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Abstract. The main algorithms at the heart of search engines have focused on 
ranking and classifying sites. This is appropriate when we know what we are 
looking for and want it directly. Alternatively, we surf, in which case ranking 
and classifying links becomes the focus. We address this problem using a latent 
semantic analysis of the web. This technique allows us to rate, suppress or cre-
ate links giving us a version of the web suitable for surfing. Furthermore, we 
show on benchmark examples that the performance of search algorithms such 
as PageRank is substantially improved as they work on an appropriately 
weighted graph. 
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1   Introduction 

The ergodic theorem and/or its associated iterative construction of principal eigenvec-
tors forms the backbone of the main search algorithms on the web. (PageRank [1], 
HITS [2], SALSA [3]). The standard proofs of the ergodic theorem rely on the Perron 
Frobenius theorem, which implies the use of a certain amount of mathematical ma-
chinery and restrictive hypotheses. A new fundamentally simpler proof of the ergodic 
theorem was derived in [4]. In a second section we will show how this proof can be 
used to clarify the role played by Markov models, the Perron Frobenius theorem and 
Kirchhoff’s Matrix Tree theorem in the design of search engines. In a short third sec-
tion we make a case that the ranking of links should play a major role in the design of 
surf engines. In the fourth section we first recall how singular value decomposition is 
used to extract latent semantic features [5, 6]. In the next three subsections we apply 
this technique to automatically rate and update links, leading to improved efficiency 
for search algorithms, we then generate surf sessions and extract meta sites and target 
sites. This construction of meta sites and targets can be used to generate hubs and 
authorities [2] and the bipartite graphs defined in SALSA [3] and Trawling [7]. 

2   A Symbolic View: From Kirchhoff to Google 

In this section we review the results from [4] and see how they relate to PageRank, 
SALSA, HITS and other algorithms that form the core of search engines. 
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In the patent application for PageRank we find the statements: “the rank of a page 
can be interpreted as the probability that a surfer will be at a particular page after 
following a large number of forward links. The iteration circulates the probability 
through the linked nodes like energy flows through a circuit and accumulates in im-
portant places.” The first sentence shows that the web is considered as a Markov 
chain and that the ranking of sites is given as an application of the ergodic theorem 
[8], which indeed computes how frequently each site is visited by a surfer. The sec-
ond sentence is related to Kirchhoff’s [9] current law. 

The proof of the ergodic theorem is most frequently given as an application of the 
Perron Frobenius theorem, which essentially states that the probabilities of being at a 
particular site are given as the coefficients of the principal eigenvector of the stochas-
tic matrix associated to the Markov chain, which is computed as 
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The implementation of the PageRank algorithm uses this construction (as a founda-
tion, there is more to the PageRank algorithm and to the Google search engine), as 
well as SALSA. So we have two separate problems to consider. One is the use of the 
Markov Chain model for the web, and the other is the use of the Perron Frobenius 
theorem as a basis for an implementation. Indeed alternative constructions for com-
puting the most frequently visited sites have been proposed for instance based on 
Gauss Seidel [10]. And if Kleinberg’s HITS algorithm is not based on the Markov 
Chain model or the ergodic theorem, it nevertheless makes systematic use of the Per-
ron Frobenius theorem. 

The ergodic theorem now plays a major role in computer science, but its complete 
proof is a challenge at least for undergraduate computer scientists. Indeed we have 
issues of convergence involving further theorems from analysis, computing eigenval-
ues which involves considerations of complex numbers, issues of uniqueness of solu-
tion which creates serious problems leading to restrictive hypotheses and further 
mathematical machinery [10]. 

In [11,12] it was shown that elimination theory, based on Tarski’s meta theorem 
could be used to derive strikingly simple proofs of important theorems whose 
known proofs were very involved. This technique was applied in [4] to the ergodic 
theorem. We informally present here the essential result that allows us to present 
the ergodic theorem with minimal mathematical machinery and no overly restrictive 
hypotheses. 

Let G be a graph representing a Markov chain where the nodes si are called states 
(or sites in our application) and the edges represent links between states.  

