
Predictive Analysis by Leveraging Temporal User Behavior and
User Embeddings

Charles Chen1, Sungchul Kim2, Hung Bui3, Ryan Rossi2, Eunyee Koh2, Branislav Kveton2 and
Razvan Bunescu1∗

1Ohio University, 2Adobe Research, 3DeepMind
1{lc971015, bunescu}@ohio.edu

2{sukim, rrossi, eunyee, kveton}@adobe.com
3bui.h.hung@gmail.com

ABSTRACT
The rapid growth of mobile devices has resulted in the genera-
tion of a large number of user behavior logs that contain latent
intentions and user interests. However, exploiting such data in
real-world applications is still difficult for service providers due to
the complexities of user behavior over a sheer number of possible
actions that can vary according to time. In this work, a time-aware
RNN model, TRNN, is proposed for predictive analysis from user
behavior data. First, our approach predicts next user action more
accurately than the baselines including the n-gram models as well
as two recently introduced time-aware RNN approaches. Second,
we use TRNN to learn user embeddings from sequences of user
actions and show that overall the TRNN embeddings outperform
conventional RNN embeddings. Similar to how word embeddings
benefit a wide range of task in natural language processing, the
learned user embeddings are general and could be used in a variety
of tasks in the digital marketing area. This claim is supported em-
pirically by evaluating their utility in user conversion prediction,
and preferred application prediction. According to the evaluation
results, TRNN embeddings perform better than the baselines in-
cluding Bag of Words (BoW), TF·IDF and Doc2Vec. We believe that
TRNN embeddings provide an effective representation for solving
practical tasks such as recommendation, user segmentation and
predictive analysis of business metrics.
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Figure 1: Overview of our approach; The user embeddings
generated by our approach can be used in predictive analysis
such as user segmentation, click/conversion prediction, user
churn, and users’ preferred items prediction.
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1 INTRODUCTION
With the rapid growth of mobile devices, a large number of be-
havior logs are generated while people use their devices to access
webpages or mobile services. This leads to the task of understand-
ing and leveraging user behavior patterns. Accordingly, there have
been prior attempts to leverage user behavior logs and extracting
latent interests for solving real-world problems such as personaliza-
tion [19, 31, 35] and conversion prediction [34]. More recently, user
behavior logs have been used for inducing user representations
that reflect users’ hidden intention or temporal patterns [7, 30].
The resulting user representations can benefit look-alike model-
ing strategies for new customer acquisition [20]. In this work, we
introduce time-aware RNNs (TRNN) for modeling user behavior
and computing user embeddings from user behavior logs (Figure 1).
Behavior logs generally contain attributes such as timestamps, user
tags, and session information that have been underutilized in pre-
vious work. The proposed TRNN leverages temporal information
extracted from event timestamps, which is shown experimentally
to lead to substantial improvements in prediction accuracy. Train-
ing the TRNN model on user behavior logs has two important
outcomes:
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- A model for predicting next user actions, which can help
marketers provide a more seamless user experience.

- User embeddings, computed based on the sequence of RNN
states over the user behavior log.

First, in the next action prediction task, experimental results
show that our model outperforms bi-gram and tri-gram models,
conventional RNNs, as well as two recently introduced time-aware
RNN models that exploit a variation of LSTM cells to handle period-
icity of event sequences: DeepCare[23] and TLSTM[2]. A byproduct
of training TRNN to predict next user actions is the corresponding
sequence of states. When aggregated into fixed-size embeddings,
they can be used as effective representations of users in many other
tasks in digital marketing. We demonstrate their general utility as
user embeddings by evaluating them in two additional prediction
tasks:

- Conversion prediction: We are interested in whether the
users will convert (for example, make a purchase) in the
future. Conversion prediction models enable marketers to
discover and analyze specific user behavior–conversion pat-
terns.

- Preferred product prediction: It provides insight to the
marketers regarding product popularity and allows the users
to be provided with personalized product recommendations.

