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ABSTRACT

This paper introduces higher-order link prediction methods based
on the notion of closing higher-order network motifs. The methods
are fast and efficient for real-time ranking and link prediction-based
applications such as online visitor stitching, web search, and online
recommendation. In such applications, real-time performance is
critical. The proposed methods do not require any explicit training
data, nor do they derive an embedding from the graph data, or
perform any explicit learning. Most existing unsupervised methods
with the above desired properties are all based on closing triangles
(common neighbors, Jaccard similarity, and the ilk). In this work,
we develop unsupervised techniques based on the notion of closing
higher-order motifs that generalize beyond closing simple triangles.
Through extensive experiments, we find that these higher-order
motif closures often outperform triangle-based methods, which are
commonly used in practice. This result implies that one should
consider other motif closures beyond simple triangles. We also find
that the “best” motif closure depends highly on the underlying
network and its structural properties. Furthermore, all methods
described in this work are fast for link prediction-based applications
requiring real-time performance. The experimental results indicate
the importance of closing higher-order motifs for unsupervised
link prediction. Finally, these new higher-order motif closures can
serve as a basis for studying and developing better unsupervised
real-time link prediction and ranking methods.
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Figure 1: Higher-OrderMotif Closures. The unshaded/white

nodes are node 𝑖 and 𝑗 . Given a node pair (𝑖, 𝑗) ∉ 𝐸 (un-

shaded/white nodes) and anymotif/induced subgraph𝐻 , the

“edge” between 𝑖 and 𝑗 (dotted gray line) is said to close an

instance 𝐹 of 𝐻 if the edge (𝑖, 𝑗) were to actually exist in 𝐺 .
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1 INTRODUCTION

Link prediction generally refers to predicting the existence of edges
(node pairs) in 𝐺 such that the predicted edges (node pairs) are
not in the original edge set 𝐸 of 𝐺 . The goal of this task may be
to predict future links at time 𝑡 + 1 or to simply predict links that
were not observed (e.g., to improve the quality of downstream
tasks) [33]. Notice that nearly all link prediction methods first
compute a weight𝑊𝑖 𝑗 = 𝑓 (𝑖, 𝑗) between node 𝑖 and 𝑗 and then
use𝑊𝑖 𝑗 to decide whether to predict a link (𝑖, 𝑗) or not. We denote
the task of estimating a weight𝑊𝑖 𝑗 = 𝑓 (𝑖, 𝑗) between node 𝑖 and 𝑗

as link weighting or link strength estimation. The weights are then
used to derive a ranking of potential links. The potential links may
refer to item 𝑗 that a user 𝑖 is likely to purchase, or songs that a
user is likely to prefer, and so on. In this work, we focus on fast
and efficient methods for computing link weights based on closing
higher-order network motifs. Such weights based on higher-order
motif closures can then be used for ranking-based applications
(such as recommender systems and the ilk).

https://doi.org/10.1145/3459637.3481920
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Ranking (and link prediction [26]) is a key component of many
real-world applications such as online real-time visitor stitching [24],
web search [13], online advertising, and recommendation [28]. In
these applications, real-time performance is critical, e.g., in web
search users expect an answer to their query in the order of a few
hundred milliseconds [8, 13]. This makes it impossible to learn a
complex ranking function. Instead, there are usually two compo-
nents to such a system. In the first component, a fast online approach
is used to identify the top-𝑘 most relevant results in real-time (where
𝑘 is typically small), which are then displayed to the user. In the
second component, a more accurate but computationally expensive
model is trained to improve the initial ranking. The ranking learned
from the model can be used directly or combined with simpler ap-
proaches to obtain a final re-ranking of the web pages (or items).
In this work, we primarily focus on the first component.

Triangle closure (common neighbors) and variants based on it
such as Jaccard similarity and Adamic/Adar1 are known to be strong
baselines that are hard to beat in practice [40]. These baselines are
all fundamentally based on the notion of “closing triangles” [1, 3, 33].
They are both simple and fast for ranking in an online real-time
fashion. In this work, we investigate whether other motif closures
are as useful as the triangle closure and its variants (e.g., Jaccard
similarity, Adamic/Adar, among others [33]) that have been used
over the last decade for (un)supervised ranking and link prediction.
More specifically, we investigate the 4-node motif closures shown
in Figure 1. We find that these new motif closures are often more
predictive than their triangle-based counterparts. This result im-
plies that one should consider other motif closures beyond simple
triangles. We also find that the “best” motif closure for ranking
(and prediction) depends highly on the underlying network and its
structural properties.

While most existing work focuses on learning a ranking func-
tion [11, 14, 42], we instead focus on direct principled approaches
that are: (1) efficient (sublinear in the number of nodes), (2) can be
directly computed in real-time, (3) easily parallelizable, and (4) natu-
rally amenable for online real-time ranking in the streaming setting.
This work introduces the general notion of closing higher-order
motifs and based on this notion we develop direct ranking tech-
niques that are efficient for real-time online ranking and prediction.
Compared to similar techniques that can be used for this setting
such as Common Neighbors and methods based on it (e.g., Jaccard
similarity), the proposed techniques are fundamentally more power-
ful as they naturally generalize over these existing techniques that
are all based on closing triangles (a lower-order motif). The pro-
posed notion of higher-order motif closure can serve as a basis for
studying and developing better ranking (and prediction) methods
based on the higher-order motif closures.

