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Abstract—Traditional resource (demand or supply) forecasting
models mainly focus on modeling temporal dependency. However,
spatio-temporal data include complex non-linear relational and
spatial dependencies. In addition, dynamic contextual infor-
mation also impacts resources. Methods that consider context
assume that the impact of context on resources is fixed, which
is not realistic. For example, in a bicycle-sharing system, bike
supply in stations is affected by the weather, and that effect
changes over time. We propose a novel graph-based context
integrated relational model, Context Integrated Graph Neural Net-
work (CIGNN), which models temporal, relational, spatial, and
dynamic contextual dependencies for multi-step ahead resource
forecasting. We define a resource graph, where nodes represent
locations with associated resource time-series, and context graphs
(one for each type of context), where nodes represent locations
with associated contextual time-series. Assuming that various
contexts have dynamic impact on resources, our proposed CIGNN
model employs a novel fusion mechanism that jointly learns from
multiple contextual time-series. To the best of our knowledge,
CIGNN is the first approach that integrates dynamic contextual
information using graph neural networks for resource forecasting.
Empirical results on two real-world datasets demonstrate that
CIGNN consistently outperforms state-of-the-art approaches.

Index Terms—Demand and supply forecasting, Graph Neural
Network, Spatio-temporal time-series analysis

I. INTRODUCTION

Resource (demand and supply) forecasting in spatio-temporal
data is widely studied in several fields including transporta-
tion [24], [30], construction [8], [10] and communication [41].
Traditional forecasting methods model (temporal) dependency
of resource time-series values over time [28]. However, resource
time-series values are typically recorded at various locations
and exhibit dependencies across, and based on, locations.
This requires additionally modeling relational and spatial
dependencies. Moreover, contextual (environmental) factors
(e.g., weather) also impact resource values and should be
considered. However, existing methods that model context
assume it has a fixed impact on resource values [14]. In practice,
contexts have a time-evolving (dynamic) impact, which requires
additionally modeling dynamic contextual dependency.

To address the aforementioned challenges, we propose a
novel graph model, Context Integrated Graph Neural Network
(CIGNN), which learns and incorporates temporal, relational,
spatial, and dynamic contextual dependencies for resource
forecasting. CIGNN considers a resource network of values
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recorded over time at locations, and models it as a graph,
where nodes represent locations and the corresponding resource
value time-series. CIGNN additionally uses separate graphs
to represent each context type, where nodes represent context-
recording locations and the associated contextual time-series.

CIGNN jointly predicts future values of resource and

contextual time-series simultaneously, and leverages a novel
fusion mechanism to incorporate contextual impact on resource
values. To the best of our knowledge, this is the first work that
integrates multiple sources of dynamic contextual information
for spatio-temporal time-series prediction. We evaluate our
model on two tasks: forecasting demand in a mobile call
network and forecasting supply in a bike-sharing system
on the CallMi and BikeBay datasets, respectively. The main
contributions of this work can be summarized as follows:

« Modeling Temporal, Relational, Spatial, and Dynamic
Contextual Dependencies: CIGNN performs resource
forecasting by leveraging temporal, relational, spatial, and
dynamic contextual dependencies. Existing methods do
not capture dynamic context. Table I shows a qualitative
comparison of CIGNN against state-of-the-art methods.

o Unified Multi-source Context Learning: In contrast
to existing work that manually conducts feature engi-
neering [49], treats context as fixed features [14], or
ignores contextual information [6], [25], CIGNN integrates
multiple contextual features in a unified way.

« Effectiveness: CIGNN consistently outperforms previous
methods in terms of mean absolute error (MAE) and root
mean square error (RMSE) on both datasets. CIGNN
achieves average improvement of 5.7% (MAE) and 9.4%
(RMSE) on CallMi; and 4.4% (MAE) and 2.3% (RMSE)
on BikeBay.

