
AutoMARS: Searching to Compress Multi-Modality
Recommendation Systems

Duc Hoang

University of Texas at Austin

Austin, United States

hoangduc@utexas.edu

Haotao Wang

University of Texas at Austin

Austin, United States

htwang@utexas.edu

Handong Zhao

Adobe Research

San Jose, United States

hazhao@adobe.com

Ryan Rossi

Adobe Research

San Jose, United States

ryrossi@adobe.com

Sungchul Kim

Adobe Research

San Jose, United States

sukim@adobe.com

Kanak Mahadik

Adobe Research

San Jose, United States

mahadik@adobe.com

Zhangyang Wang

University of Texas at Austin

Austin, United States

atlaswang@utexas.edu

ABSTRACT
Web applications utilize Recommendation Systems (RS) to address

the problem of consumer over-choices. Recent works have taken ad-

vantage of multi-modality or multi-view
1
, input information (such

as user interaction, images, texts, rating scores) to boost recommen-

dation system performance compared with using single-modality

information. However, the use of multi-modality input demands

much higher computational cost and storage capacity. On the other

hand, the real-world RS services usually have strict budgets on both

time and space for a good customer experience. As a result, the

model efficiency of multi-modality recommendation systems has

gained increasing importance. While unfortunately, to the best of

our knowledge, there is no existing study of a generic compression

framework for multi-modality RS. In this paper, we investigate, for

the first time, how to compress a multi-modality recommendation

system with a fixed budget. Assuming that input information from

different modalities are of unequal importance, a good compression

algorithm should learn to automatically allocate different resource

budgets to each input, based on their importance in maximally

preserving recommendation efficacy. To this end, we leverage the

tools of neural architecture search (NAS) and distillation, and pro-

pose Auto Multi-modAlity Recommendation System (AutoMARS),
a unified modality-aware model compression framework dedicated

to multi-modality recommendation systems. We demonstrate the

effectiveness and generality of AutoMARS by testing it on three

1
Terms ‘modality’ and ‘view’ are interchangeably used throughout the paper.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/3511808.3557242

different Amazon datasets of various sparsity. AutoMARS demon-

strates superior multi-modality compression performance than

previous state-of-the-art compression methods. For example on

the Amazon Beauty dataset, we achieve on average a 20% higher

accuracy over previous state-of-the-art methods, while enjoying

65% reduction over baselines.

CCS CONCEPTS
• Computing methodologies→ Discrete space search; Con-
tinuous space search; • Information systems→ Information
retrieval.

KEYWORDS
AutoML, Recommendation System, Multi Modality

ACM Reference Format:
Duc Hoang, Haotao Wang, Handong Zhao, Ryan Rossi, Sungchul Kim,

Kanak Mahadik, and Zhangyang Wang. 2022. AutoMARS: Searching to

Compress Multi-Modality Recommendation Systems. In Proceedings of the
31st ACM International Conference on Information and Knowledge Manage-
ment (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3511808.3557242

1 INTRODUCTION
Over the years, Recommendation System (RS) endures as the de
facto front-facing solution for consumer over-choices, with Col-

laborative Filtering (CF) and Matrix Factorization (MF) [15, 24]

remaining popular solutions. Ideally, RS learns user/item profiles

via textual reviews or visual images to predict unseen interactions.

In reality, actual engagements are rare [14], and most solutions

have traditionally suffered learning users’ preferences because of

interaction sparsity and cold-start [1, 36].

Recently, research directions [29, 49] have found far better suc-

cess focusing on utilizing multi-modality input to better capture

different aspects of user preferences. For example, [49] shows ways

to combine heterogeneous modalities in an end-to-end manner

for top-𝑁 recommendations. On the other hand, [29] introduces a

https://doi.org/10.1145/3511808.3557242
https://doi.org/10.1145/3511808.3557242

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Duc Hoang et al.

hand-crafted solution to combine flat and hierarchical side informa-

tion to traditional user/item embeddings to boost recommendation

accuracy. A few [27] simply graft side-information like numerical

ratings to the end of the embeddings vectors for inclusion.

Not surprisingly, an increasing number of features correlates to

rising demand for data storage and computation speed. At the scale

of today’s industrywith its billions of users and items, heterogeneity

places a significant burden onto the service distributors and disrupts

user experience. Therefore, scalability and efficiency are at the

forefront of desirable characteristics for a recommendation system.

This begs a practical and straightforward research question: How
do we solve the crucial conflict between the practical use of multi-
modality inputs for performance boosting and the requirements on
efficiency of recommendation models at scale?

One solution is to apply tried-and-true techniques typical for

Deep Neural Network (DNN) such as knowledge distillation [12, 19],

channel pruning[4, 11], or low-rank factorization [6, 15, 24, 50]. Oth-

ers involve designing dedicated feature-utilization strategies like

those for homogeneous embedding space found in [26, 35, 40, 41].

However, these methods often rely on empirical rules to allocate

computational budgets among multiple modalities, and thus can

lead to sub-optimal trade-offs between model efficiency and ac-

curacy. In view of that, we aim to develop a general compression

framework that automatically learns to optimally allocate the avail-

able computational budgets among modalities while maximally

preserving model efficacy.

We therefore propose the first model compression method for

multi-modality recommendation systems, termedAutoMulti-modAlity
Recommendation System (AutoMARS). Unlike previous RS com-

pression methods for single modality input data, AutoMARS is de-
signed to be modality-aware. It utilizes Neural Architecture Search

(NAS) to allocate computational budgets for each input modality

automatically. AutoMars optimizes for two very important tasks,

resource allocation andmodality fusion, in a differentiable manner. It

is therefore the first end-to-end solution dedicated to compressing

a multi-modality recommendation system. Additionally, it largely

outperforms existing state-of-the-art model compression methods

developed for relevant purposes on three popular recommendation

datasets, showing the necessity and effectiveness of our customized

framework. In summary, our contributions are:

• We study a novel problem of model compression under a

given budget constraint in the multi-modality recommenda-

tion system.

• We propose a generic modality-aware model compression

frameworkAutoMARS. We optimize our search tasks differ-

entially to find a compact model’s size with unique strategy

for fusion.

• We achieved on average a 65% reduction in size and a 20%

improvement in performance over previous state-of-the-art

methods on the Amazon Datasets.

2 PRIORWORKS
2.1 Recommendation Systems
The continuous evolution of Recommendation Systems has de-

veloped different strategies to best supply users with the most

relevant products [2, 10, 16, 17, 33, 37, 39, 46, 47]. Most notable

works are: Hidasi et al. [18] is the first to propose using Recurrent

Neural Network to capture long-session data to supplant Matrix

Factorization based approaches. Covington et al. [8] proposed an

algorithm for recommending YouTube videos by utilizing candi-

date generation model and a separate ranking model, thus showing

the effectiveness of deep neural network in improving accuracy.

Wu et al. [45] used Graph Neural Network to capture complex

transition between items, thus achieving more accurate item em-

beddings. Recently, Huang et al. [21] proposed a multi-attention

head model in recommendation to mitigate low efficiency problem

in group recommendation. For a complete literature review on the

general recommendation system topic, we refer the readers to these

comprehensive surveys and books [2, 39, 42, 47].

Multi-modality RS. Nowadays, a large amount of multi-modality

(e.g., text, images, audio) data is generated online and utilized by

recommendation systems. Zhang et al. [49] proposed a more gen-

eral approach with the Joint Representation Learning framework

(JRL), where parallel networks are assigned to each input modality

to generate modality-specific embeddings for users/items. Liu et al.

[29] explored a novel framework to take advantage of flat and hier-

archical side-information to improve recommendation performance.

While using multi-modality data largely boosts recommendation

accuracy, it induces undesirable inference-time overhead. In the

sequential recommendation setting, there are also a few emerging

works [27, 48]. In this work, we focus on the classic, non-sequential

recommendation setting.