2 PRELIMINARIES

Let r denote a vector of ranks from an arbitrary link estimation
method. Hence, 𝑟𝑘 denotes the link at rank 𝑘 . The label of link 𝑖 is
denoted by 𝜉 (𝑖) (or 𝜉 (𝑥𝑖 )) where 𝜉 (𝑖) = 1 if link 𝑖 is relevant and
otherwise 𝜉 (𝑖) = 0 if non-relevant. Let 𝑌 = { 𝑖 : 𝜉 (𝑖) = 1 } denote
the set of relevant links and 𝑌 = { 𝑖 : 𝜉 (𝑖) = 0 } denotes the set of

1Nearly all local techniques (9 out of 10) discussed in [33] are based on triangle closure.

irrelevant links. The number of all relevant/non-relevant links is
denoted by𝑚′ = |𝑌 | + |𝑌 |.

Definition 1 (Precision at K (P@K)). Given an integer
1 ≤ 𝑘 ≤ 𝑚′ and let 𝑌𝑘 denote the set of relevant links in the top-𝑘 ,
then Precision at K (P@K) is defined as:

P𝑘 =
|𝑌𝑘 |
𝑘

(1)

Mean Average Precision (MAP) is defined as:

E(x) = 1
|𝑌 |

𝑚′∑
𝑘=1
P𝑘 · I

[
𝑟𝑘 ∈ 𝑌

]
(2)

where 𝑟𝑘 denotes the link at rank 𝑘 and for any predicate 𝑝 the
indicator function I[ 𝑝 ] = 1 iff 𝑝 holds and 0 otherwise. Intuitively,
MAP is the average precision over all recall levels.

Given a set of links (or items for a specific user 𝑖) ordered from
most likely to least, coverage measures the normalized max position
in the ranking such that all proper relevant links are recovered:

E(x) = 1
|𝑌 |

[
max
𝑘∈𝑌

𝜋 (x, 𝑘)
]
− |𝑌 | (3)

where 𝑌 is the set of relevant links, 𝑌 is the set of irrelevant links,
and 𝜋 (x, 𝑘) is the rank of link 𝑘 ∈ 𝑌 when the estimated link weight
vector x of an arbitrary method is sorted in descending order. The
normalized coverage indicates the fraction of non-relevant links
that must be looked at before obtaining all relevant links. Perfect
performance is achieved when E(x) = 0. This implies that all
relevant links are ordered first followed by the non-relevant links.
The above criteria is normalized for comparison across different
data sets.

Discounted Cumulative Gain (DCG) [28] is a popular measure
for evaluating the quality of a ranking. It is defined as follows:

𝐷𝐶𝐺𝑘 (y) =
𝑘∑
𝑖=1

2yi − 1
log2 (𝑖 + 2) (4)

where 𝑖 is the rank and 𝑦𝑖 ∈ {0, 1} is the label (relevant/irrelevant)
of the link in position 𝑖 in the ranking. This metric emphasizes
the quality of the ranking at the top of the list since 1/log 2(𝑖 + 2)
decreases quickly and then asymptotes to a constant as 𝑖 increases.

3 HIGHER-ORDER MOTIF CLOSURES

We first introduce the notion of a higher-order motif closure that
lies at the heart of this work.

Definition 2 (Motif Closure). A node pair (𝑖, 𝑗) is said
to close a motif 𝐻 iff adding an edge (𝑖, 𝑗) to 𝐸 closes an instance
𝐹 ∈ 𝐼𝐺′ (𝐻 ) of motif 𝐻 where 𝐺 ′ = (𝑉 , 𝐸 ∪ {(𝑖, 𝑗)}) and 𝐼𝐺′ (𝐻 ) is
the set of unique instances of motif 𝐻 in 𝐺 ′.

Figure 1 provides a few examples of higher-order motif closures.
The edge (𝑖, 𝑗) shown as a dotted line in Figure 1 closes each motif.
For instance, the edge between node 𝑖 and 𝑗 in the rightmost motif in
Figure 1 closes a 4-clique. We now formally introduce the frequency
of higher-order motif closures for a node pair (𝑖, 𝑗) as follows:

Definition 3 (Higher-OrderMotifClosureFreqency).

Let 𝐺 ′ = (𝑉 , 𝐸 ′) where 𝐸 ′ = 𝐸 ∪ {(𝑖, 𝑗)} and let 𝐼𝐺′ (𝐻 ) be the set of



Table 1: Mean average precision (MAP) results for ranking (and prediction) methods based on closing higher-order motifs.
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4-path 0.829 0.687 0.607 0.594 0.649 0.778 0.865 0.729 0.893 0.873 0.914 0.788 0.942 0.326 0.844 0.854 0.707
4-star 0.880 0.787 0.595 0.696 0.922 0.814 0.895 0.861 0.840 0.813 0.889 0.688 0.961 0.388 0.807 0.972 0.695

4-cycle 0.881 0.958 0.651 0.926 0.827 0.885 0.908 0.935 0.927 0.957 0.930 0.900 0.773 0.950 0.870 0.902 0.847
4-tailed-triangle 0.804 0.612 0.570 0.752 0.773 0.663 0.773 0.681 0.689 0.779 0.600 0.496 0.530 0.834 0.722 0.937 0.582
4-chordal-cycle 0.801 0.837 0.598 0.842 0.312 0.966 0.840 0.854 0.977 0.996 0.986 0.947 0.750 0.939 0.935 0.782 0.969