II. RELATED WORK

Classic time-series prediction methods (e.g., ARIMA and
exponential smoothing) do not capture relational or spatial
dependencies between nodes, cannot handle time-series with
irregularities, and perform poorly on long-term forecasting [15],
[28]. In contrast, deep learning-based approaches integrate
complex non-linear dependency [2], [4], [31]. For example,
previous spatio-temporal methods capture spatial dependency
using convolutional neural networks (CNNs) and graph neural



TABLE I
QUALITATIVE COMPARISON: CIGNN IS THE ONLY MODEL THAT INCORPORATES TEMPORAL, RELATIONAL, SPATIAL, AND CONTEXTUAL DEPENDENCIES.

Modeled Dependency = ARIMA VAR LSTM  STGCN [50] DCRNN [25] Graph WaveNet [47] CIGNN
TEMPORAL v v v v v v v
SPATIAL v v v v
RELATIONAL v v v v
DYNAMIC CONTEXTUAL v
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A simplified illustration of spatial, temporal, relational, and contextual dependencies using only one node. (a) Contextual dependency: contextual

(temperature and humidity) impact on resource graph. (b) Relational dependency: correlation between nodes in a graph. (c) Spatial dependency: spatial
accessibility between nodes in a graph. (d) Temporal dependency: historical influence on future values within a single time-series.

networks (GNNs) [26], [29], [45]. Moreover, many recurrent
neural network (RNN) variants have been used to capture
temporal dependency [37], [44].

GNNs showed unprecedented advantages in time-series
forecasting in several fields [17], [19], [33] such as traffic
forecasting [6], [35], [42], [46], [51], crowd flow prediction [36],
bike demand prediction [27], and weather prediction [43].
For example, GraphSAGE [16] and FastGCN [5] sample and
aggregate neighborhood information for graph classification.
Other work used GNNs for crime and traffic forecasting [40].

CNNs have also been used for time-series forecasting. For
example, Li et al. used diffusion convolution to predict speed
based on proximity information [25]. Zhang et al.proposed a
Kernel-Weighted Graph Convolutional Network (KW-GCN)
for traffic forecasting [52]. Other applications include video
frame analysis [18], [22], which leverage the graph topology
to model the human motion and object interactions. However,
these methods have limited predictive accuracy because they
do not utilize contextual information.

Contextual (or environmental) features significantly impact
resource dynamics. For instance, ride-hailing demand is sen-
sitive to precipitation. It is therefore imperative to integrate
contextual factors into forecasting models. Related work on
leveraging contextual features include TensorCast [9] which
forecasts author collaboration by incorporating features in

tensors. Other work utilized economic features to forecast
housing price [13]. However, existing approaches assume static
contexts [14], [32] or incur feature selection cost [49]. In
contrast, CIGNN integrates dynamic contextual impact, simul-
taneously handles multiple types of contextual information,
without incurring feature selection cost.

III. CONTEXT INTEGRATED GRAPH NEURAL NETWORK

We propose a novel Context Integrated Graph Neural
Network (CIGNN) model, which leverages temporal, relational,
spatial, and contextual dependencies for resource forecasting.
CIGNN represents the resource network as a graph, where
nodes represent locations and associated resource time-series.
CIGNN also represents each context type as a separate graph,
where nodes represent locations and associated contextual time-
series. We introduce CIGNN using a bike-sharing system as
a running example. Given historical bike supply records at
various stations, CIGNN predicts future supply by considering
the following dependencies (also illustrated in Fig. 1):

Definition 1 (Temporal dependency): Given time-series X =
[z122 - - - 2], temporal dependency is modeled as a function
that maps values prior to x; (e.g., previous w values) to x;:

[T - Tp—02Tp—1] = 4 (D



TABLE II
SUMMARY OF NOTATION

Description

E,  edges with respects to relational dependency
Es  edges with respects to spatial dependency

FEsc  edges with respects to contextual dependency
| -]  the cardinality operator
G,M = |G| a set of graphs and the number of graphs
T,w,h length of time-series, window and horizon
G;  the ith graph, where ¢ € {1,--- , M}
iy By, Ay nodes, edges and matrix in ith graph
N; =|V;], d;  number of nodes and features in ith graph

X;  the graph signal of the ith graph

Y  a graph signal
A, D  Adjacency matrix and degree matrix
L,I Laplacian matrix and the identity matrix
rt,ut reset gate and update gate at timestamp ¢
Xt H! input and hidden state at timestamp ¢
FC.(X), WX+ b., a fully connected layer

®.c the graph convolution layer (on graph G)
$®  our proposed fusion layer

0, W,b,z trainable parameters
o,tanh  the sigmoid and tanh activation functions
@®,®  concatenation and Hadamard product operator

Modeling temporal dependency allows forecasting future bike
supply based on previous values.