2.2 Model Compression
Model compression is the attempt to miniaturize existing frame-

works while maintaining or improving performance. Knowledge

Distillation (KD) [19] is a classic compression method. A small

student model can achieve comparable performance to its larger

counterpart by learning to fit soft labels. Pruning [13, 14, 43] finds

sparse structure within a dense model in an attempt to reduce

the model’s weights and is a popular approach for real-world ap-

plications. Quantization [7, 13] reduces the model parameter and

activation bit-width for model compression and acceleration. Neu-

ral architecture search (NAS) has also been applied to search for

efficient model structures [38, 44].

2.3 Model Compression on Recommendation
Systems

Recent interests in on-device recommendation processing have

brought about the need for a small, lightweight recommendation

system for resource-constraint platforms. LightRec[26] composes

of "codebooks" (i.e look-up-tables) to store learned embedding vec-

tors. The inference is performed by having products retrieving a

unique combination of codebooks learned during training, where

each user’s preferences are encoded to every vector. Thus compati-

bility between user-product is whether the product’s combination

is of user’s preference. Shi et al. [35] reduces the size of embeddings

by exploiting complementary partition through the use of their

proposed quotient-remainder trick. This trick works by using both

the quotient and remainder function to produce two different and

smaller embeddings combined to produce a unique compositional

embedding. LLRec [41] or Light Location Recommender System

AutoMARS: Searching to Compress Multi-Modality Recommendation Systems CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 1: Notations and definitions for common variables.

Name Definition

𝑘 Number of modalities/views

𝑢, 𝑝 user/product embeddings

𝑈 , 𝑃 total users and products

𝑚𝑢
𝑖
,𝑚

𝑝

𝑖
the user/product embedding masks for the 𝑖-th view

𝐷 Total embedding columns

𝜔 model’s weights

𝑔(.) the ranking loss function

𝑓 (.) the combinatory function

𝛼𝑖 compression search space for the 𝑖-th view

𝛼𝑖 = {𝑑0

𝑖
, 𝑑1

𝑖
, ...𝑑

|𝛼𝑖 |
𝑖
}

𝑑𝑖 the total spatial allocation for the 𝑖-th view

𝑑𝑖 = |𝑚𝑢𝑖 | + |𝑚
𝑝

𝑖
|

𝜆𝑖 searched scaling hyperparameter

CR Compression ratio

𝑑
𝑗

𝑖

𝐷

reduces the large embedding size using tensor-train decomposi-

tion. Mao et al. [31] proposed feature selection by first ranking the

embedding columns base on Frobenius-norm and select the top-k

columns. UMEC [34] jointly compresses input feature and network

structure. It formulates the problem as a resource-constrained op-

timization problem and solves it by the ADMM algorithm. Other

work compresses recommendation systems by quantizing the em-

bedding matrix [3, 22].

In recent years, Neural Architectural Search (NAS) has been

applied to compress recommendation systems. Zhao et al. [51]

proposed AutoEmb, a differentiable NAS system to select a com-

bination of user/item embedding sizes base on popularity defined

as the number of interactions between user-item. Chen et al. [5]

proposed an evolution NAS approach termed RULE. RULE dynami-

cally selects blocks of embeddings from a large embedding vector

to accommodate for different hardware constraints.

AutoMars uniquely compresses recommendation with multi

modality in a collaborative manner. In contrast, prior works such

as [26, 35, 41] are more specific and would require multiple learn-

ing stages for each assigned modality. On the other hand, side-

information recommenders like [29] only use low-dimensional het-

erogeneous dimensions already provided in the dataset. Finally,

quantization techniques such as [3, 22] can directly extend to our

or any pruning works and are not a direct benchmark since they

could be applied to any embedding space.

3 METHODOLOGY
In this section, we describe AutoMARS’s overall methodology for

automatic heterogeneous features compression and fusion. We first

introduce the framework notations and overall objective. Next, we

explain how our contributions, multi-modality fusion search and

compression search, can be applied generally for MF-based rec-

ommenders. Finally, we describe the optimization and fine-tuning

process. Our framework is illustrated with Figure 1.

3.1 Model Search Space
3.1.1 Preliminary. We introduce our notations in detail here, and

summarize them in Table 1. Let 𝑉𝑖 denote the 𝑖-th modality (also

known as the 𝑖-th view) in our heterogeneous space. Expressly, we

set 𝑉0 for text and 𝑉1 for images. We describe each view 𝑉𝑖 as a set

containing {𝑢𝑖 , 𝑝𝑖 , 𝜔𝑖 , 𝜃𝑖 }. Herein, we define the user and product

embeddings𝑢𝑖 ∈ R𝑈 ×𝐷 and 𝑝𝑖 ∈ R𝑃×𝐷 as learned embedding from

some objective loss function 𝐿𝑖 , where 𝐷 is the embedding size, 𝑈

is total users and 𝑃 is total products or items. In addition, as part

of 𝑉𝑖 , we also define 𝜔𝑖 and 𝜃𝑖 as the learnable weights, and set of

parameters necessary to facilitate 𝑢𝑖 and 𝑝𝑖 . With heterogeneity,

we also formulate our multi-views set for users as 𝑢 and product

embeddings as 𝑝 . Thus for a𝑘-views top-N recommendation system,

AutoMARS optimizes the following general loss function:

arg min

∀𝑘 :{𝜔𝑘 ,𝜃𝑘 }
L𝑜𝑏 𝑗 =

∑︁
(𝑢,𝑝+) ∈R

𝑔(𝑓 (𝑢), 𝑓 (𝑝+), 𝑓 (𝑝−)) +
∑︁
𝑘

𝜆𝑘L𝑘 (𝜃𝑘)

(1)

Where 𝑓 (.) denotes some multi-views combinatory function for

set 𝑢 and 𝑝 , (𝑢, 𝑝+) refers to positive pair or actual interactions,

i.e purchase, between a user to an item, while (𝑢, 𝑝−) denotes a
lack of interaction. 𝑔(.) is our ranking loss function. 𝜆𝑘 is a scaling-

factor for each modality. Ultimately, the end goal is to produce 𝑠

the predicted interaction matrix where 𝑠 = 𝑢𝑇 · 𝑝 .

3.1.2 Multi-Modality Fusion Search. Prior works [29, 49] have illus-
trated the non-triviality of selecting fusion function and the impor-

tance it has on performance, especially from heterogeneous sources.

Naturally we see an opportunity to surpass what is essentially fea-

ture selection methods using gradient signals, by facilitating an

architecture search using NAS on the multi-views combinatory

function, 𝑓 (.), for both 𝑢 and 𝑝 . Thus, let 𝑒𝑖 be interchangeable for

both𝑢𝑖 and 𝑝𝑖 and 𝐸 for𝑈 and 𝑃 , we formally define our 𝑓 (.) search
space as:

• Concat: 𝑒 = 𝑒1 | |𝑒2 | |...| |𝑒𝑘 , where 𝑒 ∈ R𝐸×𝑘∗𝐷 .
• Sum: 𝑒 = 𝑒1 + 𝑒2 ... + 𝑒𝑘 , where 𝑒 ∈ R𝐸×𝐷
• Max: 𝑒 = 𝑚𝑎𝑥 (𝑠𝑡𝑎𝑐𝑘 ([𝑒1, 𝑒2, ..𝑒𝑘])), where we select maxi-

mum scalar value for each feature columns.

• Mean: 𝑒 = 1

𝑘
(𝑒1 + 𝑒2 + ... + 𝑒𝑘)

We shall refer to our fusion search space as 𝛽 from now on.