4-clique 0.804 0.838 0.595 0.843 0.293 0.963 0.842 0.847 0.972 0.997 0.986 0.965 0.759 0.939 0.960 0.798 0.982

CN 0.705 0.872 0.613 0.839 0.422 0.814 0.833 0.897 0.839 0.960 0.949 0.852 0.342 0.945 0.790 0.890 0.941
Jaccard Sim. 0.705 0.873 0.618 0.841 0.537 0.933 0.853 0.918 0.955 0.997 0.973 0.918 0.764 0.944 0.841 0.933 0.949

Adamic/Adar 0.705 0.883 0.621 0.842 0.549 0.940 0.856 0.920 0.959 0.997 0.976 0.919 0.777 0.945 0.848 0.935 0.953

Figure 2: Precision at 𝑘 = 1, . . . , 40 for different motif closure rankings.

unique instances of motif 𝐻 in 𝐺 ′. Then the frequency of closing a
higher-order motif 𝐻 between node 𝑖 and 𝑗 is:

𝑊𝑖 𝑗 =
∑

𝐹 ∈𝐼𝐺′ (𝐻 )
I
(
{𝑖, 𝑗} ∈ 𝐸 ′(𝐹 )

)
(5)

where𝑊𝑖 𝑗 is equal to the number of unique instances of𝐻 that contain
nodes {𝑖, 𝑗} ⊂ 𝑉 (𝐺 ′) as an edge.

We now discuss an approach for computing the motif closure
weight𝑊𝑖 𝑗 representing the frequency of closing motif 𝐻 between
node 𝑖 and 𝑗 . The approach has two simple steps. First, given an

arbitrary node pair (𝑖, 𝑗), a motif 𝐻 of interest, and the current
graph 𝐺 = (𝑉 , 𝐸), we add the node pair (𝑖, 𝑗) as an edge by setting
𝐸 ′ ← 𝐸 ∪ {(𝑖, 𝑗)} and 𝐺 ′ = (𝑉 , 𝐸 ′).2 As an aside, this can be
performed implicitly without any additional work. After adding
(𝑖, 𝑗) to the edge set, we count the occurrences of motif (induced
subgraph/graphlet) 𝐻 between node 𝑖 and 𝑗 in𝐺 ′. For computing
the number of instances of motif𝐻 that contain nodes 𝑖 and 𝑗 in𝐺 ′,
we can always use the fastest known algorithm [3]. Nevertheless,

2Note that if edges are arriving continuously over time in a streaming fashion, then
we may also encounter a node 𝑖 (or 𝑗 ) such that 𝑖 ∉ 𝑉 . In this case, we also set
𝑉 ′ ← 𝑉 ∪ {𝑖 } and𝐺′ = (𝑉 ′, 𝐸′) .



one can always modify the algorithm to count all motif instances
that contain node 𝑖 and 𝑗 such that the method implicitly treats the
pair of nodes (𝑖, 𝑗) as an edge to determine the number of instances
of 𝐻 that would be closed if (𝑖, 𝑗) was to be added to 𝐺 . Given a
set Y = {𝑦1, 𝑦2, . . . , 𝑦 𝑗 , . . .} of nodes (items, ads, songs, friends) to
be ranked, we can use the above routine to obtain𝑊𝑖 𝑗 = 𝑓 (𝑥𝑖 , 𝑦 𝑗 ),
∀𝑗 = 1, . . . , |Y|.

Extending Other Measures using Motif Closure. Given two nodes
𝑖 and 𝑗 , Common Neighbor-based methods are those that use the
quantity |Γ𝑖 ∩ Γ𝑗 | where Γ𝑖 and Γ𝑗 are the set of neighbors for node
𝑖 and 𝑗 , respectively. Common neighbors is simply𝑊𝑖 𝑗 = |Γ𝑖 ∩ Γ𝑗 |
where𝑊𝑖 𝑗 represents the number of potential triangles thatwould be
closed if there were an edge between 𝑖 and 𝑗 . The notion of “closing”
triangles lies at the heart of many other existing methods that are
based on |Γ𝑖 ∩ Γ𝑗 | such as Jaccard similarity, Adamic/Adar (AA),
among others. All of these methods can be viewed as extensions of
Common Neighbors with some form of normalization, e.g., Jaccard
similarity is𝑊𝑖 𝑗 = |Γ𝑖 ∩Γ𝑗 |/|Γ𝑖 ∪Γ𝑗 |. Extending the proposed higher-
order motif-based link ranking and prediction techniques is left
for future work. This includes extending the notion of “closing”
higher-order network motifs for other measures such as Jaccard
similarity, Adamic/Adar, among any others where the notion of
closing triangles can be replaced with the notion of closing a higher-
order motif introduced in this work.

Parallelization. The motif closures lend themselves to an efficient
parallel implementation. Observe that each motif closure is defined
precisely for a pair of nodes and thus each weight representing the
strength of that link (node pair) can be estimated independently
using only the local structure surrounding the nodes. Thus, the edge
weights can be computed efficiently in parallel. The communication
costs are also minimal. Moreover, all such 4-node motif closures
require only local information of their surrounding neighborhood.
Therefore, the motif closures can also be computed in the streaming
or semi-streaming setting where the amount of memory is limited
and thus storing the entire graph is impossible. In such a setting, it
may be useful to implement the parallelization at a finer-granularity,
which is also straightforward for such motif closures.