In these two practical tasks, experimental results show that
TRNN embeddings perform better than the Bag of Words (BoW),
BoW + TF·IDF and Doc2Vec baselines. Similar to how word embed-
dings benefit a wide range of task in natural language processing
(NLP), the learned user embeddings are general and could be used
in a variety of tasks in the digital marketing area.

The rest of this paper is organized as follows. Section 5 provides a
survey of related literature on the topic of user behavior modelling
and representation learning. Section 2 describes the datasets we
use to evaluate our approach. In Section 3, we introduce our model
TRNN for user behavior modeling and representation learning.
Section 4 describes the experimental evaluation of our method.
We conclude the paper with a summary of our contributions and
thoughts on future work.

2 USER BEHAVIOR DATASETS
We create two datasets of user behavior by extracting user action
logs from corporate websites, while excluding bots according to
predefined bot rules based on user-agent-string, IP address with
wildcard match and IP range match. To handle the cross-device
environment, we define user actions by concatenating ‘device’ and
‘page name’ describing specific paths to mobile/web pages that
users visited. There are three different devices: desktop, smart-
phone, and tablet. Table 1 shows an example of user event sequence
after anonymizing the company’s identity.

Each user is represented by a sequence of actions, where each
action is associated with a timestamp. In preprocessing, we remove
duplicate user actions that were repeated within 5 seconds and filter
out infrequent actions that occurred less than 100 times during a
month. The number of remaining users and unique user actions
are shown in Table 2 for each of the two datasets: CompanyA and
CompanyB. The CompanyA dataset contains more unique user
actions than CompanyB dataset.

1451923253 | tablet:XYZ 3.2.1 (50)
1451923258 | mobile:App/201512161
1451923261 | mobile:App/us/en/myplans/landing/phone
1451923267 | tablet:App/us/en/home
1451923275 | mobile:App/us/en/photopass
1453310277 | tablet:App/us/en/explore/thingstodo/home
1453310605 | mobile:App/us/en/tools/modifyselectpeople

Table 1: An example of the user behavior logwhere eachuser
action is associated with a timestamp.

Datasets # of users # of actions
Company A 106,616 10,000
Company B 54.155 1,764

Table 2: Number of users and number of unique actions in
our datasets; user behavior logs extracted from corporate
websites or mobile services.

Figure 2: Boxplot of 1) sequence length and 2) sequence-level
diversity for two datasets. The diversity of actions in a se-
quence is defined as the ratio of the number of unique user
actions over the length of sequence.

For a better understanding of the datasets, we perform a statis-
tical analysis in terms of the length of user action sequences and
the diversity of actions in the sequences. For each sequence, the
diversity of actions is computed as the number of unique user ac-
tions over the length of sequence. According to the analysis results,
CompanyA dataset generally contains shorter sequences than Com-
panyB dataset, and has lower sequence diversity. This can make
user modeling relatively easier. A more detailed analysis with quan-
titative results will be given in the experiments section. In this paper,
"action sequence" and "event sequence" are used interchangeably.

3 USER BEHAVIOR MODELING VIA TRNNS
A RNN processes a sequence of vectors S =< x1, .., xT >, where xt
is the input at time step t , such that the hidden state ht ∈ Rn at
time step t is computed recursively from the previous hidden state
and the current input, as follows:

ht = f (xt , ht−1) (1)
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where f is a non-linear function (e.g. a logistic sigmoid). To alle-
viate the vanishing gradient problem, our framework uses LSTM
networks wherein the simple non-linearity f is replaced with more
complex LSTM units [15].

Figure 3 shows an overview of our time-aware RNN model. First,
as described in Section 2, we represent each user’s behavior log
as an event sequence. Different from other types of sequential
data such as text, user actions are time-stamped, which enabled us
to additionally consider the time difference between consecutive
actions.