Next, we define relational and spatial dependencies to model
mutual influence across supply at various locations:

Definition 2 (Relational dependency): Given a graph G =
(V, E), where V denotes the node set and FE the edge set.
Each node represents a station with an associated resource (in
this case, the supply) time-series. Then, we define edges to
represent relational dependency:

E={(i.5) |V, ) € V|x|V], 5t K(xi, %) > A} )

where x; and x; denote the supply time-series in node 7 and 7,
respectively. K denotes a correlation metric and A, a threshold
value to filter out small correlation values.

Edges with a weight K(x;,x,) imply relational dependency
while edges are removed if their weights are smaller than a
threshold .. The insight behind relational dependency is to
model the mutual dependencies between similarly behaving
time-series.

On the other hand, the spatial dependency is constructed
differently, based on the first law of geography [39], i.e., Near
things are more related than distant things.

Definition 3 (Spatial dependency): Given a graph G =
(V,E, A) where V denotes the node set and E the edge set.
Each node represents a biking station. The adjacency matrix
A encodes the distance information between nodes. We define
the edges to represent spatial dependency:

E= {(lvj) IV(Z,]) € |V| X |V| ) S.L. Aij > As} (3)

A;; is derived from distance information such that a short
distance derives a large weight value. Edges with a large weight

indicate spatial dependency when the weights are greater than
a threshold A;.

Definition 4 (Contextual dependency): Let G5 = (V, Ej)
denote a resource graph with a set of nodes V; representing
the bike stations that connected by edges in F,. In addition,
let G. = (V.,E.) be a context graph with a set of nodes
V. representing the locations where contextual features are
recorded (e.g., weather stations recording humidity), and
connected by edges E.. Note that F/; and E, are edges derived
either from Definition 2 or Definition 3. We denote FE. as
edges connecting nodes in V; with nodes in V.

To account for more than one contextual type (e.g., if there are
n contextual types), the definition can be extended to include
all contextual types: V. = V1 U...UV,,, E. = E4U...UE,,
for contextual types cl,...,cn.

In a bike-sharing system, the bike supply is sensitive to weather
conditions such as temperature and precipitation, which are
recorded in weather stations. In this case, we build a contextual
graph for temperature information and one for precipitation.

A. Problem Formulation

We formulate the resource forecasting in spatio-temporal
data as a time-series prediction task where time-series are
recorded in various locations. The task aims to learn a function
f that predicts future resource values given spatio-temporal
information, which is organized in a form of graph. Each node
in a graph represents time-series, and edges connecting nodes
represent a distance or a correlation computed as a function of
spatial or relational dependencies. The resource network and
the M — 1 contextual networks are represented as a set of M
graphs: G = {G1, G4, ..., Gy }. Each graph either belongs to
the resource (demand/supply) or a contextual type. For instance,
to forecast the bike supply, we derive a bike supply graph, a
contextual graph regarding the temperature and a contextual
graph regarding the humidity. The ith graph is denoted as
G; = (V;, E;, A;), where V; represent the node set and E;
the edge set in GG;. Nodes represent locations with associated
time-series and edges represent the dependency between nodes.
A, is the adjacency matrix that encodes a correlation computed
as a function of spatial or relational dependencies.

For convenience, we refer to the group of time-series in a
graph as a graph signal [12], which contains all time-series
from the same (graph) type. Thus for graph G;, the graph signal
is denoted as X; € RT*Nixdi where T denotes the time span
of interest, N; = |V;| is the number of nodes in the ith graph,
d; is the corresponding number of node features. We use a
subscript to denote which graph is referred, and a superscript
to denote the time index. For example, Xf € RNixdi ig the
graph signal of G; at t.