4 EXPERIMENTS

The experiments are designed to evaluate the effectiveness of dif-
ferent motif closures that go beyond closing triangles. In particular,
the experiments investigate the following key questions:

Q1 Do other motif closures perform better than triangle closure
and its variants for some graphs?

Q2 Does the “best” motif closure depend highly on the under-
lying network and its structural properties or is there one
motif closure that always outperforms the others?

Q3 Are the motif closures more robust to noise in the graph
(e.g., random link additions) compared to triangle closure
methods?

To ensure the significance and generality of our findings (as much as
possible), we evaluate the proposed methods using a wide variety of
networks from different application domains. All data was obtained
from NetworkRepository [31].

To investigate the above questions, we compare the higher-order
motif closures against triangle closure (common neighbors) and
its variants (Jaccard similarity, Adamic/Adar) since these are all
based on closing triangles and have the same desired properties as
the higher-order motif closure methods described in this paper. In
particular, we compare against other online approaches that can
be used in a streaming real-time fashion with similar runtime. In
this work, we only investigate the most basic and fundamental
higher-order motif closures. Using the new higher-order motif
closures as a basis to develop more sophisticated measures for
ranking and link prediction is left for future work. However, we
did run a few experiments using an extended higher-order Jaccard
similarity (one for each motif closure, giving 6 total for 4-node
motifs) and higher-order Adamic/Adar ranking measures, again
giving 6 new rankings total. Since each variant provides 6 additional
rankings, the results were removed for brevity, but in some cases
performed better than the most basic motif closures introduced
in this paper. As such, the proposed notion of higher-order motif
closures serve as fundamental building blocks for developing better
higher-order ranking and prediction methods.

Unless otherwise mentioned, we hold-out 10% of the observed
node pairs uniformly at random and randomly sample the same
number of negative node pairs. We repeat this 10 times and aver-
age the results. We then use the methods to obtain a ranking of
the node pairs in this set.3 Recall the proposed techniques do not
require learning a sophisticated model nor do they require training
data. As such, the notion of motif closure proposed in this work
can be used in a real-time streaming fashion and has many other
advantages to more sophisticated model-based approaches. Mean
Average Precision (MAP) results are provided in Table 1 whereas
coverage is provided in Table 2.

Result 1. Higher-order motif closures can outperform triangle
closure (common neighbors) and other methods based on it.

In nearly all cases, the higher-order motif closures achieve better
precision and coverage than techniques based on closing lower-
order triangles. This result has a number of important implications.
First, it implies that one should also consider other motif closures
that go beyond simple triangles. Furthermore, this finding also
brings new opportunities for research on different and more useful
variants based on these new motif closures, similar to how triangle
closure has been used to derive many variations including Jaccard
similarity, Adamic/Adar, RA, cosine similarity, Sorensen index, hub
index, hub depressed index, among others discussed in [33]. Sec-
ond, the “best” motif closure for a given task depends highly on
the underlying network structure and domain-level processes that
govern it. Third, existing supervised learning methods can benefit
from these new motif closures by leveraging the full range of motif
closures (going from least to most dense as shown in Figure 1).

Result 2. There is no single higher-order motif closure that per-
forms best for all graphs. The best motif depends highly on the struc-
tural characteristics of the graph and its domain (biological vs. social
network) as shown in Table 1 and Table 2.

3In recommender systems, the set of node pairs to be ranked is actually a smaller set
of “relevant items” Y𝑖 = {𝑦1, . . . , 𝑦 𝑗 , . . .} ⊂ Y for a user 𝑖 . Nevertheless, this can
also be viewed as a ranking of node pairs where user 𝑖 is fixed.



Figure 3: nDCG at 𝑘 = 1, . . . , 40 for different motif closure rankings.

Table 2: Coverage (↓) results for the ranking methods. Coverage measures the normalized max position in the ranking such

that all positive node-pairs are recovered. Lower is better.
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4-path 0.606 0.964 0.822 0.962 0.537 0.958 0.828 0.980 0.963 0.911 0.936 0.976 1 0.999 0.970 0.579 0.991
4-star 0.637 0.950 0.815 0.944 0.024 0.911 0.972 0.963 0.945 0.998 0.985 0.915 0.088 0.999 0.953 0.245 0.986

4-cycle 0.300 0.375 0.922 0.645 0.457 0.942 0.542 0.483 0.869 0.801 0.952 0.942 0.995 1 0.971 0.366 0.897
4-tailed-triangle 1 0.910 1 1 0.451 0.967 0.654 0.756 0.986 0.893 0.997 0.964 1 1 0.981 0.404 0.992
4-chordal-cycle 1 0.913 1 0.913 0.936 0.613 1 1 0.228 0.211 0.217 0.796 0.965 1 1 0.620 0.390

4-clique 1 1 1 1 1 0.709 1 1 0.322 0.216 0.315 0.521 0.989 1 0.902 0.62 0.409

CN 1 0.732 1 0.826 0.652 0.705 0.752 0.739 0.788 0.224 0.782 0.894 0.972 1 0.864 0.461 0.766
Jaccard Sim. 1 0.732 1 0.826 0.658 0.707 0.752 0.739 0.824 0.225 0.782 0.902 0.960 1 0.885 0.462 0.762

Adamic/Adar 1 0.732 1 0.826 0.653 0.706 0.747 0.739 0.823 0.218 0.783 0.905 0.923 1 0.866 0.462 0.761

This implies that different motif closures perform better than
others depending on the underlying graph characteristics and struc-
tural properties, and the best motif closure appears to be correlated
with the underlying domain. This result is consistent with the
no-free-lunch-theorem [41]. In particular, there are specific motif-
closures that often perform best for specific data types/domains(e.g.,
bio, social,...), which is consistent with no-free-lunch-theorem [41].
Furthermore, there is almost always a motif-closure that outper-
forms the baselines, which is significant as well.