We observed that the time differences between user events be-
long to a wide range of values and can influence the likelihood of
particular user actions. As an example, consider that a user pur-
chase consists of three steps as follows: (Step 1) Visit an item, (Step
2) Add an item to wishlist, and (Step 3) Place an order. Assuming
the user has gone through steps 1 and 2, the likelihood of actually
taking step 3 depends on the time difference between the last two
steps. If this time difference is small, it is likely that the user will
actually purchase the item. However, if step 2 is taken after more
than one hour, it is unlikely the user will go through step 3.

We build an action vocabulary A consisting of all the unique
user actions in the dataset. We use |A| to denote the size of the
action vocabulary. In the following, we use ‘action set’ and ‘action
vocabulary’ interchangeably. We then compute the time difference
between consecutive actions as well as the time elapsed between
an action and the beginning of the session. There are two types of
inputs at each step: the one-hot representation for the user action
and the two timestamp-based inputs: 1) the time difference ∆t (1)i
between the current action and the last action, and 2) the time ∆t (2)i
elapsed between the beginning of the session and the current action.
∆t

(1)
i and ∆t

(2)
i are defined by:

∆t
(1)
i =

{
0 if i = 0
min((ti − ti−1)/tsess , 1.0) otherwise.

(2)

∆t
(2)
i =

{
0 if i = 0
(ti − t0)/(tmax − t0) otherwise.

(3)

where tsess is the threshold for sessionizing behavior logs (6 hours
in this work) and tmax is the timestamp for the last user action
in the sequence. Then the LSTM input gate zi , forget gate fi and
output gate oi at step i are computed as follows:

xi = [(Eai )T ;∆t (1)i ;∆t (2)i ]T (4)
zi = σ (Wxi + Uhi−1 + b) (5)
fi = σ (Wf xi + Uf hi−1 + bf ) (6)
oi = σ (Woxi + Uohi−1 + bo ) (7)

where ai ∈ R |A | is the one-hot representation for the ith user action
in the sequence, E ∈ Rm×|A | is a set of action embeddings for all
the user actions;m is the dimension of the action embeddings; xi ∈
Rm+2; W,Wf ,Wo ∈ Rn×(m+2), U,Uf ,Uo ∈ Rn×n are trainable
matrices; n is the dimension of the hidden state; b, bf , bo ∈ Rn are
bias terms and σ (·) is the logistic sigmoid.

The memory cell ci and the hidden state hi at current time step
i are updated as follows:

gi = ϕ(Wcxi + Uchi−1 + bc ) (8)
ci = fi ⊙ ci−1 + zi ⊙ gi (9)
hi = oi ⊙ ϕ(ci ) (10)

where Wc ∈ Rn×(m+2) and Uc ∈ Rn×n are weight matrices, bc ∈
Rn is the bias term, ϕ(·) is the hyperbolic tangent and ⊙ indicates
the element-wise multiplication.

Figure 3 shows the overall architecture of our model. The action
embeddings can be pre-trained using an external model such as
word2vec, or can be trained simultaneously with the other parame-
ters in our model.

3.1 User Behavior Modeling
In order to predict the next user action based on the output of
LSTM, the model computes a probability distribution over all the
user actions in the action vocabulary A at time step i:

pi = [p(yi = a |xi )]1≤a≤ |A | = so f tmax(Wshi ) (11)

where yi is the predicted next user action, Ws ∈ R |A |×n is the
weight matrix and pi ∈ R |A | indicates the probability distribution
for the predicted next user action. The loss Ei at time step i is given
by the following equation:

Ei = − ln pi [yi ] = − lnp(yi |xi ) (12)
The model is optimized by minimizing the total loss averaged over
all the actions appearing in the training dataset:

E =
1
|D |

∑
S∈D

1
T

∑
1≤i≤T

Ei (13)

where S =< x1, .., xT > represents a user action sequence, T is the
length of S and |D | is the number of training examples.

Once the model is trained, the next user action ŷi ∈ A is pre-
dicted as follows:

ŷi = arg max
1≤a≤ |A |

p(yi = a |xi ) (14)

Finally, the user embedding u ∈ Rn corresponding to the user event
sequence S is calculated as max pooling of all RNN states.