Given graphs and graph signals, a multi-step ahead time-
series prediction task regarding w past observations and a
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Fig. 2. An overview of our CIGNN unit. Due to space limit, only two graphs are displayed in the figure and number of node features are assumed as one,
d; = d;j = 1. The ith graph is regarded as the resource graph and the jth graph is regarded as a contextual graph. The graph convolution is denoted by ® and
is used to capture the relational and spatial dependencies. The intermediate state S incorporates the temporal dependency. The contextual state F' is combined

for the contextual dependency modeling. In practice, CIGNN learns ®; ; for {(,4)[¢,j € 1,2, ...,

horizon h is formulated as:

[xrwtixt-we2 | xta] LY [t ae ah)

iell,...,M]

Our model architecture is depicted in Fig. 2. We introduce our
components for modeling the relational, spatial, temporal and
contextual dependency in the following sections.

B. Relational Dependency Modeling using Graph Convolution

The relational dependency is the implicit connections be-
tween stations. We leverage the graph convolution to model it.
Given a graph G(V, E, A) (where A € RV*¥ is constructed
in a way such that it follows the Definition 2) and its graph
signal Y € RV¥*4 with N = |V| and d the number of features,
we define a graph convolution layer ® regarding G as:

©.cY = 0(L)Y
=0(QAQ"Y
=QO(A)QTY (5)

where L = D~z (D — A)D~2 is the normalized Laplacian
matrix of adjacency matrix A, with D its diagonal degree
matrix. L = QAQ is the Eigen-decomposition of L, where
Q is composed of eigenvectors. A is a diagonal matrix where
each element is an eigenvalue of the corresponding eigenvector.

Chebyshev Approximation is applied to strengthen locality
and boost computational efficiency. The intuition behind
leveraging graph convolution is that it is efficient on aggregating
information from neighboring nodes. Further, we enhance the

M,i # j}.

connection from local neighboring nodes by extending the
graph kernel ®(A) to a series of bases as:

K-—1
A) = Z 0, AF
k=0

where 8 = [0105 ...0;]T € RE is a trainable coefficient vector
and K is a value set to regulate the locality radius of graph
convolution. We set a small number for K to reinforce the local
impacts. The truncated Chebyshev polynomial expansion [11],
[38] is then adapted with Eq 6:

(6)

©.cY =O1L)Y~ }:@n (7)

2L
max

where T (L) is the kth Chebyshev polynomial at the scaled
Laplacian L, and I € RVXN is the identity matrix. A qz 18
the dominant eigenvalue of L, which is assumed as 2 since
parameters can adapt to the change in scale during training [21].
The Chebyshev polynomial reduces the time complexity from
O(N3) to O(K|&|) and accelerates computations, where &
is the number of non-zero edges. Recall that we formulate a
resource graph and multiple contextual graphs (M graphs in
total), the graph convolution is applied on each graph with its
individual parameters. For the ith graph, the graph convolution
is performed with the following formula:

K-1
X) = 0piTh(D)X;, i=
k=0

i:

®)

—I =L —1I assuming A4, =2

1,2,...,M (9



C. Spatial Dependency Modeling using Graph Convolution

Alternatively, the mutual impact between locations can be
modeled with spatial dependency, defined in Definition 3. In
this situation, the adjacency matrix in the graph describes the
geographic proximity between nodes. The graph convolution
is then conducted with these differently constructed graphs.

D. Temporal Dependency Modeling using Gated Recurrent
Units

Inspired by the recent success of RNN structure in time-series
prediction and its power of temporal dependency capturing, we
leverage a modified Gated Recurrent Units (GRU) [7] variant of
the RNN methods in our approach. The temporal dependency
modeling component in CIGNN is composed of units that take
current observations at time ¢ from each graph X} € RNixd:
and previous hidden states H:™* € R"*NiXdi a5 input (where
i € [1...M]), then yields current hidden states at time ¢ as
H! € R™*Nixdi a5 output, (where 7 is the number of neurons).
Our GRU-like structure is formulated as follows:

r; = 0(FC,(O,.c, [Xf ® H{ 1)) (10)
uf = 0(FCy(Ou.c,[X] @ H{ 1)) (11)
C! = tanh(FC¢(Ocug, [X] @ (v © HITY)))) (12)
Si=uloH '+(1-u)oC! (13)

where r and u denote the reset gate and the update gate, respec-
tively. o and tanh denotes the sigmoid and hyperbolic tangent
activation functions, respectively. FC.(X) = WIX + b, is
short for a fully connected layer. The operators ¢ and ® denote
concatenation and Hadamard product, respectively. © is the
graph convolution layer as introduced in Sec. III-B, which cap-
tures either relational dependency or spatial dependency, based
on the construction of the adjacency matrix. The intermediate
hidden state S; incorporates both temporal, relational or spatial
dependency in the ¢th graph.