Result 3. The best performing motif closure for a given net-
work is consistent across different evaluation measures. The motif
closure that achieves the best precision (Table 1) for a given network
is typically the same motif that achieves the best coverage (Table 2).

In Table 1-2, biological and brain networks achieve best perfor-
mance using the ranking given by 4-cycle and 4-star closures. This
also holds true for the interaction (ia-reality) and road network
investigated. The 4-star and 4-cycle motif closures are more sparse
compared to the 4-chordal-cycle (paw motif) and 4-clique motif



Table 3: Robustness results (MAP). See text for discussion.
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Adamic/Adar 0.704 0.809 0.462 0.803 0.375 0.912 0.808 0.831

closure. In the web graph, economic, and social networks, both the
4-chordal-cycle (diamond motif closure) and 4-clique motif closure
achieves significantly better performance than the other motif clo-
sures. Notice that both these motif closures are composed of two
or more triangles and thus can be seen as a stronger triadic closure
motif. The 4-path, 4-tailed-triangle, and triangle (CN) motif closures
did not perform the best in any of the graphs investigated. That is,
there were always a higher-order motif closure with better perfor-
mance as shown in Table 1 and Table 2. In Figure 2, we also show the
precision at 𝑘 = 1, . . . , 40 for closing different higher-order network
motifs. In nearly all cases, the rankings given by the 4-node motif
closures are better than the lower-order CN approach that is based
on closing triangles. In Figure 3, we also provide the normalized
Discounted Cumulative Gain (nDCG) [28] at 𝑘 = 1, . . . , 40 for the
different motif closures. nDCG [28] is another standard ranking
quality measure that emphasizes the quality of ranking at the top
of the list. The results in Figure 3 are shown to be consistent with
those in Figure 2.

Robustness of Ranking from Higher-Order Motif Closures. In ad-
dition, we investigate the robustness of the higher-order motif
closures to noise in the graph, i.e., random link additions. To un-
derstand the robustness of the motif closure methods for graphs
with noisy and spurious links, we select pairs of nodes uniformly
at random that are not linked in 𝐺 and create a link between each
pair. In this set of experiments, we sample |𝐸 |/2 node pairs (nega-
tive/unobserved edges) and add them to 𝐺 . Results are shown in
Table 3.

Result 4. Motif closures are robust to noise and the robustness
of the ranking is often better than triangle closure techniques.

Runtime performance. We report the average runtime in millisec-
onds to compute all motif closures for each node pair in 𝐺 . The
methods were implemented in python and all experiments were
performed on a laptop (MacBook Pro 2017, 3.1 GHz Intel Core i7,
16GB RAM). For most graphs, it takes less than a millisecond on
average as shown in Figure 4 and therefore is fast for large-scale
ranking problems. Note these results include the runtime to com-
pute 3-node motif closures as well (and thus includes methods such
as common neighbors), since the algorithm used to count them

leverages 3-node motifs to derive the 4-node motifs efficiently (and
many in 𝑜 (1) constant time) [3].

Result 5. For any 4-node motif𝐻 , counting the number of motif
closures𝑊𝑖 𝑗 that would arise if an edge between 𝑖 and 𝑗 was added to
𝐺 is fast taking less than a millisecond on average across all graphs.

The runtime can be significantly improved for certain problem
settings: Suppose we are interested in only the top-𝑘 most relevant
node pairs (or items for a user 𝑖) given by a ranking from an arbitrary
motif closure for motif 𝐻 , then for possibly many such node pairs,
we can avoid computing𝑊𝑖 𝑗 (i.e., # of instances of motif𝐻 in𝐺 that
would be closed if the node pair (𝑖, 𝑗) actually existed/observed in
𝐺) altogether by first deriving an upper bound UB of𝑊𝑖 𝑗 in 𝑜 (1)
constant time and only computing𝑊𝑖 𝑗 if UB > 𝛿 where 𝛿 is the
weight of the node pair in the top-𝑘 ranking with minimum weight
(the node pair with rank 𝑘). Since otherwise we know𝑊𝑖 𝑗 is not
large enough to beat the node pair with the 𝑘-th largest weight.
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Figure 4: Average runtime in milliseconds to compute all
{3, 4}-node motif closures for each node pair. Note the aver-

age runtime includes the CN and other baselines since they

are based on 3-node motifs. Nevertheless, we show the aver-

age runtime for CN as well.