3.1.3 Compression Search. Additionally, we automate features bud-

get using the same differential search. Let 𝑢𝑖 = 𝑢𝑖
⊙

𝑚𝑢
𝑖
and ,

likewise, 𝑝𝑖 = 𝑝𝑖
⊙

𝑚
𝑝

𝑖
, where 𝑚𝑢

𝑖
,𝑚

𝑝

𝑖
∈ {0, 1}𝑈 ×𝐷 are the bi-

nary mask matrices derive from our compression search. Then

𝑢 = {𝑢1𝑢2 ...} and 𝑝 = {𝑝1𝑝2 ...} denote our compressed multi-views

user and product embeddings sets. Armed with these notations, we

further divide compression search into two sub-tasks: resource allo-
cation and feature selection. During our searching stage, we adopt

the same hard Gumbel-Softmax trick [23] to differentially optimize

all categorical variables.

Resource allocation. This sub-task determines 𝑑𝑖 , the total re-

source space allocated for the 𝑖-th view. Formally we denote 𝑑𝑖 =

|𝑚𝑢
𝑖
| + |𝑚𝑝

𝑖
| and constrained it generally between 0 and 𝑑𝑖 < 𝑘𝐷 .

Let 𝛼 be the architecture parameter representing 𝑑 for all k-views.

For each view, we denote that search space 𝛼𝑖 as {𝑑 𝑗𝑖 : 0 ≤ 𝑗 ≤ |𝛼𝑖 |},

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Duc Hoang et al.

Figure 1: Illustration of our searching and compression process. AutoMARS is highlighted in blue shadow. On the left side,
multi-modality inputs are processed via feature encoders into individual modality user/item embeddings before they are
ranked, selected and fused. We automated both compression and fusion process to best maximize performance. The resulting
compressed mix-modality user/item vectors are then judged on their performance and the whole process begins anew.

where 𝑑
𝑗
𝑖
represents a choice for total space allotment of the 𝑖-th

view. For k-views, our total search space |𝛼 | is 𝐷𝑘 . In addition, to

prevent unconstrained growth in compression search, we set 𝛼 to

be within the desired compression ratio (CR) range. CR is formally

denote as

𝑑
𝑗

𝑖

𝐷
. By pre-defining the max and min of desired compres-

sion size, we limit the total possible states 𝛼 can have. Thus, we

denote our constrained search space, 𝛼 , as:

𝛼 = {𝛼𝑖 ∈ 𝛼 |𝐶𝑅𝑚𝑖𝑛 ≤
𝑑
𝑗
𝑖

𝐷
≤ 𝐶𝑅𝑚𝑎𝑥 ,∀𝑗 : 0, 1..|𝛼𝑖 |} (2)

Henceforth, any reference to 𝛼 is referring to 𝛼 for simplicity.

Feature Selection. While resource allocation controls the feature

quantity, feature selection controls feature quality. We are inspired

from Mao et al. [31] when implementing our own method. To

illustrate our selection process, we will walk through the process

for a single modality. Assume we obtained 𝑑0

0
, 𝑢0, and 𝑝0 for the

text modality, the first step in our feature selection process is to

normalize the embedding vectors across all users.

• Feature Normalization We perform L2-norm on both 𝑢0

and 𝑝0, so that R𝑁×𝐷 → R1×𝐷
and R𝑃×𝐷 → R1×𝐷

respec-

tively.

• Feature ranking After normalization, features are ranked

base on their weights after we perform element wise multi-

plication 𝑟0 = | |𝑢0 | |2
⊙
| |𝑝0 | |2.

• Feature selection once 𝑟0 is obtained, we perform𝑇𝑜𝑝𝑘 (𝑟0)
where 𝑘 = 𝑑0

0
to obtains indexes of highest ranking feature

pairs. After accomplishing this, we generate a binary mask-

ing vector,𝑚𝑢
0
and𝑚

𝑝

0
to mask over 𝑢0 and 𝑝0.

We repeat the same process for all views.

3.2 Modality-aware Optimization
3.2.1 Modality objectives. Expressly, AutoMARS utilizes text and

images to learn embeddings of users and items. To obtain the𝑢0 and

𝑝0 from text, we adopt the simple PV-DBOW framework [25] with

negative sampling strategy [32]. Formally, we define the objective

loss for text as:

L0 (𝜔, 𝑡𝑢𝑝) =
∑︁
𝑤∈𝑉

∑︁
(𝑢,𝑝) ∈R

𝑓𝑤,𝑡𝑢𝑝 log𝜎 (𝜔𝑇 𝑡𝑢𝑝)

+
∑︁
𝑤∈𝑉

∑︁
(𝑢,𝑝) ∈R

𝑓𝑤,𝑡𝑢𝑝 (𝑛E𝑤𝑁 ∼𝑃𝑉 log𝜎 (−𝜔𝑇𝑁 𝑡𝑢𝑝)
(3)

Here, 𝑡𝑢𝑝 ∈ R𝐷 denotes a review embeddings between a user-

item interaction. 𝑉 defines the total vocabulary. 𝑓𝑤,𝑡𝑢𝑝 represents

frequency of word-review pair. 𝜎 denotes sigmoid function. Finally,

E𝑤𝑁 ∼𝑃𝑉 [log𝜎 (−𝜔𝑇
𝑁
𝑡𝑢𝑝)] defines expected value of log𝜎 (−𝜔𝑇

𝑁
𝑡𝑢𝑝)

given the unigram noise distribution 𝑃𝑉 . 𝑡𝑢𝑝 are then connected to

the related user, and items.

To obtain 𝑢1 and 𝑝1 from images, we follow [49] and define our

objective loss as:

L1 (𝜔,𝑏, 𝑥𝑢𝑝) =
∑︁
(𝑢,𝑝) ∈R

(𝐸𝐿𝑈 (𝜔𝑥𝑢𝑣 + 𝑏) − 𝑦𝑢𝑣)2 (4)

Where 𝑏 is the linear bias, 𝑥𝑢𝑝 is the user-item learned image em-

bedding, 𝑦𝑢𝑣 is ground-truth embedding given to us. With these

individual objective losses and architecture parameters defined, we

rewrite AutoMARS overall objective function, Eq.1, as:

L𝑜𝑏 𝑗 (𝑢, 𝑝, 𝑓 (.), 𝜔, 𝑏, 𝛼, 𝛽) =
∑︁

(𝑢,𝑝+) ∈R
𝑔(𝑓 (𝑢), 𝑓 (𝑝+), 𝑓 (𝑝−))

+ 𝜆0L0 (𝜔0, 𝑡𝑢𝑝) + 𝜆1L1 (𝜔1, 𝑏, 𝑥𝑢𝑝)
(5)

AutoMARS: Searching to Compress Multi-Modality Recommendation Systems CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

3.2.2 Bi-level optimization. We adopt the GDAS [9] differential

search process closely. With AutoMARS objective loss function

clearly defined in Eq.5, we formally denote our bi-level search

process as:

min

𝛼,𝛽
L𝑣𝑎𝑙𝑖𝑑
𝑜𝑏 𝑗
(𝑢, 𝑝, 𝑓 (.), 𝜔, 𝑏, 𝛼, 𝛽)

(6)

s.t. 𝑢, 𝑝, 𝑓 (.) = arg min

∀𝑘 :{𝜔𝑘 ,𝜃𝑘 }
L𝑡𝑟𝑎𝑖𝑛
𝑜𝑏 𝑗
(𝑢, 𝑝, 𝑓 (.), 𝜔, 𝑏, 𝛼, 𝛽)

(7)

Note that 𝛼, 𝛽 are optimized using objective loss function on

the validation set, while 𝑢, 𝑝, 𝜔,𝑏 are learned with training set. We

adopt the same hard Gumbel-Softmax trick [23] as GDAS [9] to dif-

ferentially optimize all categorical variables. Algorithm 1 illustrates

our searching pseudo-code.

