewpoint, our method can be classified under this category of

algorithms. We discuss this later.

A different paradigm for combining both structural and compo-

sitional information of a network would be to take the opposite

approach of weight modification. One could transform a heteroge-

neous graph to a point cloud by converting structural information

coupled with node type data into a node distance function [77].

Then, any distance-based clustering method such as k-means can be

applied on this point cloud. This approach incorporates both struc-

ture and composition of the network. Linear combination methods

take a linear combination of type similarity and structural similarity

functions as proposed in [25]. Walk strategies on heterogeneous

graphs have also been used to compute vertex distance functions.

The work in [90] defines a random walk on a heterogeneous graph

such that more paths—alongside the paths from the network struc-

ture alone—exist between nodes of the same type, thus measuring

vertex proximity with twomodes of data. Another distance function

based on breadth-first search is proposed in [35] that uses the node

types to determine the next visited node, and thus the distance.

These similarity reductionmethods have a feature that nodes that

are structurally far from each other but share similar attributes may

become close after this modification [18]. As a consequence, clusters

may contain disconnected portions of the graph which is generally

not seen as a characteristic of communities. Using motif-based

clustering in our work allows us to preserve this connectedness

property. Another standard homogeneous clustering approach that

has been extended to heterogeneous graphs is statistical inference

such as generative models [51], stochastic block models [12], and

Bayesian inference [89].

12

Higher-Order Clustering for Heterogeneous Networks
via Typed Motifs

In this work, we develop a principled framework for higher-order
clustering in heterogeneous graphs. Furthermore, while most exist-

ing methods for heterogeneous graphs lack a sound theoretically

grounded framework, we rigorously prove mathematical guaran-

tees on the optimality of the higher-order clustering obtained from

the framework.

Graphlets. Graphlets (network motifs) were first introduced in

[54, 76] to study the structural design principles of single-typed bi-

ological networks. In that work, graphlets were found to be the fun-

damental building blocks of complex homogeneous (single-typed)

networks. Various algorithms have been developed to count the

occurrences of all graphlets up to a given size on the nodes [53]

and edges [3, 4] of a graph. Motif discovery algorithms are limited

in that they are computationally expensive for larger motifs and

they search for motifs operating in isolation. In [45], it was shown

that network context, i.e., the connections of the motif to the rest

of the network, is important in inferring the functionality of a mo-

tif. Motifs have recently been used in other higher order-network

analysis methods such as role discovery [65], network embeddings

[67], inductive network representation learning [73], and temporal

network analysis [59].

Motifs were first used for community detection in [10]. In that

work, motif modularity was introduced as a generalization of the

standard notion of modularity. Once motif modularity is defined,

their method essentially becomes a modularity maximization prob-

lem. As mentioned above, modularity-based methods ignore any

between-community connectivity information. Therefore, the con-

nectivity of the communities to the rest of the network is not con-

sidered in the motif-based modularity method, and thus we lose

information that may be of value in correctly capturing useful

community structure. Moreover, this method still suffers from the

resolution limit [32] and requires longer computation. More re-

cently, [14, 85] extended the definition of graph conductance based

on the existing notion of untyped-motifs for homogeneous graphs.

This definition is a special case of the proposed framework when

untyped graphlets are used and the graph is homogeneous.

Previouswork has focused entirely on untypedmotifs/graphlets [3,
4, 6, 74]. In this work, we introduce the generalized notion of typed
graphlets and use this more powerful representation as a basis for

higher-order clustering. Typed graphlets generalize the notion of

graphlets to rich heterogeneous networks as they explicitly cap-

ture the higher-order typed connectivity patterns in such networks.

Using this more appropriate and general notion, we develop a prin-

cipled general higher-order clustering framework by introducing

typed-graphlet conductance that generalizes the traditional conduc-
tance to higher-order structures in heterogeneous graphs. Recall

that homogeneous, labeled, signed, and attributed graphs are all

special cases of heterogeneous graphs. The framework provides

mathematical guarantees on the optimality of the higher-order clus-

tering obtained. The theoretical results extend to typed graphlets

of arbitrary size and avoids restrictive special cases required in

prior work. In addition, existing work on higher-order motif-based

methods have focused entirely on simple homogeneous graphs

whereas our work focuses on rich heterogeneous networks with an

arbitrary number of node and edge types (Figure 1). Furthermore,

while previous work on higher-order clustering was designed for

homogeneous graphs and untyped-graphlets, they also focused

only on community detection whereas this work also leverages the

proposed framework for deriving higher-order embeddings and

graph compression based on the typed-graphlet spectral ordering.