3.2 Sequence-level Dropout
Dropout is a regularization technique that reduces complex co-
adaptation on training data, in order to improve the generalization
performance of (deep) neural network models [26]. Our user be-
havior data contains noise and a large number of duplicate actions.
Even after doing preprocessing as described in Section 2, there exist
many duplicated user actions in individual sequences. On webpages
or mobile applications, it is common that users click the same ban-
ner or button frequently. In addition to that, user behavior does not
strictly adhere to a particular order. People frequently go back and
forth between pages, and even directly move to the page by typing
the path. These factors can have a negative impact on modeling
user behavior. To alleviate this problem, we apply dropout to input
sequences as described in Figure 4 where the circles shown with
dashed contours are randomly selected to be dropped before the
sequence is fed into the model for training.
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Figure 3: Our framework to leverage RNN-based user embeddings for predictive analysis.

Methods Datasets 0% 20% 40% 60% 80%
RNN CompanyA 0.3250 (0.00%) 0.3314 (1.95%) 0.3149 (-3.11%) 0.3286 (1.11%) 0.3110 (-4.31%)

CompanyB 0.2787 (0.00%) 0.2875 (3.14%) 0.2948 (5.78%) 0.2943 (5.59%) 0.2870 (2.97%)
TRNN CompanyA 0.4613 (0.00%) 0.4619 (0.13%) 0.4623 (0.20%) 0.4584 (-0.64%) 0.4537 (-1.65%)

CompanyB 0.3573 (0.00%) 0.3574 (0.02%) 0.3565 (-0.22%) 0.3558 (-0.43%) 0.3524 (-1.37%)
Table 3: Impact of dropout on next action prediction. Validation accuracy on our datasets. The numbers in the parentheses
show the performance improvement from using 0% of dropout in each user action sequence.

Figure 4: Sequence-level dropout. The circles shown with
dashed contours are randomly selected to be dropped before
the sequence is fed into the model for training.

Table 3 shows the top-1 accuracy with varying dropout ratio
on our datasets, in the task of predicting next user action. The
results show that in most cases the sentence-level dropout is more
beneficial for conventional RNNs. Specifically, the performance
improvement by dropout is 1.95%, and 5.78% for CompanyA and
CompanyB, respectively. In contrast, the TRNN does not benefit as
much from the sentence-level dropout, which results in less than
1% performance improvement. It can be attributed to that most
of generalization performance achieved by sentence-level dropout
are already learned by treating temporal factors. As an example,
most duplicated actions are likely occurred after few seconds. In
contrast to that, main pages are likely visited after quite amount
of time - new session after previous session. Nevertheless, TRNNs
perform better than RNNs in most cases, regardless of sentence-
level dropout.

Method Cov Acc@1 Acc@5 MRR
Bigram 0.2825 0.4287 0.6086 0.5221
Trigram 0.6270 0.4285 0.5946 0.4699
DeepCare 0.3959 0.4349 0.6459 0.5320
TLSTM 0.4270 0.4317 0.6433 0.5293
RNN 0.8434 0.3314 0.6119 0.4401
TRNN 0.8214 0.4623* 0.6953* 0.5690*

(A) CompanyA

Method Cov. Acc@1 Acc@5 MRR
Bigram 0.5909 0.3209 0.583 0.4589
Trigram 0.9041 0.3418 0.5922 0.4699
DeepCare 0.3588 0.3219 0.6245 0.4704
TLSTM 0.3446 0.3163 0.6253 0.4702
RNN 0.7352 0.2977 0.6446 0.4636
TRNN 0.6631 0.3572* 0.6833* 0.5012*

(B) CompanyB
Table 4: Accuracy of top-k actions predicted by models

4 EXPERIMENTAL EVALUATION
4.1 Prediction of Next User Action

Motivation: From the perspective of professional marketers,
accurate predictions of users’ next behavior would allow them to
provide a more seamless user experience. In order to comparatively
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evaluate the performance of our model in this setting, we also
experimented with a number of different baselines, and computed
for each the average action-level top-k accuracy.