3.3 Fine-tuning and Self-distillation
3.3.1 Fine-tuning. Once the searching process has been completed,

we use𝑎𝑟𝑔𝑚𝑎𝑥 function on𝛼, 𝛽 to obtain the final categorical choice.

Furthermore, we use the selected sub-set of features obtained dur-

ing the search from 𝑢, 𝑝 as our initial values for fine-tuning. This

is because subset selection is part of the searching process as illus-

trated in figure 1, and we found doing so improves our performance

empirically.

3.3.2 Self-distillation. Additionally, to further aid performance and

consistency, we add 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 to equation 5 during fine-tuning. It is

formulated as:

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =
𝑘∑︁
𝑖=0

𝐷𝐾𝐿 (𝑢𝑇𝑖 𝑝𝑖 , 𝑢
∗𝑇
𝑖 𝑝∗𝑖) (8)

where 𝐷𝐾𝐿 is the Kullback-Leiber divergence. 𝑢∗
𝑖
and 𝑝∗

𝑖
are non-

masked users and products embeddings found during the search

for ith-view. In summary, 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 enables compressed models to

learn a dense distribution of user-product interactions via self-

distillation. As the name suggested, self-distillation uses already

available information generated, i.e. 𝑢 and 𝑝 , as a mechanism to

recover (and even improve) performance and reduce variation of 𝑢

and 𝑝 .

4 EXPERIMENTS
This section highlights the extensive experiments and analysis

comparing AutoMars against other compression works.

4.1 Dataset Description
The Amazon Review Dataset [14] provides a plethora of users’ re-

views, user-product interactions, as well as product’s dense image

features. It neatly categorizes all data into related domains, as de-

noted by the name of its sub-dataset in Table 2. Conveniently, it also

provides 5-core dense datasets, a filtered dataset with user-product

of at least five interactions. Since 5-core datasets are less noisy

and resource-friendly, assume all datasets mentioned henceforth

to be 5-core. Despite the relative density, 5-core datasets are still

incredibly sparse, as we denote in table 2. We use four datasets with

increasing density to show the effectiveness of our AutoMARS.

Algorithm 1: AutoMARS algorithm

Input: 𝜔 , u, p, b, 𝛼 , 𝛽 , data, epochs;
Output: 𝑢, 𝑝 , 𝑓 (.);
Initialize𝑚𝑢 ,𝑚𝑝 as vector of ones;

for 𝑒 = 0 to Epoch-1 do
for 𝑗 = 0 to ∥𝑑𝑎𝑡𝑎∥-1 do

#sample masks and aggregation function from

#architecture parameters with GumbelSoftmax

𝑚𝑢 ,𝑚𝑝 , 𝑓 (.) ← SampleArchitecture(𝛼, 𝛽);
#Generate mini-batch (𝑏) for u and p on train data

𝑢𝑏 , 𝑝𝑏 ← forward(𝜔, data𝑡𝑟𝑎𝑖𝑛𝑗 , 𝑢, 𝑝);
#Compute the masked embedding

𝑢𝑏 ← {𝑢𝑏
𝑖

⊙
𝑚𝑢
𝑖

: 0 ≤ 𝑖 ≤ 𝑘 − 1};
𝑝𝑏 ← {𝑝𝑏

𝑖

⊙
𝑚
𝑝

𝑖
: 0 ≤ 1 ≤ 𝑘 − 1};

Backward L𝑡𝑟𝑎𝑖𝑛
𝑜𝑏 𝑗
(𝑢𝑏 , 𝑝𝑏 , 𝑓 (.), 𝜔, 𝑏, 𝛼, 𝛽) update

𝜔 ,u,p;

𝑢𝑏 , 𝑝𝑏 ← forward(𝜔, data𝑣𝑎𝑙𝑖𝑑𝑗 , 𝑢, 𝑝);
𝑢𝑏 ← {𝑢𝑏

𝑖

⊙
𝑚𝑢
𝑖

: 0 ≤ 𝑖 ≤ 𝑘 − 1};
𝑝𝑏 ← {𝑝𝑏

𝑖

⊙
𝑚
𝑝

𝑖
: 0 ≤ 1 ≤ 𝑘 − 1};

Backward L𝑣𝑎𝑙𝑖𝑑
𝑜𝑏 𝑗
(𝑢𝑏 , 𝑝𝑏 , 𝑓 (.), 𝜔, 𝑏, 𝛼, 𝛽) update 𝛼, 𝛽 ;

end
end
#Arg Max to derive final settings

𝑚𝑢 ,𝑚𝑝 , 𝑓 (.) ← DeriveArchitecture(𝛼, 𝛽);
𝑢 ← {𝑢𝑖

⊙
𝑚𝑢
𝑖

: 0 ≤ 𝑖 ≤ 𝑘 − 1};
𝑝 ← {𝑝𝑖

⊙
𝑚
𝑝

𝑖
: 0 ≤ 1 ≤ 𝑘 − 1};

Table 2: Basic statistic of the five Amazon datasets

Dataset #users #products #interactions density

Movies 123,960 50,052 1,247,461 0.0201%

Home 66,519 28,237 551,682 0.0294%

Clothing 39,387 23,033 278,677 0.0307%

Cell Phones 27,879 10,429 194,439 0.0669%

Beauty 22,363 12,101 198,502 0.0734%

4.2 Experimental Setup
4.2.1 Baseline Methods. Since this is the first work to compress

multi-modality recommendation systems, there are no previous

baseline methods to compare on this task. Therefore we select

representative compression methods from other related fields as

our baseline methods.

• Unified Model and Embedding Compression (UMEC) [34]:

UMEC jointly compresses input feature and network struc-

ture. It formulates the problem as a resource-constrained op-

timization problem and solves it by the ADMM algorithm. As

a result, UMEC achieves state-of-the-art model compression

performance on single-modality recommendation systems.

• Low-rank Multimodal Fusion (LMF) [30]: LMF Fusion is a

popular feature compression method for multi-modality data

by integrating multiple uni-modality representations into

one compact multi-modality representation using low-rank

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Duc Hoang et al.

tensors. Unlike our method that dynamically learns the em-

bedding size for each modality, LMF sets the embedding size

as a hyper-parameter, where 𝑑𝑖 = 𝐷 ∗ 𝐶𝑅
2

is set as suggested

in [30].

• Sparse Structure Selection (SSS) [20]: SSS is a widely-used

channel pruning method for Convolutional Neural Networks

(CNNs). It adds ℓ1 sparsity constraints on channel-wise scal-

ing factors and solves the optimization problem by amodified

Accelerated Proximal Gradient (APG). SSS can be directly

applied to any MF-based framework to compress the embed-

ding matrix by adding column-wise scaling factors on the

embedding matrix.

4.2.2 Implementation Details. All compression techniques, ours

included, are searched for 20 epochs and trained for 50 epochs.

The only exception being Movies with only 10 epochs due to time-

constraint. To keep things fair, wemaintain identical settings during

embedding generation given a dataset. As for the learning rate, we

use a cyclical learning rate adapted from Zhang et al. [49] imple-

mentation, for both the model and architecture’s learning rates. We

set the starting learning rate value to be 0.5 for model’s and 0.001

for architecture’s. Additionally, we set 𝜏 for𝐺𝑢𝑚𝑏𝑒𝑙 −𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 [23]

to be at ten and linearly decreasing after each epoch to a minimum

value at 0.001. We use the SGD optimizer for the model’s weights

and the Adam optimizer for the model’s architecture. By default,

we use concatenation function for 𝑓 (.). Finally, we set our batch
size for words to be 512.