E. Contextual Dependency Modeling with Novel Fusion Layers

With intermediate hidden states from the previous section,
we further propose a novel fusion layer ® to capture the
contextual dependency across graphs as defined in Definition 4.
Our fusion mechanism, in contrast to existing work, does not
require manual feature engineering:

t T, Tgt
‘I’i,j(sj) = U(Z[Wi,jz Sj + bi,j])
M
t t
F; = Z ‘I’i,j(sj)

=1, j#i

(14)

15)

where the subscript denotes different sets of parameters. The
trainable parameters W, ; € RNixdjxdixNi ', . ¢ RNixd:
are regarded as learning relations between time-series across
graphs, i.e., the contextual dependency. Note that W has a
similar form as E. defined in Eq. 4 when we consider the
resource graph (e.g., the bike supply network) and its contextual
graphs (e.g., the temperature graph and the humidity graph).

The parameter z € R" is a mapping trainable vector that can
be considered as aggregating neurons.

Finally, the hidden states H! combine the intermediate
hidden state S! and the fused hidden state F?:

H! =S! + F! (16)

F. Prediction and Objective

With the hidden state Hﬁ, the forecasting is conducted as:

pt+1 Tyt

X T =z H; 17)
while forecasts on further values (e.g., )2;“’2, )E'f“’, etc.) are
calculated recursively. An objective function is designed to be
minimized during the training stage:

M h
argmin Z Z ‘.?\A’it"'j — Xt (18)

6, W b,z i=1 j=1

which minimizes the mean absolute error between the predic-
tion and the actual values in all training samples across graphs
and time horizons.

IV. EXPERIMENTS

In this section, we introduce our experimental setup which
includes how graphs are constructed and the hyperparameters.
To verify the effectiveness of CIGNN, two real-world datasets
are selected and previous state-of-the-art methods are used for
comparison.

A. Graph Construction

The graph construction decides what information and de-
pendency is modeled. We introduce two existing ways to
construct a graph. One is based on geographical information as
in Definition 3 to model the spatial dependency, the other
is based on the implicit correlations between time-series
as in Definition 2. Unless otherwise stated, we denote the
adjacency matrix as A € RV*N ‘and A;; is an element.

a) Distance-based Gaussian Kernel Matrix: Most existing
work [25] derives an adjacency matrix with a truncated
Gaussian kernel, such that the element A;; has higher values
if node 7 and node j are close in terms of their locations:

exp(—w) ifd(i,j) <k
A= ot T (19)
0, otherwise
where d(i,7) denotes the geographical distance between nodes
i and j. o denotes the standard deviation of distances and
is a threshold value (setzas 0.1) to control the matrix sparsity.
Note that A, = exp(—27) as in Definition 3.
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Fig. 3. A comparison between Gaussian kernel matrix and Relational matrix. Dense color indicates higher correlations. (a). Some bike docks in San Jose. (b).
The Gaussian kernel matrix. (c). The relational correlation matrix. The value between station 2 and 5 (marked by the red squares) is higher.

TABLE III
DATASET DESCRIPTIONS: A GRAPH IS CONSTRUCTED FOR THE DEMAND OR SUPPLY, AND FOR EACH TYPE OF CONTEXTUAL FEATURES.