5 RELATEDWORK

Model-based methods: There has been a lot of work on design-
ing supervised learning methods for link prediction [6, 22, 27,
39]. In general, these methods typically compute a set of features
based on the graph topology. For instance, one such method called
HPLP+ [27] uses features such as in/out degree, in/out volume,
common neighbors, and proximity-based measures such as Katz
and shortest path distance between all pairs of nodes. Many of
these features are computationally expensive to compute such as
the proximity-based measures. Furthermore, HPLP+ and related
supervised methods are not incremental and unable to be leveraged
for the online setting studied in this work. As an aside, many of the
individual features are non-trivial to update in real-time given a
new edge that arrives, e.g., the shortest path feature used in [27]



alone in the worst-case may trigger 𝑛 updates, and each update
may also be expensive. There has even been some work that specif-
ically focuses on computationally efficient features [18]. However,
some features used by that work still require the full graph and are
relatively inefficient to compute and/or update in real-time such as
shortest paths. Besides the above difference, this work also lever-
ages ensemble techniques for link prediction, which are even more
expensive due to learning a set of supervised models as opposed
to a single one. Some work has also been proposed in the case of
dynamic networks represented as a sequence of discrete static snap-
shot graphs [7, 10]. In particular, Berlingerio et al. [7, 10] proposed
an approach called graph evolution rule miner (GERM) for finding
graph-evolution rules with support and confidence above some
threshold.

Ensemble methods: There have also been some work on using
ensemble methods for link prediction [6, 16–18, 25, 30]. For in-
stance, one simple ensemble technique is to learn a set of𝑚 models
using different subsets of features, and then apply each one for
prediction. Such ensemble methods are known to reduce variance
at the expensive of increasing the runtime due to now having to
learn a set of𝑚 different models and use each to obtain𝑚 different
predictions, which are then combined to obtain the final prediction.
One recent work [30] uses a set of topological features that includes
a number of triangle-based features such as Common Neighbors,
Jaccard similarity, average clustering coefficient (CC) as well as
simpler degree-based features and more computationally expensive
path-based features such as the Katz measure, closeness centrality,
among others. These features are then used to learn an ensem-
ble of decision tree classifiers (random forest classifier) that are
used for link prediction. Other work has used ensemble methods
for link prediction in knowledge graphs [25] and miRNA-disease
association prediction [12]. Since ensemble methods simply com-
bine multiple models that are learned in a supervised fashion, they
come with at least the same set of disadvantages as the supervised
link prediction methods described previously. They are also more
computationally expensive since instead of learning a single model
for link prediction, they learn a set of models that are combined
to obtain a slightly more powerful model with less variance. In
terms of features, these methods use simple triangle-based closure
features and do not leverage any other motifs, or even motifs of a
larger size such as the 4-node motifs used in this work.

Unsupervised methods: Unsupervised methods that include tri-
angle closure features such as common neighbors and the ilk are
used as features by the vast majority of supervised learningmethods
for link prediction, e.g., see [6, 18, 27, 30]. As such, the importance of
these features should not be understated. Just as common neighbor-
based features have been used to achieve superior performance by
including all of them as input for learning a supervised model, the
motif closure features introduced in our work can also be lever-
aged in a similar fashion to further improve performance and the
generalizability of these models. In this work, we argue that while
such triangle-based features (and their variants) serve as a basis for
use in supervised link prediction4, there are many other potentially
more important motif closures that can also be used as features
4Most work includes many different features based on triangle closure, despite them
being very similar to one another, e.g., simple variations with different normalization.

to further improve performance. Our work demonstrates this fact
empirically as we observe that different motif closures lead to better
performance compared to the simple triangle-based methods used
in most previous work. Furthermore, the specific motif closure that
achieves best performance depends highly on the data. This result
has a number of important implications. First, it implies that one
should also consider motif closures that are different from triangles.
Second, the motif closure that is most predictive of a link depends
highly on the underlying network structure and processes that gov-
ern it. Third, this result can also be used to improve performance of
supervised link prediction methods by leveraging the motif closures
as features (going from least to most dense as shown in Figure 1).
This can also improve the generalization of such supervised link
prediction models.

While the majority of existing methods have primarily been
designed for the offline (non-streaming setting), there has recently
been somework focusing on link prediction and ranking techniques
in the online streaming setting where edges arrive continuously
over time (which is sometimes referred to as graph streams or edge
streams) [2, 38, 43, 44]. This research is the closest work related
to our own. However, this work focuses on triangle closure link
predictors such as common neighbors or Jaccard similarity [2, 44].
In contrast, our work proposes the notion of a general motif closure
for ranking and prediction, and shows that motif closures that go
beyond triangles are often better, and the best motif closure depends
highly on the underlying characteristics and structural properties
of the network.

Network embeddings: Some recent work has used network em-
bedding methods for link prediction [9, 15, 19–21, 23, 34–37]. These
works typically learn embeddings for nodes in the graph, then use
them to compute embedding vectors for edges. Given these edge
embedding vectors along with the labels (i.e., whether an edge is
an actual edge or not), they learn a model (e.g., using Logistic Re-
gression) and then apply it to predict whether a given node pair in
the test set exists or not. Similarly, some work such as DeepGL [34]
is able to learn edge embeddings/features directly given an edge
of interest, which may be an actual edge in 𝐺 or simply a node
pair of interest for estimating a weight. While previous work on
link prediction in dynamic networks use a discrete approximation
of the actual continuous-time dynamic network (edge stream) by
constructing a sequence of static snapshot graphs, one recent work
called CTDNE [29] uses temporal walks to generalize (static) walk-
based embedding methods for link prediction. More recently, [21]
proposed a Siamese adaptation of LSTM for link prediction in dy-
namic networks. Another recent work [37] uses the resource alloca-
tion of nodes in the network to learn embeddings for link prediction.
However, all these methods are supervised as the embeddings are
used as features for learning a model. They also require the full
graph. There is also a small but growing amount of research that
uses higher-order network motifs (i.e., motifs larger than 3 nodes)
as base features to derive node or edge embeddings, which are then
used for link prediction [4, 5, 32, 34]. These works are not based
on the proposed notion of closing higher-order network motifs,
nor do they leverage network motifs directly for link prediction.
Instead, they use the output embeddings as features for learning a
supervised model for link prediction.