Experimental setting:We randomly split the datasets described
in the Table 2 as follows: 80% of the user event sequences are used
for training, while the remaining 20% are used for testing. A predic-
tion is true if the actual action is included in the top-k predictions
and false otherwise. The accuracy is defined as the number of cor-
rect prediction over the total number of actions within the test
set. We compute the average accuracy of top-k predictions at the
action level as well as the Mean Reciprocal Rank (MRR) which is a
conventional way to measure the quality of ranking1. Additionally,
we compute coverage (Cov.) as the ratio of number of unique user
actions that are predicted over the length of user actions sequence.
Note that we cannot argue that higher or lower coverage is always
better. However, when related with accuracy it can provide a better
understanding of the behavior of each prediction model. We com-
pute the average accuracy and predicted action coverage for the
our datasets using the proposed TRNNs as well as the baselines.

Baselines: In our experiments, we use n-gram probability mod-
els as one baseline. N -gram models estimate the probability of the
nth user action based on the co-occurrence with the previous (n−1)
actions. The second baseline is the DeepCare model introduced by
Pham et al. [23]. The third baseline we compare with is TLSTM [2].
Both of these two models exploit the timestamps associated with
sequential data, and are thus appropriate to use with our datasets.
We also use conventional RNNs as one baseline.

Results: According to the results shown in Table 4, the TRNN
model outperforms the bi-gram and tri-gram models, and the con-
ventional RNNs by a large difference in terms of accuracy and Mean
Reciprocal Rank (MRR), although the actual improvements vary
depending on the complexity of dataset and the size of the action
set. The results indicate that in the context of predicting next user
actions, leveraging both sequential and temporal information is
crucial.

TRNN also achieves better performance compared to the recently
proposed time-aware models DeepCare and TLSTM. In contrast
with their claim that avoiding alteration of the current input’s effect
by using temporal information is helpful for modeling sequential
data, the results show that allowing complex alteration of the input
with temporal information is important for modeling user behavior
patterns. This could also be an evidence of the differences between
user behavior data and clinical records. User behavior logs from
websites or mobile services usually contain much more actions or
events. In terms of temporal information, user behavior data con-
tains more noise and smaller time differences between consecutive
actions, and accordingly, user actions show more complex patterns
which cannot be captured by the notion of general periodicity.

In terms of the coverage, bi-gram model covers the smallest
amount of the user actions compared to other models on CompanyA
dataset. However, using the entire set of user actions does not
guarantee good performance. For example, on CompanyB dataset,

1We used McNemar’s test to statistically assesses the accuracy of compared models
in the first task and t-test for the other metrics including MRR. ‘*’ indicate that the
result is statistically significant from the next nearest run at confidence level of 98%
(α = 0.02)

(A) Company A

(B) Company B

Figure 5: Performance of next user action prediction with
different size of embeddings (x-axis is embedding size and
y-axis is the top-1 accuracy)

tri-gram shows worse performance than TRNN, but the predicted
actions cover up to 90% of the entire user action set.

We conducted experiments to explore the impact of the dimen-
sion of action embeddings on the model performance (Figure 5).
Generally, the larger the action embedding dimension, the more
accurate the results are, but the ratio of performance improvement
decreases as the dimension increases. Conventional RNNs are influ-
enced by the embedding size more than TRNNs. However, although
RNNs show larger gains from larger-size embeddings, TRNNs per-
form better than RNNs in most cases even with a smaller dimension
for their embeddings. Conventional RNNs obtain performance com-
parable to TRNNs only when the size of vocabulary is limited.