6 CONCLUSION

This work proposed a general framework for higher-order spectral

clustering in heterogeneous graphs. The framework explicitly in-

corporates heterogeneous higher-order information by counting

typed graphlets that leverage node and edge types. It is shown that

typed-graphlets generalize the notion of graphlets to rich heteroge-

neous networks and that these explicitly capture the higher-order

typed connectivity patterns in such networks. Using these as a

basis, we proposed the notion of typed-graphlet conductance that
generalizes the notion of conductance to higher-order structures in

heterogeneous graphs. Typed-graphlet conductance minimization,

for a given typed graphlet, provides a cut in the heterogeneous

graph that preserves instances of the typed graphlet in a balanced

manner.

The framework provides mathematical guarantees on the op-

timality of the higher-order clustering obtained. The theoretical

results extend to typed graphlets of arbitrary size and avoids restric-

tive special cases required in prior work. The framework unifies

prior work and serves as a basis for analysis of higher-order spec-

tral clustering methods. It was shown that spectral clustering and

untyped-graphlet spectral clustering are special cases in the pro-

posed framework. The experiments demonstrated the effectiveness

and utility of the proposed framework for three important tasks

including (i) clustering, (ii) predictive modeling, and (iii) graph com-

pression. For these tasks, the approach was shown to outperform

other state-of-the-art methods with a significant improvement in

all cases. The approach achieves an overall improvement in F1 and

AUC of 18.7% and 14.4% for link prediction whereas for graph com-

pression it achieves a mean improvement of 20.8% across all graphs

and methods. Finally, typed-graphlet spectral clustering is shown to

uncover better clusters than state-of-the-art methods with a mean

improvement of 43x over all graphs and methods.

REFERENCES

[1] Evrim Acar, Tamara G Kolda, and Daniel M Dunlavy. 2011. All-at-once optimiza-

tion for coupled matrix and tensor factorizations. arXiv:1105.3422 (2011).
[2] Nesreen Ahmed, Ted Willke, and Ryan A. Rossi. 2016. Exact and Estimation of

Local Edge-centric Graphlet Counts. In KDD BigMine. 16.
[3] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. 2015.

Efficient Graphlet Counting for Large Networks. In ICDM. 1–10.

[4] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, Nick Duffield, and Theodore L.

Willke. 2016. Graphlet Decomposition: Framework, Algorithms, and Applications.

KAIS (2016), 689–722.
[5] Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou, John Boaz Lee, Xiangnan Kong,

Theodore L. Willke, and Hoda Eldardiry. 2018. Learning Role-based Graph

Embeddings. In arXiv:1802.02896.
[6] Nesreen K. Ahmed, Theodore L. Willke, and Ryan A. Rossi. 2016. Estimation of

Local Subgraph Counts. In IEEE BigData. 586–595.
[7] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex

networks. Rev. Mod. Phys. 74 (Jan 2002), 47–97. Issue 1.

[8] Hélio Almeida, Dorgival Guedes, Wagner Meira, and Mohammed J Zaki. 2011. Is

there a best quality metric for graph clusters?. In ECML/PKDD. Springer, 44–59.
[9] Noga Alon. 1997. On the edge-expansion of graphs. Combinatorics, Probability

and Computing 6, 2 (1997), 145–152.

[10] Alex Arenas, Alberto Fernandez, Santo Fortunato, and Sergio Gomez. 2008. Motif-

based communities in complex networks. Journal of Physics A: Mathematical and
Theoretical 41, 22 (2008), 224001.

13

Carranza, A.G. et al.

[11] Leon Danon Arenas, Albert Díaz-Guilera, Jordi Duch, and Alex. 2005. Comparing

community structure identification. Journal of Statistical Mechanics: Theory and
Experiment 09 (2005), P09008.

[12] Ramnath Balasubramanyan and William W Cohen. 2011. Block-LDA: Jointly

modeling entity-annotated text and entity-entity links. In SDM. SIAM, 450–461.