The embedding learning scheme is partially-adapted from the

methodology proposed by Zhang et al. [49]. We use it exclusively

to conduct our multi-modality compression experiments. In all

experiments, we set the maximum number of features, 𝐷 , to be

300 features. For text view, we set 𝜆0 to be 1 for all datasets. For

image view, we set 𝜆1 to be 0.001 for Beauty , Cell Phones, Home and

Movies dataset, and 0.1 for Clothing dataset. Next, we conduct study

on the robustness of our method by searching for three separate sets

of min-max CR settings. Given k-views and D-dimension, our min-

max pair for CR for each settings are (0.8𝑘𝐷 − 0.6𝑘𝐷), (0.6𝑘𝐷 −
0.4𝑘𝐷) and (0.4𝑘𝐷 − 0.2𝑘𝐷), where 𝑘 = 2 and 𝐷 = 300. These

settings are denoted as "Large", "Medium", "Small" respectively on

Table 3, 4 and 5.

4.2.3 Evaluation Metrics. To evaluate performance, we use the

following metrics:

• NDCG: This measure of ranking quality that takes correctly

recommended items’ position into account averaged over all

users.

• Recall: percentage of recommended item truly intended for

a user list averaged across all users.

• Precision: The average percentage across all users of cor-

rectly recommended items.

• HT: Hit Ratio measures the percentage of users with at least

one correctly recommended item in their list.

• KByte: the measurement of allocated space of total embed-

ding in Kilo-Byte.

• GPU/CPU(ms): running time in milliseconds on NVIDIA

2080ti GPU and intel-i7 CPU.

We compare performance using the Top-N recommendation list for

each user in the testing set. Here we set N = 10.

4.3 Main Results
We extensively compare our method against other compression

works, and collect their performance and efficiency results in Ta-

ble 3 and Table 4 respectively. From these results, we drew some

consistent observations:

• About modality composition, experiments on full-size em-

beddings settings suggest an asymmetrical preference to-

ward one form of representation. We observe minor prefer-

ence in the Clothing and Beauty dataset toward the image

(+0.07%) and the text(0.06%) modality. While Cell Phone and

Home exhibit more significant preference with 0.64% and

0.96% differences between the two’s modality performances.

Such observations offer an incentive for a modality-aware

compressor, such as ours, to find efficient but effective em-

bedding composition.

• We do not always observe a positive correlation between size

and performance when comparing different compression set-

tings. Generally, AutoMars, SSS [20] and LMF [30] perform

better with increasingly smaller embedding sizes. As an ex-

ample, in comparison to the performance of our full-size

benchmark on row one, AutoMars gains 0.28%, 0.30%, 0.29%
in performance while shedding 1.63KB, 2.208KB, 3.280KB

for the Cell Phone dataset, respectively. The same holds

across our tested datasets regardless of their relative density.

This increase in performance toward smaller embeddings

coincides with our previous observation of the asymmetric

preference between our modality and suggests compression

behaves similarly to a filter by reducing noisy features from

the nonpreferential modality without eradicating them.

• Comparing different compression methods efficiency, we ob-

serve a positive correlation between embedding size (Kbytes)

and latency (GPU/GPU speed in milliseconds (ms)). Table 4

details our experiments with latency between our method

and different baseline methods. Typically, AutoMars is a
better compressor under Large and Medium compression

ratio (with the exception for Home), while LMF [30] domi-

nates the Small compression ratio due to its inherent inflex-

ibility. However, when we correlate our performance with

Table 3, AutoMars is much more effective at choosing the

optimal size and features given the budget. Figure 2 illus-

trates our performance to size effectiveness of all datasets

experimented. Finally, we observe some slight discrepancy

between size and latency — in Large Clothing, AutoMars’s
is 0.008𝐾𝑏𝑦𝑡𝑒 smaller than LMF’s but is 0.121𝑚𝑠 slower in

GPU time. However, we deem this result acceptable since

the time discrepancy is within our standard deviation and

the differences between size is insignificant.

• Observing how the resource is allocated, we see that given a

budget, AutoMars does not aim for the lowest possible em-

bedding size. From a given search space, AutoMars seeks to
balance budgets and performance. Since our constraints are

fairly relaxed, perhaps with a more restrictive seach space,

we can force AutoMars to generate a smaller embedding

AutoMARS: Searching to Compress Multi-Modality Recommendation Systems CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 3: Summary of performance for AutoMARS and baselines. Results are presented in percentage with % omitted. Bold
numbers indicate the best performing scores across all models for a particularmetric. The first three rows illustrate performance
of a full-size multi-modality and individual modality embedding performance. All measurements are @10

Cell Phone Clothing Beauty Home Movie

NDCG Recall Prec HT NDCG Recall Prec HT NDCG Recall Prec HT NDCG Recall Prec HT NDCG Recall Prec HT

Image-text 4.19 7.47 1.10 10.91 1.92 3.52 0.50 5.26 4.96 8.07 1.68 14.01 1.46 2.47 0.44 4.37 0.17 0.26 0.10 0.97

Text-only 4.00 7.17 1.05 10.42 1.94 3.51 0.49 5.22 4.75 7.59 1.60 13.25 1.17 1.98 0.36 3.57 0.20 0.29 0.10 0.98

Image-only 3.36 5.68 0.85 8.35 2.01 3.51 0.50 5.24 4.69 6.91 1.55 12.36 0.21 0.33 0.09 0.89 0.29 0.48 0.15 1.55

Large

UMEC 3.81 6.80 1.00 9.84 1.87 3.46 0.49 5.12 4.81 7.75 1.65 13.53 0.40 0.69 0.14 1.42 0.19 0.25 0.10 1.01

SSS 3.42 5.89 0.86 8.49 1.41 2.47 0.34 3.74 4.69 7.41 1.59 13.00 1.13 1.91 0.34 3.44 0.20 0.22 0.09 0.90

LMF 3.09 5.45 0.78 7.91 0.95 1.61 0.23 2.48 3.31 4.97 1.13 9.01 0.05 0.09 0.02 0.25 0.03 0.04 0.01 0.12

AutoMARS 4.48 7.95 1.17 11.38 2.29 4.16 0.59 6.11 5.25 8.47 1.78 14.55 1.50 2.57 0.46 4.50 0.21 0.29 0.11 1.13

Medium

UMEC 3.75 6.78 1.00 9.89 1.84 3.36 0.48 5.00 4.80 7.71 1.64 13.57 0.39 0.76 0.16 1.55 0.14 0.19 0.07 0.69

SSS 3.66 6.23 0.90 8.86 1.91 3.47 0.49 5.10 4.29 7.04 1.49 12.27 1.09 1.84 0.34 3.33 0.15 0.20 0.08 0.80

LMF 3.37 5.84 0.82 8.43 0.99 1.66 0.25 2.61 3.34 5.17 1.16 8.95 0.06 0.10 0.03 0.29 0.04 0.06 0.01 0.15

AutoMARS 4.49 7.99 1.17 11.55 2.32 4.15 0.59 6.11 5.23 8.39 1.75 14.45 1.46 2.47 0.45 4.37 0.15 0.21 0.08 0.83

Small

UMEC 3.61 6.61 0.98 9.64 1.76 3.22 0.45 4.75 4.60 7.48 1.57 13.14 0.43 0.76 0.16 1.55 0.12 0.19 0.07 0.69

SSS 2.65 4.82 0.73 7.25 1.33 2.27 0.33 3.42 4.67 7.32 1.57 12.96 1.11 1.86 0.33 3.33 0.13 0.16 0.07 0.77

LMF 3.43 5.96 0.85 8.62 1.06 1.68 0.25 2.60 1.18 5.42 1.22 9.84 0.04 0.06 0.02 0.22 0.03 0.05 0.01 0.14

AutoMARS 4.49 7.97 1.17 11.51 2.28 4.09 0.58 6.04 4.66 7.39 1.59 12.95 1.44 2.44 0.44 4.30 0.15 0.20 0.08 0.79