Dataset

CallMi

BikeBay

Data meaning

Mobile call records

Bike supply amount

Data location Milan city The Bay Area
Number of nodes 162 70
Time span Nov. 2013-Dec. 2013 Aug. 2013- Aug. 2015
Time interval 1 hour 2 hour
Contextual types temperature(5)  temperature (3), humidity(3),dew(3)
(number of nodes) humidity (4) sea level(3) and wind speed(3)

b) Relational Matrix based on Correlation Coefficients:

We observe in empirical studies that the Gaussian kernel matrix
can fail to capture the hidden relational correlations between
distant nodes. For example, in Fig. 3a, station 2 and station 5
are far from each other. The Distance-based Gaussian Kernel
matrix (Fig. 3b) suggests they have low correlations. However,
they are highly correlated (Fig. 3c) in reality since people
frequently commute between them along the straight road. To
reflect this fact, we utilize the Detrended Cross-Correlation
Analysis coefficient (DCCA coefficient) [23], [48] to construct
the relational correlation matrix.

The DCCA coefficient is a correlation metric on series data,
which combines detrended cross-correlation analysis (DCCA)
and detrended fluctuation analysis (DFA). Given two time-
series x,y € R” of length T" and sliding windows of length 1,
the DCCA coefficient is defined as:

(20)

Fpeoax,y,1)
1) = DCCA\™ J>
ppoca(%,,1) Fpra(x,0)Fpra(y,l)

where the numerator and the denominator are the average
covariance and variance of the 7' — [ + 1 windows (partial

sums):

T—14+1
25:1 fIQDCCA(Xa y,s)

Fpeca(x,y,1) = TolEl @n
Yot fhratx,s)
Fhralx,l) = S=m—p (22)

The partial sums are calculated with sliding windows across x
and y. For each window with the starting index s:

s+1—1 t t S
fhocalx,y,s) = &L=2 & ZXS)(y ys) (23)
s+Hl—1,_¢ - \2
T (xt - %,
Thra(x,s) = == (l : (24)

where X, = }(2s + Tsq1 + ...+ Tg4—1) is the average value
in the window started at s. The matrix is constructed with the
pairwise correlations:

iprCCA(Xayyl) 2 A7' =0
otherwise

Ay - gDCCA(X7 v, l),

B. Experimental Setup

We conduct experiments on two public real-world datasets
(see Table III for a summary) to show the performance of
CIGNN. Both datasets contain dynamic contextual features.

e Mobile Call Demand in Milan (CallMi) [3]: CallMi

contains call demand data in Milan from Nov. 2013 to
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Fig. 4. A comparison of time-series pattern. (a) The call demand during Dec. 25-31. (b) The bike supply in San Francisco during Aug. 25-31. Values are
normalized for display. Note that CallMi shows more periodicity.

TABLE IV
A COMPARISON USING 6 OBSERVED DATA POINTS TO PREDICT 3 STEPS AHEAD. MAE AND RMSE OF THREE HORIZONS, THEIR AVERAGE, AND AVERAGE
ERROR REDUCTION OVER VAR AS A BASELINE FOR CallMi AND BikeBay.

CallMi
Horizon = Metrics HA ARIMA VAR LSTM STGCN DCRNN  Graph WaveNet CIGNN
1 MAE 17.15 1442 18.54 13.51 11.35 10.41 9.48 8.89
RMSE  38.80 2426 3130 25.04 20.46 19.44 18.18 16.82
2 MAE - 26.78  27.01 17.05 20.48 16.59 12.72 11.72
RMSE - 4427  47.14 30.10 35.63 33.59 26.23 22.84
3 MAE - 38.12 3449 19.02 33.14 22.60 15.38 14.86
RMSE - 61.43  60.13 35.04 40.01 55.03 32.09 29.59

BikeBay
Horizon  Metrics HA ARIMA VAR LSTM STGCN DCRNN  Graph WaveNet CIGNN
| MAE 22.70 7.62 8.04 19.91 6.80 6.55 7.00 6.37
RMSE  28.92 1335  18.72 25.34 11.98 12.37 13.33 11.75
2 MAE - 1170 12.06 20.83 10.76 10.13 11.01 9.68
RMSE - 18.62  29.42 26.67 16.98 17.65 19.56 16.60
3 MAE - 14.12 1434 21.29 13.41 12.56 13.69 11.90
RMSE - 21.19  35.05 27.73 19.71 20.52 22.25 19.18

Dec. 2013. The dataset contains temperature and humidity
as contextual features. The city is partitioned into grids
in the raw dataset, however, some grids have very few
records. Therefore, we cluster grids into 162 mobile call
nodes/instances. There are 5 temperature nodes and 4
humidity nodes. Each of contextual nodes corresponds to
a weather station. The time interval is an hour.
Bike-sharing Supply in the Bay Area (BikeBay) [1]:
BikeBay contains the bike supply data in 70 dock stations
in the Bay Area. The dataset was recorded from Aug. 2013
to Aug. 2015. It contains weather conditions as contextual
data. There are 3 nodes for temperature, humidity, dew,
sea level, and wind speed, respectively. The time interval
is two hours.