4.2 Prediction of User Conversion
Motivation: Except for previous specific user events, marketers

could also be interested in predicting long-term user behavior which
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Method Dim. RIG AUC
BoW 10000 -0.4909 0.7367

BoW + TF·IDF 10000 -0.4908 0.7072
Doc2Vec 400 -0.7564 0.6356
RNN 400 -0.5950 0.7434

DeepCare 400 -0.5313 0.7681
TLSTM 400 -0.4990 0.7817
TRNN 400 -0.4802* 0.7872*

CompanyA
Table 5: Performance of models on user conversion predic-
tion.

cannot be directly defined based on specific user actions, such as
purchasing items, or (un-)subscribing services. To evaluate our ap-
proaches in this setting, we provide the user embeddings computed
by TRNNs as inputs to a linear classifier trained on the task of user
conversion. Although conversion could have different definitions
according to the target domain, we focus on user purchase, which
is available in our dataset CompanyA.

Experimental setting: In order to train the classifier, we spec-
ify the label as 1 if the user will make a purchase after tT , the
last time point in the event sequence for this user, 0 otherwise.
Conventionally, the distribution of user conversion labels is highly
skewed towards negative labels. Therefore, we weight the loss
with |losspos |/|P| for positive labels and |lossneд |/|N | for nega-
tive labels where P and N represent the user set with positive
and negative labels, respectively. To measure the performance of
the classification model, we conduct 5-fold cross-validation with
Area Under ROC Curve (AUC) and Relative Information Gain (RIG)
as the evaluation metrics, which is the conventional practice in
previous work on click prediction [9, 29, 34].

Classification Model: Given a user embedding u ∈ Rn , we
train a logistic regression model by minimizing the following cross-
entropy loss:

E = −
∑

u∈P∪N
y logp(ŷ = 1|u) + (1 − y) logp(ŷ = 0|u) (15)

where p(ŷ |u) = 1/(1 + exp(−wTu)).w is the vector of parameters
of the logistic regression model. Note that we can use any other
linear or non-linear model as well.

Baselines: As a baseline, to represent each user, we first use
Bag-of-Words (BoW) and combine it with TF·IDF as the second
baseline BoW + TF·IDF. In these two cases, the dimension of user
representation is equal to the size of entire action vocabulary |A|.
Additionally, we compare against the representation computed from
conventional RNNs and Doc2Vec2 [18]. Note that Doc2Vec learns
embeddings of sequences by predicting a target action based on its
neighbors. We also use DeepCare[23] and TLSTM[2] as baselines.
We obtain the user embeddings from these two methods by taking
max-pooling of all RNN states. In this work, we use 400 as the
dimension of user embeddings for TRNNs, DeepCare and TLSTM.

2Implementation details for Doc2Vec are as follows: Dimension of the embeddings
is 400. We use PV-DM training algorithm with window size 5 and negative sampling
where 10 noisy actions are drawn.

Figure 6: Ratio of active users and accumulated frequency
per application

Figure 7: Ratio of users per the preferred application count

Results: Table 5 reports the overall RIG and AUC of all embed-
ding approaches. Note that BoW with or without TF·IDF performs
better than Doc2Vec on CompanyA dataset. It shows that although
sequential information is important for modeling user behavior, it is
difficult to capture through co-occurrences with partial ordering in
Word2Vec-like models [21]. In addition to that, in some cases, it is
effective to consider entire corpus to capture the complex nature of
user embedding rather than to compress them to latent representa-
tions without considering temporal information. In contrast to that,
compared with all of the baselines including BoW, BoW + TF·IDF,
Doc2Vec, conventional RNNs and time-aware models such as Deep-
Care and TLSTM, our model TRNN shows better performance. We
believe that such improvements in conversion prediction have the
potential to lead to significant revenue increment in the digital
marketing area.