Consider the system of equations below. The xi are the probabilities of being in 
state i, while pi,j is the probability of moving from state i to state j. So if we are in  
state 2 with probability x2, it is because we were previously in state 1 with probability 
x1 and we transitioned with probability p12, or we were in state 4 with probability x4 
and we transitioned to state 2 with probability p42.  
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1441331221 xxpxpxp =++  

                                                            2442112 xxpxp =+  
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                                                                            ∑ = 1ix  

We solve this system by symbolic Gaussian elimination, using maple we find: 

          Σ+++= /2142314131212142344134211 ppppppppppppx  

Σ++++= /4234131242341241341242311241312 pppppppppppppppx  
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A careful examination shows us that a monomial such as p42p21p13 represents a re-
verse weighted spanning tree with root at s3. So we see clearly how to compute a 
general solution: xi will be equal to the quotient of the sums of the monomials corre-
sponding to the reverse weighted spanning trees rooted at si by the sum of the mono-
mials corresponding to all reverse weighted spanning trees. 

       
 

       

Fig. 1. 

A simple induction will complete the proof whose details can be found in [4]. So 
we can present the ergodic theorem without any of the usual more complex machin-
ery. We have the exact solution in a finite number of steps. 
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Also importantly we see that the only restrictive condition is that the denominator 
∑ is non null, that is we require that the graph admits at least one reverse spanning 
tree. That is an improvement on the use of Perron Frobenius which does not converge 
on a cycle as its largest eigenvalue has degree two. This causes restrictive conditions 
and makes the proof more complex, even though intuitively it is obvious that the 
solution is a uniform value for all sites. While with our proof we see that obviously all 
spanning trees are isomorphic and therefore all probabilities are equal. 

 

Fig. 2. 

Furthermore, we see that if a graph has several “sinks” as described in the Google 
patent, then it cannot have a reverse spanning tree and the ergodic theorem will not 
apply. That is why in PageRank new links are added to get out of sinks, making the 
graph strongly connected. 

3   From Search Engines to Surf Engines 

If at the theoretical level some algorithms assume that links are given some weights or 
probabilities, in practice they are given a uniform probability distribution. It is however 
clear that all links are not “equal” and that a weighting of these links should improve 
the performance of search engines. This is a local ranking as shown in figure 3, where 
the question is “where can I go from here?” 

       

Fig. 3. 

However if we consider the surfing aspect of search where we start a bit randomly 
and go window shopping on the sites, a ranking or rating of links should be of funda-
mental importance. This time the question is not “where can I go from here?” but 
rather “where should I go from here?” even if there is no link. This is particularly 
important for updating the graph, as illustrated in figure 4. The graph on the top-left 
represents the web at some point in time. Later new sites I,J,K,L are added with links 
to H and the sites C and G have updated their links adding one to H, as seen on the 
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top-right graph. Now that H is clearly an important site, we would like to automati-
cally update the graph, for instance by adding a link from A to H as shown in the 
graph at the bottom. 

         
 
 

 

Fig. 4. 

Finally an important question is raised when we rank the links globally, as opposed 
to locally. In figure 5 the importance of links is marked by the thickness of the arrow. 

 

Fig. 5. 

The question is: what is the nature of the sites which correspond to the most highly 
ranked links? We can expect them to be of some significance, and we will verify this 
at the end of the next section. 

4   Latent Semantic Analysis of the Web 

The seminal paper by Kleinberg [2] introduced the notion of Hubs and Authorities for 
sites on the web, and if it does not rely on the Markov Chain model, it is a remarkable 
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application of the Perron Frobenius theorem, as it makes a double usage of its con-
struction of principal eigenvectors. 

We go one step further by considering the singular value decomposition which sys-
tematically computes all eigenvectors of MMT and MTM. Instead of using the eigen-
vectors to classify sites as in [2], we use them to rank the links by computing a new 
graph representation of the web. 

4.1   Singular Value Decomposition 

Let nxmM ℜ∈ , we decompose M into three matrices using Singular Value Decom-
position: 

TVSUM =  

where nxmU ℜ∈ , mxmS ℜ∈ and mxmTV ℜ∈ . The matrix S contains the singular 
values located in the [i, i]1,..,n cells in decreasing order of magnitude and all other cells 
contain zero. The eigenvectors of MMT make up the columns of U and the eigenvec-
tors of MTM make up the columns of V. The matrices U and V are orthogonal, unitary 
and span vector spaces of dimension n and m, respectively. The inverses of U and V 
are their transposes. 
 

 

 

The columns of U are the principal directions of the hubs and the rows of VT are 
the principal directions of the authorities. The principal directions are ordered accord-
ing to the singular values and therefore according to the importance of their contribu-
tion to M. 