We selected these two datasets for the reason they exhibit
different time-series patterns. The following hyperparameters
are being used: 0.01 (learning rate), 32 (number of neurons),
0.1 (learning rate decay ratio for every 10 epochs). We train
for a maximum of 100 epochs with the Adam optimizer [20]
and adapt an early stop strategy if the validation loss does
not decrease for 10 consecutive epochs. All experiments are
implemented using Python Tensorflow (v1.14) and run on
Ubuntu 16.04 OS with 8 CPU cores and a memory of 32G.

a) Diversity of Datasets regarding Periodicity.: The two
datasets demonstrate different pattern characteristics, as shown
in Fig. 4. The call demand time-series exhibit periodicity
(Fig. 4a), while the bike supply time-series show more irregu-
larities (Fig. 4b). We choose these two datasets to demonstrate



CIGNN’s capability to predict accurately on time-series with
or without periodicity.

The time-series data are split chronologically into training,
validation and testing sets in a ratio of 70%:10%:20%. Values
are normalized using Z-score normalization before training.
Predicted values are inversely transformed to evaluate error.
The number of lags w and horizons h are set as 6 and 3,
respectively. We conducted experiments on both the Gaussian
kernel matrix and the DCCA coefficient relational matrix. When
using the relational matrix, the window length [ in Eq. 23 is set
as 4. A previous study [34] shows that a small step of graph
convolution is more effective, thus graph convolution step in
Eq. 9 is set as K = 1 to strengthen the local impacts. Mean
Absolute Error (MAE) is used as a loss measure to update
parameters for all horizons in the training set. In evaluation,
both MAE and Root Mean Square Error(RMSE) are calculated
and compared:

M
1 ~
MAEZEE § |X — XY
S e

M
1 ~
S Zi:l

where 2 denotes the timestamps of measured samples (e.g., {2
denotes the set of training samples when in the training stage).

C. Baseline Methods

We compare CIGNN to the following state-of-the-art methods.
We do not compare to [49] since it is only applicable to grid-
formatted data.

1) HA Historical Average. The prediction for a given
timestamp is the average of previous values at that same
timestamp (and day) over the past four weeks.

2) ARIMA Auto-Regressive Integrated Moving Average.
The ARIMA learns from each time-series and is used
to predict each time-series, independently. The ARIMA
order is (3,0, 1), as in [25].

3) VAR Vector Auto-Regressive is a multi-variate model
that generalizes ARIMA to have multiple evolving
variables.

4) MM-LSTM Multi-step multi-variate LSTM. The number
of neurons is set as 64.

5) DCRNN [25]: Diffusion Convolution Recurrent Neural
Network models spatial correlations with a diffusion
process. For the temporal correlations, DCRNN utilizes
an encoder-decoder structure built by GRU units.

6) STGCN [50]: Spatio-Temporal Graph Convolutional Net-
work is a graph-based model that learns both the spatial
and temporal dependencies with gating mechanism to
make predictions.

7) Graph WaveNet [47] Graph WaveNet aims to capture
the long-term trend to make predictions. It leverages a
self-adaptive adjacency matrix design to exploit spatial
dependencies.

TABLE V
A COMPARISON OF DEEP LEARNING METHODS USING 24 OBSERVED DATA
POINTS TO PREDICT 6 STEPS AHEAD ON BikeBay. G-WAVENET IS SHORT
FOR WAVENET.