[13] Arindam Banerjee, Sugato Basu, and Srujana Merugu. 2007. Multi-way clustering

on relation graphs. In SDM. SIAM, 145–156.

[14] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016), 163–166.
[15] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[16] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered

label propagation: A multiresolution coordinate-free ordering for compressing

social networks. In WWW. 587–596.

[17] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression

techniques. In WWW. 595–602.

[18] Cecile Bothorel, Juan David Cruz, Matteo Magnani, and Barbora Micenková. 2015.

Clustering attributed graphs: Models, measures and methods. Network Science 3,
3 (2015), 408–444.

[19] Gregory Buehrer and Kumar Chellapilla. 2008. A scalable pattern mining ap-

proach to web graph compression with communities. In WSDM. 95–106.

[20] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning graph repre-

sentations with global structural information. In CIKM. 891–900.

[21] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessan-

dro Panconesi, and Prabhakar Raghavan. 2009. On compressing social networks.

In KDD. 219–228.
[22] Fan RK Chung. 1996. Laplacians of graphs and Cheeger’s inequalities. Combina-

torics, Paul Erdos is Eighty 2, 157-172 (1996), 13–2.

[23] Fan RK Chung. 1997. Spectral graph theory. Number 92. Amer. Math. Soc.

[24] Fan RK Chung and Kevin Oden. 2000. Weighted graph Laplacians and isoperi-

metric inequalities. Pacific J. Math. 192, 2 (2000), 257–273.
[25] D Combe, C Largeron, E Egyed-Zsigmond, and M Géry. 2012. Combining Rela-

tions and Text in Scientific Network Clustering. In ASONAM. 1248–1253.

[26] Stephen A. Cook. 1971. The Complexity of Theorem-proving Procedures. In

STOC. ACM, New York, NY, USA, 151–158.

[27] Michele Coscia, Fosca Giannotti, and Dino Pedreschi. 2011. A classification for

community discovery methods in complex networks. Statistical Analysis and
Data Mining 4, 5 (sep 2011), 512–546.

[28] I.S. Dhillon. 2001. Co-clustering documents and words using bipartite spectral

graph partitioning. In SIGKDD. 269–274.
[29] Paul Erdős and András Hajnal. 1966. On chromatic number of graphs and set-

systems. Acta Mathematica Academiae Scientiarum Hungarica 17, 1-2 (1966),

61–99.

[30] Pedro F Felzenszwalb and Daniel P Huttenlocher. 2004. Efficient graph-based

image segmentation. IJCV 59, 2 (2004), 167–181.

[31] Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3
(2010), 75–174.

[32] Santo Fortunato and Marc Barthélemy. 2007. Resolution limit in community

detection. PNAS 104, 1 (2007), 36–41.
[33] Santo Fortunato and Darko Hric. 2016. Community detection in networks: A

user guide. Physics Reports 659 (2016), 1–44.
[34] Marco Gaertler. 2005. Clustering. In Network analysis. Springer, 178–215.
[35] Rong Ge, Martin Ester, Byron J Gao, Zengjian Hu, Binay Bhattacharya, and Boaz

Ben-Moshe. 2008. Joint Cluster Analysis of Attribute Data and Relationship Data:

The Connected K-center Problem, Algorithms and Applications. TKDD 2, 2 (jul

2008), 7:1—-7:35.

[36] David F Gleich and C Seshadhri. 2012. Vertex neighborhoods, low conductance

cuts, and good seeds for local community methods. In SIGKDD. 597–605.
[37] Gene H Golub and Charles F Van Loan. 2012. Matrix computations. Vol. 3. JHU

Press.

[38] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD. 855–864.
[39] Steve Harenberg, Gonzalo Bello, L Gjeltema, Stephen Ranshous, Jitendra Harlalka,

Ramona Seay, Kanchana Padmanabhan, and Nagiza Samatova. 2014. Community

detection in large-scale networks: a survey and empirical evaluation. Wiley
Interdisciplinary Reviews: Computational Statistics 6, 6 (2014), 426–439.

[40] Bruce Hendrickson and Robert Leland. 1995. An improved spectral graph parti-

tioning algorithm for mapping parallel computations. SIAM Journal on Scientific
Computing 16, 2 (1995), 452–469.