6 DISCUSSION & CONCLUSION

In this paper, we generalized the notion of triangle closure to other
higher-order motifs such as the 4-node motif closures shown in Fig-
ure 1. Triangle closure has traditionally been used as a fundamental
basis for link prediction over the last decade. Indeed, the notion of
closing triangles lies at the heart of many important (unsupervised)
link prediction techniques including common neighbors, Jaccard
similarity, among others. Moreover, these are often used as features
for learning a supervised model for link prediction. In this work,
we demonstrated that other motif closures are sometimes more
predictive than their triangle-based counterparts. This result has
three important implications. First, it implies that one should also
consider motif closures that are different from triangles. Second,
the “best” motif closure (i.e., the motif closure that is most predic-
tive of a link) depends highly on the underlying network structure
and processes that govern it. Third, existing supervised learning
methods can benefit from these new motif closures by leveraging
the full range of motif closures (going from least to most dense as
shown in Figure 1).

The findings of this work open up many important future re-
search directions. While our work focused solely on demonstrating
that different motif closures (such as the 4-node ones investigated
in this work) are sometimes better than triangle closure (and vari-
ants based on it), future work should investigate the use of these
motif closures as features for supervised learning techniques. For
instance, how much improvement in predictive performance can be
achieved when including the 4-node motif closures as features for
supervised link prediction? Can the proposed motif closures also
improve ensemble techniques by reducing variance further and
improving the overall quality of predictions? Second, can we char-
acterize the motif closures that perform best for a given network
based on its underlying domain? In this work, we only investigated
the simplest notion of motif closure, however, future work can
investigate using these new motif closures to extend other tech-
niques such as a higher-order Jaccard similarity or higher-order
Adamic/Adar measures based on closing higher-order motifs such
as 4-cliques, 4-cycles, among others. Finally, another important
question is whether using the proposed notion of closing higher-
order motifs to derive 5-node motif closures is useful or not, i.e., is
the additional runtime worth the predictive performance gain?

REFERENCES

[1] Lada A Adamic and Eytan Adar. 2003. Friends and neighbors on the web. Social
networks 25, 3 (2003), 211–230.

[2] Nesreen K Ahmed, Nick Duffield, and Liangzhen Xia. 2018. Sampling for approx-
imate bipartite network projection. IJCAI (2018).

[3] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. 2015.
Efficient Graphlet Counting for Large Networks. In ICDM. 10.

[4] Nesreen K. Ahmed, Ryan A. Rossi, John Boaz Lee, Theodore L. Willke, Rong
Zhou, Xiangnan Kong, and Hoda Eldardiry. 2019. role2vec: Role-based Network
Embeddings. In DLG KDD.

[5] Nesreen K. Ahmed, Ryan A. Rossi, Theodore L. Willke, and Rong Zhou. 2017.
Edge Role Discovery via Higher-Order Structures. In PAKDD. 291–303.

[6] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. 2006.
Link prediction using supervised learning. In SDM06: workshop on link analysis,
counter-terrorism and security.

[7] Michele Berlingerio, Francesco Bonchi, Björn Bringmann, and Aristides Gionis.
2009. Mining graph evolution rules. In ECML/PKDD. Springer, 115–130.

[8] Michael W Berry and Murray Browne. 2005. Understanding Search Engines:
Mathematical Modeling and Text Retrieval. Vol. 17. SIAM.

[9] Stephen Bonner, Amir Atapour-Abarghouei, Philip T Jackson, John Brennan, Ibad
Kureshi, Georgios Theodoropoulos, Andrew Stephen McGough, and Boguslaw

Obara. 2019. Temporal Neighbourhood Aggregation: Predicting Future Links in
Temporal Graphs via Recurrent Variational Graph Convolutions. arXiv:1908.08402
(2019).

[10] Björn Bringmann, Michele Berlingerio, Francesco Bonchi, and Arisitdes Gionis.
2010. Learning and predicting the evolution of social networks. IEEE Intelligent
Systems 25, 4 (2010), 26–35.

[11] Sougata Chaudhuri and Ambuj Tewari. 2015. Online ranking with top-1 feedback.
In Artificial Intelligence and Statistics. 129–137.

[12] Xing Chen, Zhihan Zhou, and Yan Zhao. 2018. ELLPMDA: Ensemble learning
and link prediction for miRNA-disease association prediction. RNA biology 15, 6
(2018), 807–818.

[13] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommenda-
tion algorithms. TOIS 22, 1 (2004), 143–177.

[14] Ernesto Diaz-Aviles, Lucas Drumond, Lars Schmidt-Thieme, and Wolfgang Nejdl.
2012. Real-time top-n recommendation in social streams. In RecSys. ACM, 59–66.

[15] Aswathy Divakaran and Anuraj Mohan. 2019. Temporal Link Prediction: A
Survey. New Generation Computing (2019), 1–46.

[16] Liang Duan, Charu Aggarwal, Shuai Ma, Renjun Hu, and Jinpeng Huai. 2016.
Scaling up link prediction with ensembles. In Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining. ACM, 367–376.