BikeBay
H Metrics STGCN DCRNN G-WaveNet CIGNN
| MAE 7.50 6.44 19.24 6.38
RMSE 12.37 11.99 26.75 11.80
2 MAE 10.71 9.72 19.77 9.60
RMSE 16.63 16.72 27.38 16.47
3 MAE 13.11 11.91 20.32 11.75
RMSE 19.33 19.33 28.02 19.01
4 MAE 16.62 13.67 20.68 13.47
RMSE 22.77 21.22 28.36 20.85
5 MAE 16.44 15.06 20.94 14.83
RMSE 23.29 22.64 28.57 22.24
6 MAE 17.56 16.12 21.12 15.90
RMSE 24.83 23.67 28.68 23.31
D. Results

a) Comparisons for Multi-step Ahead Prediction: Fol-
lowing common practice [25], [47], [50], we use six past
observations to predict values that are three steps ahead. Results
are shown in Table IV. MAE and RMSE are evaluated for
each horizon and on the average across horizons. Using dataset
BikeBay, we further conduct more experiments with more data
points (24) and a greater horizon (6) on the deep learning
methods, as shown in Table V. We observe the following:

o Deep learning based methods outperform traditional meth-
ods (HA, ARIMA and VAR) due to the latter methods’
limit of only modeling temporal dependency. Besides, HA
can only predict one step ahead, and ARIMA fails to
exploit the interactions across time-series.

« For deep learning methods, WaveNet outperforms DCRNN
on CallMi but not on BikeBay, while CIGNN consistently
outperforms STGCN, DCRNN and WaveNet. CIGNN
also outperforms baselines when more observations and a
larger horizon are considered.

o CIGNN outperforms previous best state-of-the-art models
on each dataset (improves over WaveNet on CallMi
by 5.7% MAE and 9.4% RMSE and over DCRNN on
BikeBay by 4.4% MAE and 2.3% RMSE).

The result shows that our model is capable to capture the
contextual dependency of the dynamic demand.

b) Effectiveness of Fusion: To assess the effectiveness of
our proposed fusion mechanism, we compared our approach
to a variant that removes the fusion layer. We ran experiments
on the BikeBay dataset and compared the two model for
both training and testing loss, as shown in Fig. 5. Although
CIGNN is initialized with a higher loss, its loss decreases faster.
This shows that the fusion mechanism is effective in utilizing
contextual factors on forecasting. We analyze the effectiveness
of the Gaussian Kernel matrix and Relational matrix, added in
appendix due to the limit of space.
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Fig. 5. An illustration of the effectiveness of the fusion mechanism. CIGNN with fusion outperforms the model without fusion (dashed), in both training and
testing.
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Fig. 6. MAE and RMSE comparison of models with adjacency matrix constructed by Gaussian Kernel and DCCA coefficient. DCCA coefficient-based model

achieves better performance in both situations; when lag number is 6 or 9.

c) Adjacency Matrix Analysis.: To analyze and compare
the effectiveness of the Gaussian Kernel matrix and the DCCA
relational coefficients matrix, we ran experiments on the CallMi
dataset using temporal lags 6 and 9. Fig. 6 shows the MAE
and RMSE for a horizon of 6. The results show that: (1)
Predictions based on the DCCA coefficient adjacency matrix
are consistently more accurate than predictions based on the
Gaussian kernel matrix. (2) The lag number has an impact on
predicting values for a long horizon. Using 9 lags results
in significantly better prediction results than using 6 lags.
This demonstrates that CIGNN is better at learning long-term
temporal dependencies.

V. CONCLUSION

To model non-linear temporal, relational, spatial, and contex-
tual dependency in time-series predictions, we propose a novel
Graph Neural Network approach for spatio-temporal data with
dynamic contextual information. Our model employs a novel

fusion mechanism to capture the dynamic contextual impact
on demand.

The capability of processing multiple graphs at the same
time empowers our model to be be applied in more general
structured sequence forecasting scenarios, such as dynamic
social networks relationship prediction, and evolving preference
prediction in recommendation systems. To extend this work,
we will theoretically analyze the interpretability of CIGNN
model components (fusion layer weights distribution and
DCCA relational coefficients matrix limits), apply CIGNN
on other spatio-temporal data, explore more general graph
signal representations, and consider more complex contextual
structures for the fusion of static and dynamic contextual impact
on resource fluctuations.
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