4.3 Preferred Mobile Applications
Motivation: Different from CompanyA dataset, CompanyB

dataset is collected from user behavior logs on multiple channels
including mobile applications, SNS and display advertisements.
Among them, to further evaluate the quality of embeddings com-
puted by our approach in the context of recommendation systems,
we define a multi-class classification task based on mobile applica-
tion logs, which have been recorded whenever users launch one of
this company’s mobile applications. Largely, there are 18 different
applications without version and platform information. We assume
that individual users will show correlated user behavior even at the
different channels.
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Experimental setting: Figure 6 shows the distribution of the
number of users and the cumulative frequency. Among the 18 appli-
cations, we select the top-8 most popular applications as our target
applications in this task. We compute the number of launches per
individual user for each of the applications served by this company,
and use this statistics to generate label information for the multi-
class classification task. More specifically, we conduct experiments
in two different scenarios. First, we predict the most preferred ap-
plication whose evaluation result will be referred to as Acc-1. In
this case, each user only has one most preferred product. However,
as shown in Figure 7, although the majority of users are interested
in one application, still about 30% users are using more than one ap-
plications. To obtain more precise results based on this observation,
we perform another experiment of predicting a set of applications
that users have used, whose evaluation result will be represented
as Acc-All. In this scenario, there could be more than one posi-
tive true label since a user may have used more than one product.
More formally, given a set of user embeddings, we train and use a
multi-class classifier to predict user preferred application(s) on the
CompanyB dataset. We compare our approaches with the baselines
described in the Section 4.2, because this task is also based on user
embeddings computed from user behavior logs.

Classification Model: We use logistic regression with multi-
nomial output [14] in this evaluation. Although one-vs-one and
one-vs-rest settings with a set of binary classifiers have also been
used for multiclass classification, multinomial logistic regression
generally shows more accurate results and is faster to train on the
larger scale dataset.

Results: Similar to the evaluation in Section 4.2, we use 400 as
the dimension of user embeddings for TRNNs. For comparison pur-
pose, we use both 400 and 800 as the embedding size for Doc2Vec
and the conventional RNNs. For BoW and BoW + TF·IDF, the di-
mension of the user representation is equal to the size of the action
set.

Table 6 shows the experimental results. In terms of Acc-1, the per-
formance of TRNNs is 71.18%. It outperforms BoW, BoW + TF·IDF,
Doc2Vec and conventional RNNs. Similar to the conversion pre-
diction task, Doc2Vec shows the lowest accuracy, whereas TRNN
models produce more than 30% improvement in accuracy with the
same size of the user embeddings.

In terms of Acc-All, the accuracy of the proposed time-aware
TRNN model is 70.54%, which shows that it performs better than
all other baselines. Again, the results show that Doc2Vec has the
lowest accuracy while TRNN brings a clear performance gain of up
to 45%. The results demonstrate that modeling sequential patterns
with TRNN leads to user embeddings that obtain good prediction
results in downstream predictive analysis tasks.

5 RELATEDWORK
User Behavior Modeling: There have been a long stream of

approaches that aim to analyze and leverage user behavior, so called
User Behavior Modeling, to solve real-world problems in many ar-
eas such as recommender systems [11, 17], social networks [13], and
online ads [1, 33]. Such approaches aim at providing seamless and
personalized user experiences, which from the marketer’s points of
view is directly related to their revenue as well. To do this, Ashish

Method Dim. Acc-1 Acc-All
BoW 1764 0.6708 0.6864

BoW + TF·IDF 1764 0.6702 0.6943
Doc2Vec 400 0.5559 0.4982
Doc2Vec 800 0.5467 0.4837
RNN 400 0.6997 0.6879
RNN 800 0.6985 0.6908
TRNN 400 0.7118* 0.7054*

Table 6: Accuracy of predicting users’ preferred applica-
tions.

et al. [20] proposed a classifier for Look-alike Modeling on tail cam-
paigns which predicts conversion based on a sequence of events
showing user behavior. More recently, Longqi et al [30] proposed
a distributed representation learning model that produces user
representations from Photoshop, and evaluate them in multiple
applications. Although there is significant prior work in under-
standing user behavior and accurately predicting relevant target
variables, user behavior modeling has been focused mostly on op-
timizing performance on a specific task for which ground truth
labels were provided. As such, the user behavior that is captured in
prior work is not general enough to be transferred to other types
of decision making problems.