[41] Shlomo Hoory, Nathan Linial, and Avi Wigderson. 2006. Expander graphs and

their applications. Bull. Amer. Math. Soc. 43, 4 (2006), 439–561.
[42] Ravi Kannan, Santosh Vempala, and Adrian Vetta. 2004. On Clusterings: Good,

Bad and Spectral. J. ACM 51, 3 (May 2004), 497–515.

[43] Chinmay Karande, Kumar Chellapilla, and Reid Andersen. 2009. Speeding up

algorithms on compressed web graphs. Internet Mathematics 6, 3 (2009), 373–398.
[44] Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In International

Colloquium on Automata, Languages, and Programming. Springer, 597–608.

[45] Johannes F Knabe, Chrystopher L Nehaniv, and Maria J Schilstra. 2008. Do motifs

reflect evolved function? No convergent evolution of genetic regulatory network

subgraph topologies. Biosystems 94, 1 (2008), 68–74.
[46] Andrea Lancichinetti and Santo Fortunato. 2009. Community detection algo-

rithms: A comparative analysis. Physical Review E 80, 5 (nov 2009), 56117.

[47] Tom Leighton and Satish Rao. 1999. Multicommodity Max-flow Min-cut Theo-

rems and Their Use in Designing Approximation Algorithms. J. ACM 46, 6 (nov

1999), 787–832.

[48] Jure Leskovec, Kevin J Lang, and Michael Mahoney. 2010. Empirical Comparison

of Algorithms for Network Community Detection. In WWW. New York, NY,

USA, 631–640.

[49] Panagiotis Liakos, Katia Papakonstantinopoulou, and Michael Sioutis. 2014. Push-

ing the envelope in graph compression. In CIKM. 1549–1558.

[50] David Liben-Nowell and Jon Kleinberg. 2003. The link prediction problem for

social networks. In CIKM. 556–559.

[51] Yan Liu, Alexandru Niculescu-Mizil, and Wojciech Gryc. 2009. Topic-link LDA:

Joint Models of Topic and Author Community. In ICML. New York, NY, USA,

665–672.

[52] Fragkiskos D Malliaros and Michalis Vazirgiannis. 2013. Clustering and com-

munity detection in directed networks: A survey. Physics Reports 533, 4 (2013),
95–142.

[53] Dror Marcus and Yuval Shavitt. 2012. RAGE–a rapid graphlet enumerator for

large networks. Computer Networks 56, 2 (2012), 810–819.
[54] R Milo, S Shen-Orr, S Itzkovitz, N Kashtan, D Chklovskii, and U Alon. 2002.

Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 5594
(2002), 824–827.

[55] Jennifer Neville, Micah Adler, and David Jensen. 2003. Clustering relational data

using attribute and link information. In IJCAI Workshop. 9–15.
[56] M E J Newman. 2011. Communities, modules and large-scale structure in net-

works. Nature Physics 8 (dec 2011), 25.
[57] M E J Newman and M Girvan. 2004. Finding and evaluating community structure

in networks. Physical Review E 69, 2 (feb 2004), 26113.

[58] Andrew Y Ng, Michael I Jordan, and Yair Weiss. 2002. On spectral clustering:

Analysis and an algorithm. In NIPS. 849–856.
[59] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in Temporal

Networks. In WSDM. 601–610.

[60] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD. 701–710.
[61] N Pržulj, D G Corneil, and I Jurisica. 2004. Modeling interactome: scale-free or

geometric? Bioinformatics 20, 18 (dec 2004), 3508–3515.
[62] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear

time algorithm to detect community structures in large-scale networks. Physical
review E 76, 3 (2007), 036106.

[63] Ryan A. Rossi and Nesreen K. Ahmed. 2014. Coloring Large Complex Networks.

Social Network Analysis and Mining 4, 1, Article 228 (2014), 37 pages.

[64] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive Graph Analytics and Visualization. InAAAI. http://networkrepository.
com

[65] R A Rossi and N K Ahmed. 2015. Role Discovery in Networks. TKDE 27, 4 (2015),

1112–1131.

[66] Ryan A. Rossi, Nesreen K. Ahmed, and Eunyee Koh. 2018. Higher-Order Network

Representation Learning. In WWW.

[67] Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao,

and Yasin Abbasi-Yadkori. 2018. HONE: Higher-Order Network Embeddings.

arXiv:1801.09303 (2018).
[68] Ryan A. Rossi, David F. Gleich, and Assefaw H. Gebremedhin. 2015. Parallel

Maximum Clique Algorithms with Applications to Network Analysis. SISC 37, 5

(2015), 28.