Table 4: Embedding size and prediction latency measurements of approaches reported in Table 3. We report the average latency
value of 1000 iterations between 2000 products/users. By default, full-size embedding of both Image-Text is 4.8 KByte with run
time of 3.950±0.224ms and 10.841±1.115ms on GPU/CPU. {Note that LMF reports the same result across datasets because of its
inability of dynamically learning embedding size.}

Cell Phone Clothing Beauty Home Movie

KByte GPU(ms) CPU(ms) KByte GPU(ms) CPU(ms) KByte GPU(ms) CPU(ms) KByte GPU(ms) CPU(ms) KByte GPU(ms) CPU(ms)

Large

UMEC 3.39 2.81±0.19 7.97±0.61 3.55 3.09±0.21 7.82±0.60 3.49 2.98±0.18 7.81±0.84 3.82 3.52±0.27 8.02±0.73 2.97 2.97±0.24 8.86±1.12
SSS 3.22 2.85±0.17 7.61±0.63 2.55 2.37±0.19 5.48±0.49 3.74 3.35±0.25 8.29±0.78 3.02 2.71±0.23 6.00±0.53 2.34 2.57±0.11 6.38±1.07
LMF 3.36 2.91±0.21 7.70±0.60 3.36 2.91±0.21 7.70±0.60 3.36 2.91±0.21 7.70±0.60 3.36 2.91±0.21 7.70±0.60 3.36 2.91±0.21 7.70±0.60
AutoMARS 3.17 2.74±0.21 7.49±0.56 3.35 3.03±0.21 7.54±0.58 3.26 2.80±0.15 7.68±0.60 3.79 3.40±0.23 8.04±0.70 3.55 3.84±0.45 14.54±4.52

Medium

UMEC 2.46 2.16±0.15 5.39±0.49 2.74 2.37±0.16 5.87±0.52 2.61 2.37±0.18 5.62±0.57 2.85 2.52±0.52 5.92±0.48 2.49 2.65±0.15 6.72±1.06
SSS 2.29 2.15±0.16 5.05±0.38 2.40 2.11±0.22 5.42±0.43 2.70 2.47±0.22 5.99±0.55 1.88 1.72±0.18 3.65±0.36 2.23 2.55±0.16 6.19±1.24
LMF 2.40 2.10±0.17 5.36±0.44 2.40 2.10±0.17 5.36±0.44 2.40 2.10±0.17 5.36±0.44 2.40 2.10±0.17 5.36±0.44 2.40 2.10±0.17 5.36±0.44
AutoMARS 2.59 2.34±0.21 5.63±0.52 2.11 1.75±0.16 4.99±0.52 2.10 1.93±0.15 4.89±0.50 2.30 2.11±0.22 5.13±0.41 2.60 2.82±0.13 9.71±3.62

Small

UMEC 1.52 1.53±0.15 3.08±0.33 1.90 1.76±0.19 4.04±0.38 1.73 1.49±0.15 3.47±0.40 0.51 0.63±0.08 1.42±0.15 2.39 2.52±0.11 6.37±0.73
SSS 1.47 1.30±0.11 3.08±0.30 2.14 1.88±0.18 4.80±0.49 1.84 1.70±0.14 3.78±0.41 1.86 1.58±0.16 3.66±0.55 1.67 1.82±0.13 4.22±0.85
LMF 1.44 1.37±0.14 3.02±0.27 1.44 1.37±0.14 3.02±0.27 1.44 1.37±0.14 3.02±0.27 1.44 1.37±0.14 3.02±0.27 1.44 1.37±0.14 3.02±0.27
AutoMARS 1.52 1.52±0.17 3.14±0.29 1.71 1.57±0.16 3.62±0.53 1.78 1.72±0.17 3.62±0.36 1.02 1.06±0.11 2.33±0.33 1.22 1.41±0.14 4.54 ±2.17

(a) Cell Phone (b) Clothing (c) Beauty (d) Home

Figure 2: We illustrate the performance gain (or lost) at different size in Kbytes for each method. We marked the baseline’s
performance irrespective of its size as the horizontal dash line for perspective. AutoMars achieves consistently great performance
across different variation of model’s size.Observe that size and performance are not always positively correlated. The increase
in performance toward smaller embeddings coincides with our previous observation on the asymmetric preference between our
modality and suggests compression behaves similarly to a filter by reducing noisy features from the nonpreferential modality.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Duc Hoang et al.

Figure 3: Stability analysis of AutoMARS with or without
distillation. The error bars (mean ± standard derivation) are
obtained over six random runs. Experiments are conducted
onCell-Phone andmediummodel size. Self-distillation helps
stabilize AutoMars performance and improve accuracy.

size to the detriment of performance. Other methods are

easily biased toward small settings since they can trivially

reduce one-half of the constraint that way.

• Comparing different compression methods performance,Au-
toMars generally achieves much better performance — For

example, under NDCG@10, AutoMars gains over the next
best in Large compression setting at 0.67% for Cell-Phone,

0.41% in Clothing, 0.44% for Beauty, 0.38% for Home and

0.02% for Movies. Compared to the full-size embeddings

benchmark, it manages to gain extra performance, 0.5% for

Cell Phone, 1.4% for Clothing, 1.3% for Beauty, and 0.04% for

Home. The only notable exception being Movies, where it

did not gain any performance over baseline image. Lastly,

we observe our performance gain against other compression

frameworks does not clearly correlate with the dataset’s in-

teraction density, while against full-size embeddings, our

improvement in performance correlates negatively with de-

creasing interaction ratio. Figure 2 illustrate said phenome-

non clearly when compared to other compression methods

and full-size embeddings.

4.4 Ablation Study
For this section, we analyze the merit of each of our components.

These include self-distillation, compression ratio, features’ identi-

ties and multi-modality fusion methods. To do this, we add three

different variants of AutoMARS with some features missing.

• In Random-selection, we disregard the index positions of

selected features and embedding values found during search.

Instead, we keep only the modality preference and fine-tune

it from scratch.

• In No-Distill, we fine-tune our network without distillation

loss while keeping everything else identical.

• In Half-half, we equally represent each modality with the

searched total number of features.

4.4.1 Impact of self-distillation. Inspired by the recent finding that

model distillation can effectively stabilize model compression pro-

cess [40], we integrate NAS with self-distillation. We observe that

Table 5: Comparison between different ablation studies to
the baseline at identical compression ratios for Cell-Phone
dataset.

NDCG Recall Prec HT

Large

half-half 3.9327 7.0695 1.0386 10.2658

No-Distill 4.4409 7.8889 1.1576 11.3849

Random-selection 3.5810 6.5512 0.9623 9.5054

AutoMars 4.4756 7.9476 1.1671 11.3849

Medium

half-half 3.8914 7.0442 1.0347 10.2407

No-Distill 4.1462 7.3792 1.0859 10.7464

Random-selection 3.5333 6.3845 0.9372 9.2758

AutoMARS 4.4895 7.9952 1.1736 11.5463

Small

half-half 3.7779 6.8482 1.0069 9.9788

No-Distill 3.9438 7.1809 1.0506 10.4882

Random-selection 3.8152 6.8693 1.006 9.9501

AutoMARS 4.4886 7.9694 1.1700 11.514

this simple modification can improve performance and maintain

consistency. We demonstrate how self-distillation stabilizes the

fine-tuning process with figure 3. This figure illustrates the wide

deviation across all metrics between using self-distillation and not

using distillation. In addition, it shows self-distillation significantly

reduce all standard deviation across all metrics. Furthermore, fig-

ure 4 shows that distillation improves performance for all model

sizes, especially in small compression setting, where we observe

a disproportional gain in performance, of up to 20% for Clothing.

Table 5 clearly summarizes these observations.

Figure 4: Performance percentage gains versus interaction
density for all model sizes. Percentage gains are the percent-
age difference of recalls between AutoMARS and AutoMARS-
No-Distill. As the dataset gets increasingly sparser, we ob-
serve larger gains using distillation, especially for the smaller
model. This trend is consistence for all metrics.