Representation Learning: Representation learning has been
used to improve the performance on a wide variety of natural lan-
guage processing (NLP) tasks. The main idea is to learn a dense
fixed-size vector for each word in the vocabulary – the word em-
bedding – as a byproduct of training a model to predict the context
words of a target word and vice versa [21]. Models for learning
word embeddings have been successfully extended for learning
distributed representations of sentences, paragraphs, and entire
documents [5, 18]. Their success in NLP tasks has led to their wide-
spread use in many other fields [11, 16, 27]. More recently, Cristobal
et al. [8] proposed to learn patient embeddings by applying ML
techniques on tensors which consist of manual representations of
a sequence of clinical events per user, whereas Edward et al. [7]
introduced a Med2Vec model that learns embeddings for medical
codes and visits from large-scale EHRs.

Recurrent Neural Networks: RNNs [3, 25] provide a powerful
machine learning technique for learning the underlying structure in
sequential data. They have been applied to many areas such as natu-
ral language processing [4, 10, 24], machine translation [6, 28], text
classification [32] and image generation[12, 22]. Although RNNs
can theoretically represent arbitrary time dependencies within se-
quences, they frequently suffer from vanishing and exploding gra-
dient problems. To alleviate the vanishing gradient problem, Long
Short-Term Memory (LSTM) [15] was proposed where gates are
used to control the contribution of the long-term memory vs. the
short-term behavior due to recent input data. Subsequently, Cho
et al. [6] proposed the Gated Recurrent Unit (GRU) which includes
a reset gate and an update gate that control how much the hid-
den unit remembers or forgets while processing a sequence. More
recently, in order to handle temporal sequential data, time-aware
RNN models such as DeepCare[23] and TLSTM[2] have been pro-
posed. In these models, the gate structure of the standard LSTM
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cell is changed and temporal information is used to control the
contribution of long-term memory versus short-term memory. In
contrast, instead of modifying the internal structure of standard
LSTMs, we augment the input representation with two additional
features: the time elapsed since the previous action, and the time
elapsed since the start of the user session. For user behavior model-
ing such as predicting next user action, experimental results show
that the proposed time-aware RNN (TRNN) outperforms both Deep-
Care and TLSTM. Furthermore, instead of using an auto-encoder,
we create user representations from merging all of the RNN states
over the sequence of user actions and demonstrate their utility in
two predictive analysis tasks.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a time-aware RNN (TRNN) model for
predicting user behavior and learning user embeddings from event
sequence data. The contributions of this work are two-fold: 1) A
sequential learning model that leverages temporal information
and session information in order to model user behavior, and 2)
A framework that induces user embeddings from event sequence
data and uses them for multiple prediction tasks.

To evaluate our approaches, we first conducted experiments on
the task of predicting next user actions, using different datasets.
According to the results, TRNNs outperform bi-gram amd tri-gram
models, as well as conventional RNNs and two recently proposed
time-aware RNN models. Second, we generate a set of user em-
beddings with TRNN. To evaluate the obtained user embeddings,
we train external classifiers to predict user conversion on Compa-
nyA dataset, and user preferred mobile applications on CompanyB
dataset. In both tasks, the TRNN-based embeddings perform bet-
ter than baseline embedding approaches such as BoW, TF·IDF and
Doc2Vec, and also better than the conventional RNN-based embed-
dings. The results demonstrate that our approach has the potential
to contribute significantly to user behavior analysis, and benefit
other types of prediction models on event sequence data.

TRNN leverages temporal user behavior in order to create user
embeddings. However, given a user behavior sequence, user actions
associated with different temporal information may have different
levels of importance in the overall user embedding. To capture this
aspect, we will investigate memory augmented neural networks.
We also plan to explore methods within the variational inference
family for learning user representations.
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