[69] Ryan A. Rossi and Rong Zhou. 2015. Scalable Relational Learning for Large

Heterogeneous Networks. In DSAA. 1–10.
[70] Ryan A. Rossi and Rong Zhou. 2016. Parallel Collective Factorization forModeling

Large Heterogeneous Networks. In SNAM. 30.

[71] Ryan A. Rossi and Rong Zhou. 2018. GraphZIP: A Clique-based Sparse Graph

Compression Method. Journal of Big Data 5, 1 (2018), 14.
[72] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2017. Estimation of Graphlet

Statistics. In arXiv:1701.01772v1. 1–14.
[73] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2018. Deep Inductive Network

Representation Learning. In WWW BigNet. 8.
[74] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2018. Estimation of Graphlet

Counts in Massive Networks. In TNNLS. 1–14.
[75] Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review 1, 1 (2007),

27–64.

[76] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. 2002. Network

motifs in the transcriptional regulation network of Escherichia coli. Nature
Genetics 31 (Apr 2002), 64.

[77] C Shi, Y Li, J Zhang, Y Sun, and P S Yu. 2017. A Survey of Heterogeneous

Information Network Analysis. TKDE 29, 1 (2017), 17–37.

14

http://networkrepository.com
http://networkrepository.com

Higher-Order Clustering for Heterogeneous Networks
via Typed Motifs

[78] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.

TPAMI 22, 8 (2000), 888–905.
[79] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2016. CoreScope: Graph

Mining Using k-Core Analysis–Patterns, Anomalies and Algorithms. In ICDM.

469–478.

[80] Jiří Šíma and Satu Elisa Schaeffer. 2006. On the NP-completeness of some graph

cluster measures. In International Conference on Current Trends in Theory and
Practice of Computer Science. Springer, 530–537.

[81] Horst D Simon. 1991. Partitioning of unstructured problems for parallel process-

ing. Computing systems in engineering 2, 2 (1991), 135–148.

[82] Karsten Steinhaeuser and Nitesh V Chawla. 2008. Community Detection in a

Large Real-World Social Network BT - Social Computing, Behavioral Modeling,

and Prediction, Huan Liu, John J Salerno, and Michael J Young (Eds.). Springer

US, Boston, MA, 168–175.

[83] Yizhou Sun and Jiawei Han. 2013. Mining heterogeneous information networks:

a structural analysis approach. SIGKDD Explorations 14, 2 (2013), 20–28.
[84] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale Information Network Embedding.. In WWW.

[85] Charalampos E Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. 2017.

Scalable Motif-aware Graph Clustering. InWWW. International WorldWideWeb

Conferences Steering Committee, Republic and Canton of Geneva, Switzerland,

1451–1460.

[86] Rafael Van Driessche and Dirk Roose. 1995. An improved spectral bisection

algorithm and its application to dynamic load balancing. Parallel computing 21, 1

(1995), 29–48.

[87] Deepak Verma and Marina Meila. 2003. A comparison of spectral clustering

algorithms. University of Washington Tech Rep UWCSE030501 1 (2003), 1–18.
[88] Konstantin Voevodski, Shang-Hua Teng, and Yu Xia. 2009. Finding local commu-

nities in protein networks. BMC bioinformatics 10, 1 (2009), 297.
[89] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. 2012. A

Model-based Approach to Attributed Graph Clustering. In SIGMOD (SIGMOD
’12). ACM, New York, NY, USA, 505–516.

[90] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph Clustering Based on

Structural/Attribute Similarities. VLDB 2, 1 (aug 2009), 718–729.

15

	Abstract
	1 Introduction
	2 Framework
	2.1 Heterogeneous Graph Model
	2.2 Graphlets
	2.3 Typed-Graphlet Conductance
	2.4 Typed-Graphlet Laplacian
	2.5 Typed-Graphlet Spectral Clustering
	2.6 Typed-Graphlet Node Embeddings

	3 Theoretical Analysis
	4 Experiments
	4.1 Clustering
	4.2 Link Prediction in Heterogeneous Graphs
	4.3 Graph Compression

	5 Related Work
	6 Conclusion
	References