4.4.2 Impact of Features Selection. In AutoMARS, we utilize the
feature subsets found during the search as initial values for fine-

tuning.We do this because feature sorting is part of the compression

process, which would be destroyed during fine-tuning if we per-

form zero-initialization, nullifying the search result. Additionally,

since we searched on embedding vectors, the derived 𝛼 is naturally

AutoMARS: Searching to Compress Multi-Modality Recommendation Systems CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 6: Comparison between different multi-views fusion
strategies apply to uncompressed baseline using default con-
figurations. Cell-Phone is used for this experiment.

NDCG Recall Prec HT

Concat 4.1903 7.4761 1.1041 10.9186

Max 4.2437 7.3935 1.0923 10.6854

Add 4.1639 7.2603 1.0568 10.3518

Mean 3.5598 6.3403 0.9479 9.3367

unstructured, which is unlike most NAS [28].Thus, to create a reg-

ular structure like network architecture, we place importance on

positions and scalar values of for searched subset of features.

To validate this hypothesis, we test whether inheriting the index

positions and scalar values for selected features during the search

can help our fine-tuning process achieve higher accuracy than

without the inheritance. We compare the results of our two variants

Random and No-Distill, and report their performances under table

5 and figure 2. We can see that we consistently achieve much better

results by inheriting the index and scalar values of the feature subset

for fine-tuning. This result empirically supports our hypothesis and

validates our approach for AutoMARS.

4.4.3 Impact of Multi-Modality Fusion. We study the impact of

different fusion strategies on the baseline framework. The results

are summarized in Table 6. Under the ideal circumstance, concate-

nation remains the ideal choice for multi-views fusion, followed

by max, add, and mean. Intuitively, this makes sense, as concate-

nation allows for homogeneous scaling of the product’s modality

features between the user and product embeddings before the final

summation of all features. Max and Add functions enforce features

that can be similarly interpreted across different modalities into

the same spatial location of the embedding vector. On the other

hand, the Mean function normalizes features across modalities and

smooths the embedding space, which can cause features to be overly

smoothed and thus lower the overall embedding dimension.

4.4.4 Intuitions. From the abundant empirical results collected,

we can derive a tuition to when to use which method base on

our needs. For instance, for a general min-maxing of budget and

performance, AutoMARS would be the best choice for its ability to

maintain performance while keeping the budget low. However, due

to the nature of Neural Architecture Search, we find having precise

control over the exact budget more challenging. Therefore, in a

scenario where budget is of the utmost priority, LMF is the better

choice thanks to its predictable nature. On the other hand, SSS and

UMEC are relatively simpler to implement. In the case where we

want fast results, we recommend SSS or UMEC.

5 CONCLUSION
In this paper, we investigate, for the first time, how to compress a

multi-modality recommendation system. We propose AutoMARS
the first model compression method for multi-modality recommen-

dation systems. Unlike previous RS compression methods for single

modality input data, AutoMARS is designed to be modality-aware.

It utilizes Neural Architecture Search (NAS) to allocate computa-

tional budgets for each input modality automatically. We show

that having correct modality-preference can improve the model

performance at a much smaller memory footprint. We further im-

prove accuracy by recognizing the importance of features positions

and identities. Additionally, we demonstrate that distillation stabi-

lizes performance and improves gains for smaller models at sparser

datasets. Compare to existing compression works, AutoMARS
achieves on average a 20% increase in accuracy over baseline while

enjoying a 65% reduction in overall size. A current limitation is the

absence of experiments on edge devices due to time constraints.

In future works, we will address this and further investigate more

advanced and efficient modality fusion approaches. We want to

experiment with block-wise dynamic feature selection based on

user-product pairing across different modalities targeting perfor-

mance using NAS.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next gen-

eration of recommender systems: A survey of the state-of-the-art and possible

extensions. IEEE Transactions on Knowledge and Data Engineering 17, 6 (June

2005), 734–749. https://doi.org/10.1109/TKDE.2005.99 Copyright: Copyright

2011 Elsevier B.V., All rights reserved..

[2] Charu C. Aggarwal. 2016. Recommender Systems - The Textbook. Springer.
[3] Thalaiyasingam Ajanthan, Puneet K. Dokania, Richard Hartley, and Philip

H. S. Torr. 2019. Proximal Mean-field for Neural Network Quantization.

arXiv:1812.04353 [cs.CV]

[4] Tianlong Chen, Xuxi Chen, Xiaolong Ma, Yanzhi Wang, and Zhangyang Wang.

2022. Coarsening the Granularity: Towards Structurally Sparse Lottery Tickets.

arXiv:2202.04736 [cs.LG]

[5] Tong Chen, Hongzhi Yin, Yujia Zheng, Zi Huang, Yang Wang, and Meng Wang.

2021. Learning Elastic Embeddings for Customizing On-Device Recommenders.

arXiv:2106.02223 [cs.IR]

[6] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A survey of model

compression and acceleration for deep neural networks. arXiv preprint
arXiv:1710.09282 (2017).

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2016. BinaryCon-

nect: Training Deep Neural Networks with binary weights during propagations.

arXiv:1511.00363 [cs.LG]

[8] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks

for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[9] Xuanyi Dong and Yi Yang. 2019. Searching for A Robust Neural Architecture in

Four GPU Hours. arXiv:1910.04465 [cs.CV]

[10] Michael D. Ekstrand, John Riedl, and Joseph A. Konstan. 2011. Collaborative

Filtering Recommender Systems. Found. Trends Hum. Comput. Interact. 4, 2 (2011),
175–243.

[11] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:

Finding Sparse, Trainable Neural Networks. arXiv:1803.03635 [cs.LG]

[12] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. 2021. Knowl-

edge Distillation: A Survey. International Journal of Computer Vision 129, 6 (Mar

2021), 1789–1819. https://doi.org/10.1007/s11263-021-01453-z

[13] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-

ing Deep Neural Networks with Pruning, Trained Quantization and Huffman

Coding. arXiv:1510.00149 [cs.CV]

[14] Ruining He and Julian McAuley. 2016. Ups and Downs. Proceedings of the 25th
International Conference on World Wide Web (Apr 2016). https://doi.org/10.1145/

2872427.2883037

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. arXiv:1708.05031 [cs.IR]

[16] Zhankui He, Handong Zhao, Zhe Lin, Zhaowen Wang, Ajinkya Kale, and Ju-

lian J. McAuley. 2021. Locker: Locally Constrained Self-Attentive Sequential

Recommendation. In The 30th ACM International Conference on Information and
Knowledge Management. 3088–3092.

[17] Zhankui He, Handong Zhao, Tong Yu, Sungchul Kim, Fan Du, and Julian J.

McAuley. 2022. Bundle MCR: Towards Conversational Bundle Recommendation.

CoRR abs/2207.12628 (2022).

[18] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2016. Session-based Recommendations with Recurrent Neural Networks.

arXiv:1511.06939 [cs.LG]

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in

a Neural Network. arXiv:1503.02531 [stat.ML]

[20] Zehao Huang and Naiyan Wang. 2018. Data-Driven Sparse Structure Selection

for Deep Neural Networks. arXiv:1707.01213 [cs.CV]

https://doi.org/10.1109/TKDE.2005.99
https://arxiv.org/abs/1812.04353
https://arxiv.org/abs/2202.04736
https://arxiv.org/abs/2106.02223
https://arxiv.org/abs/1511.00363
https://arxiv.org/abs/1910.04465
https://arxiv.org/abs/1803.03635
https://doi.org/10.1007/s11263-021-01453-z
https://arxiv.org/abs/1510.00149
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://arxiv.org/abs/1708.05031
https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1707.01213

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Duc Hoang et al.