[17] Liang Duan, Shuai Ma, Charu Aggarwal, Tiejun Ma, and Jinpeng Huai. 2017. An
ensemble approach to link prediction. IEEE Transactions on Knowledge and Data
Engineering (TKDE) 29, 11 (2017), 2402–2416.

[18] Michael Fire, Lena Tenenboim, Ofrit Lesser, Rami Puzis, Lior Rokach, and Yuval
Elovici. 2011. Link prediction in social networks using computationally efficient
topological features. In Third International Conference on Privacy, Security, Risk
and Trust. IEEE, 73–80.

[19] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In SIGKDD. 855–864.

[20] Di Jin, Mark Heimann, Ryan A. Rossi, and Danai Koutra. 2019. Node2BITS:
Compact Time- and Attribute-aware Node Representations for User Stitching. In
ECML/PKDD. 22.

[21] Hemant Kasat, Sanket Markan, Manish Gupta, and Vikram Pudi. 2019. Temporal
Link Prediction in Dynamic Networks. MLG KDD (2019).

[22] Hisashi Kashima and Naoki Abe. 2006. A parameterized probabilistic model of
network evolution for supervised link prediction. In Sixth International Conference
on Data Mining (ICDM). IEEE, 340–349.

[23] Seyed Mehran Kazemi and David Poole. 2018. Simple embedding for link predic-
tion in knowledge graphs. In Advances in Neural Information Processing Systems.
4284–4295.

[24] Sungchul Kim, Nikhil Kini, Jay Pujara, Eunyee Koh, and Lise Getoor. 2017. Prob-
abilistic visitor stitching on cross-device web logs. In Proceedings of the 26th
International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1581–1589.

[25] Denis Krompaß and Volker Tresp. 2015. Ensemble solutions for link-prediction in
knowledge graphs. InWorkshop on Linked Data for Knowledge Discovery (LD4KD).

[26] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for
social networks. JASIST 58, 7 (2007), 1019–1031.

[27] Ryan N Lichtenwalter, Jake T Lussier, and Nitesh V Chawla. 2010. New perspec-
tives and methods in link prediction. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 243–252.

[28] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. 2010. Intro-
duction to Information Retrieval. Nat. Lang. Eng. 16, 1 (2010), 100–103.

[29] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Dynamic Network Embeddings: From Random
Walks to Temporal Random Walks. In IEEE BigData. 1085–1092.

[30] Shruti Pachaury, Nilesh Kumar, Ayush Khanduri, and Himanshu Mittal. 2018.
Link Prediction Method Using Topological Features and Ensemble Model. In 2018
Eleventh International Conference on Contemporary Computing (IC3). IEEE, 1–6.

[31] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository
with Interactive Graph Analytics and Visualization. In AAAI. 4292–4293. http:
//networkrepository.com

[32] Ryan A. Rossi, Nesreen K. Ahmed, and Eunyee Koh. 2018. Higher-Order Network
Representation Learning. In Proceedings of the 27th International Conference
Companion on World Wide Web (WWW).

[33] Ryan A. Rossi, Luke K. McDowell, David W. Aha, and Jennifer Neville. 2012.
Transforming graph data for statistical relational learning. JAIR (2012), 363–441.

[34] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2018. Deep Inductive Graph
Representation Learning. In IEEE Transactions on Knowledge and Data Engineering
(TKDE). 14.

[35] R. V. Shaptala and G. D. Kyselev. 2019. Using graph embeddings for wikipedia
link prediction. Combintorial optimization under uncertainty and formal models
of expert estimation (2019), 48.

[36] Han Hee Song, Tae Won Cho, Vacha Dave, Yin Zhang, and Lili Qiu. 2009. Scalable
proximity estimation and link prediction in online social networks. In Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement. ACM, 322–335.

[37] Xinghao Song, Chunming Yang, Hui Zhang, Xunjian Zhao, and Bo Li. 2019.
Network Embedding by Resource-Allocation for Link Prediction. In Pacific Rim

http://networkrepository.com
http://networkrepository.com


International Conference on Artificial Intelligence. Springer, 673–683.
[38] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2017. Non-parametric estimation

of multiple embeddings for link prediction on dynamic knowledge graphs. In
Thirty-First AAAI Conference on Artificial Intelligence.

[39] Huynh Thanh Trung, Nguyen Thanh Toan, Tong Van Vinh, Hoang Thanh Dat,
Duong Chi Thang, Nguyen Quoc Viet Hung, and Abdul Sattar. 2019. A compara-
tive study on network alignment techniques. Expert Systems with Applications
(2019), 112883.

[40] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.
Verse: Versatile graph embeddings from similarity measures. InWWW. 539–548.

[41] David H Wolpert and William G Macready. 1997. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation 1, 1 (1997), 67–82.

[42] Hyokun Yun, Parameswaran Raman, and S Vishwanathan. 2014. Ranking via
robust binary classification. In NIPS. 2582–2590.

[43] Jianpeng Zhang, Kaijie Zhu, Yulong Pei, George Fletcher, and Mykola Pech-
enizkiy. 2019. Cluster-preserving sampling from fully-dynamic streaming graphs.
Information Sciences 482 (2019), 279–300.

[44] Peixiang Zhao, Charu Aggarwal, and Gewen He. 2016. Link prediction in graph
streams. In ICDE. IEEE, 553–564.


	Abstract
	1 Introduction
	2 Preliminaries
	3 Higher-Order Motif Closures
	4 Experiments
	5 Related Work
	6 Discussion & Conclusion
	References