[21] Zhenhua Huang, Xin Xu, Honghao Zhu, and Meng Chu Zhou. 2020. An Efficient

Group Recommendation Model with Multiattention-Based Neural Networks.

IEEE Transactions on Neural Networks and Learning Systems 31, 11 (Nov. 2020),
4461–4474. https://doi.org/10.1109/TNNLS.2019.2955567

[22] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2016. Quantized Neural Networks: Training Neural Networks with Low

Precision Weights and Activations. arXiv:1609.07061 [cs.NE]

[23] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization

with Gumbel-Softmax. arXiv:1611.01144 [stat.ML]

[24] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. MATRIX FACTORIZATION

TECHNIQUES FOR RECOMMENDER SYSTEMS.

[25] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences

and Documents. arXiv:1405.4053 [cs.CL]

[26] Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, and Xing

Xie. 2020. Lightrec: A memory and search-efficient recommender system. In

Proceedings of The Web Conference 2020. 695–705.
[27] Chang Liu, Xiaoguang Li, Guohao Cai, Zhenhua Dong, Hong Zhu, and Lifeng

Shang. 2021. Non-invasive Self-attention for Side Information Fusion in Sequen-

tial Recommendation. arXiv:2103.03578 [cs.IR]

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable

Architecture Search. arXiv:1806.09055 [cs.LG]

[29] Tianqiao Liu, Zhiwei Wang, Jiliang Tang, Songfan Yang, Gale Yan Huang, and

Zitao Liu. 2019. Recommender systems with heterogeneous side information. In

The World Wide Web Conference (WWW). 3027–3033.
[30] Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Pu Liang,

Amir Zadeh, and Louis-Philippe Morency. 2018. Efficient Low-rank Multimodal

Fusion with Modality-Specific Factors. arXiv:1806.00064 [cs.AI]

[31] Xueyu Mao, Saayan Mitra, and Viswanathan Swaminathan. 2017. Feature Se-

lection for FM-Based Context-Aware Recommendation Systems. In 2017 IEEE
International Symposium on Multimedia (ISM). 252–255. https://doi.org/10.1109/

ISM.2017.42

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey

Dean. 2013. Distributed Representations of Words and Phrases and their

Compositionality. In Neural and Information Processing System (NIPS).
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-

phrases-and-their-compositionality.pdf

[33] J. Ben Schafer, Dan Frankowski, Jonathan L. Herlocker, and Shilad Sen. 2007.

Collaborative Filtering Recommender Systems. In The Adaptive Web, Methods and
Strategies of Web Personalization (Lecture Notes in Computer Science, Vol. 4321),
Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl (Eds.). Springer, 291–324.

[34] Jiayi Shen, Haotao Wang, Shupeng Gui, Jianchao Tan, Zhangyang Wang, and

Ji Liu. 2021. UMEC: Unified model and embedding compression for efficient

recommendation systems. In International Conference on Learning Representations.
https://openreview.net/forum?id=BM---bH_RSh

[35] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. 2020.

Compositional embeddings using complementary partitions for memory-efficient

recommendation systems. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 165–175.

[36] Xiaoyuan Su and TaghiM. Khoshgoftaar. 2009. A Survey of Collaborative Filtering

Techniques. Adv. in Artif. Intell. 2009, Article 4 (Jan. 2009), 1 pages. https:

//doi.org/10.1155/2009/421425

[37] Karthik Subbian, Charu C. Aggarwal, and Kshiteesh Hegde. 2016. Recommenda-

tions For Streaming Data. In Proceedings of the 25th ACM International Conference

on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA,
October 24-28, 2016, Snehasis Mukhopadhyay, ChengXiang Zhai, Elisa Bertino,

Fabio Crestani, Javed Mostafa, Jie Tang, Luo Si, Xiaofang Zhou, Yi Chang, Yunyao

Li, and Parikshit Sondhi (Eds.). ACM, 2185–2190.

[38] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture

search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2820–2828.

[39] Vipul Vekariya and G. R. Kulkarni. 2012. Hybrid recommender systems: Survey

and experiments. In 2012 Second International Conference on Digital Information
and Communication Technology and it’s Applications (DICTAP), Bangkok, Thailand,
May 16-18, 2012. IEEE, 469–473.

[40] Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and Zhangyang Wang. 2020.

GAN Slimming: All-in-One GAN Compression by A Unified Optimization Frame-

work. In European Conference on Computer Vision (ECCV). Springer, 54–73.
[41] Qinyong Wang, Hongzhi Yin, Tong Chen, Zi Huang, Hao Wang, Yanchang Zhao,

and Nguyen Quoc Viet Hung. 2020. Next point-of-interest recommendation on

resource-constrained mobile devices. In Proceedings of the Web conference 2020.
906–916.

[42] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun,

and Defu Lian. 2022. A Survey on Session-based Recommender Systems. ACM
Comput. Surv. 54, 7 (2022), 154:1–154:38.

[43] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning

Structured Sparsity in Deep Neural Networks. arXiv:1608.03665 [cs.NE]

[44] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming

Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. Fbnet:

Hardware-aware efficient convnet design via differentiable neural architecture

search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 10734–10742.

[45] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan.

2019. Session-Based Recommendation with Graph Neural Networks. Proceedings
of the AAAI Conference on Artificial Intelligence 33 (Jul 2019), 346–353. https:

//doi.org/10.1609/aaai.v33i01.3301346

[46] Yikun Xian, Zuohui Fu, Handong Zhao, Yingqiang Ge, Xu Chen, Qiaoying Huang,

Shijie Geng, Zhou Qin, Gerard de Melo, S. Muthukrishnan, and Yongfeng Zhang.

2020. CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Rec-

ommendation. In The 29th ACM International Conference on Information and
Knowledge Management. ACM, 1645–1654.

[47] Shuai Zhang, Lina Yao, and Aixin Sun. 2017. Deep Learning based Recommender

System: A Survey and New Perspectives. CoRR abs/1707.07435 (2017). http:

//arxiv.org/abs/1707.07435

[48] Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, De-

qing Wang, Guanfeng Liu, and Xiaofang Zhou. 2019. Feature-level Deeper

Self-Attention Network for Sequential Recommendation.. In IJCAI. 4320–4326.
[49] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W Bruce Croft. 2017. Joint repre-

sentation learning for top-n recommendation with heterogeneous information

sources. In Proceedings of the 2017 ACM on Conference on Information and Knowl-
edge Management. 1449–1458.

[50] Handong Zhao, Zhengming Ding, and Yun Fu. 2017. Multi-View Clustering via

Deep Matrix Factorization. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence. 2921–2927.

[51] Xiangyu Zhao, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, and

Jiliang Tang. 2020. AutoEmb: Automated Embedding Dimensionality Search in

Streaming Recommendations. arXiv:2002.11252 [cs.IR]

https://doi.org/10.1109/TNNLS.2019.2955567
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/2103.03578
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1806.00064
https://doi.org/10.1109/ISM.2017.42
https://doi.org/10.1109/ISM.2017.42
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://openreview.net/forum?id=BM---bH_RSh
https://doi.org/10.1155/2009/421425
https://doi.org/10.1155/2009/421425
https://arxiv.org/abs/1608.03665
https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1609/aaai.v33i01.3301346
http://arxiv.org/abs/1707.07435
http://arxiv.org/abs/1707.07435
https://arxiv.org/abs/2002.11252

	Abstract
	1 Introduction
	2 prior works
	2.1 Recommendation Systems
	2.2 Model Compression
	2.3 Model Compression on Recommendation Systems

	3 methodology
	3.1 Model Search Space
	3.2 Modality-aware Optimization
	3.3 Fine-tuning and Self-distillation

	4 experiments
	4.1 Dataset Description
	4.2 Experimental Setup
	4.3 Main Results
	4.4 Ablation Study

	5 Conclusion
	References