The singular value decomposition is used by setting some singular values to zero, 
which implies that we approximate the matrix M by a matrix: 

T
kkkk VSUM =  

A fundamental theorem by Eckart and Young states that Mk is the closest rank-k 
least squares approximation of M [13]. This theorem can be used in two ways. To 
reduce noise by setting insignificant singular values to zero or by setting the majority 
of the singular values to zero and keeping only the few influential singular values in a 
manner similar to principal component analysis.  

In latent semantic analysis we extract information about the relationships between 
sites as they change when we set all, but the most significant, singular values to zero.  
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The singular values in S provide contribution scores for the principal directions in U 
and VT. 

We use the terminology “principal direction” for the following reason. In zoomed 
clusters [14] it was shown that (assuming unit vectors) the principal eigenvector is an 
“iterated centroid” that is a version of the notion of centroid, where outliers are given 
a decreasing weight. The iterative centroid is the reason Kleinberg’s HITS algorithm 
favors the most tightly knit communities. 
 

 
( ) eMMC

nT

n ∞→∞ = lim  

The iterative centroid penalizes outliers and gives more weight or influence to the 
tightly knit community. 

4.2   Automatic Rating and Updating of Links 

The datasets we used in these experiments came from Panayiotis Tsaparas at the Uni-
versity of Toronto [15]. The queries we selected were: “Movies”, “Computational 
Geometry”, “Death Penalty”, “Abortion”, “Gun Control” and “Genetic.” We start 
with a set of web pages interconnected by links. The set of web pages can be repre-
sented as an adjacency matrix M of the hyperlink graph G, where Mi,j = 1 if there is a 
link from site i to site j, and Mi,j = 0 if there is no link between site i and j. 

In these experiments we first compute the SVD of the adjacency matrix M from a 
given query and set all but five singular values to zero. We then compute M5 a low 
rank approximation of M, to which corresponds a new graph G5. To this new graph, 
we apply the inDegree and PageRank algorithms. We count the number of relevant 
sites among the first ten given by the algorithms. We then compare these results with 
the results on the original graph G, see table 1. There is clearly a significant im-
provement for both algorithms. This improvement is further illustrated in tables 2  
and 3, where we show the top ten results for the “Movies” query in each situation. 
Similar results have been obtained with the other queries. 

It is important to notice that we are not following a Markov model now because the 
matrix M5 is not a stochastic matrix, it even can have negative numbers. It does not  
 

Table 1. Quantitative relevance results before and after LSA on inDegree and PageRank 

Queries inDegree LSA inDegree PageRank LSA PageRank 

Movies 6  10 4 10 

Computational Geometry 8  10 5 10 

Death Penalty 9  9 6 9 

Abortion 10 10 3  10 

Gun Control 9  10 7  10 

Genetic 9 9 6  9 
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correspond either to a Kirchhoff model as it does not fit a conservation system. How-
ever the values in M5 represent the larger coordinates of the eigenvectors with the 
larger eigenvalues, and as such representative of the main directions of the graph. 

Table 2. Ranking of sites from the “Movies” query using inDegree on the original graph com-
pared with inDegree on the appropriately weighted graph in which LSA has been applied 

Rank inDegree LSA inDegree 
1 Hollywood.com - Your entertainment Hollywood.com - Your entertainment 
2 Paramount Pictures Film.com & Movie Reviews, 
3 Film.com & Movie Reviews, Paramount Pictures 
4 Welcome to mylifesaver.com Universal Studios 
5 Disney.com -- Where the Magic Disney.com -- Where the Magic 
6 Universal Studios Movies.com 
7 My Excite Start Page MGM - Home Page 
8 Movies.com All Movie Guide 
9 Lycos Boxoffice Magazine 

10 Google Batman Forever Movie 

Table 3. Ranking of sites from the “Movies” query using PageRank on the original graph 
compared with PageRank on the appropriately weighted graph in which LSA has been applied 

Rank PageRank LSA PageRank 
1 GuideLive: Movies in Dallas Hollywood.com - Your entertainment 
2 CitySearch.com Film.com & Movie Reviews, 
3 On Wisconsin Paramount Pictures 
4 CDOutpost.com Universal Studios 
5 Ebert & Roeper and the Movies Disney.com -- Where the Magic 
6 Roger Ebert Movies.com 
7 Sofcom Motoring MGM - Home Page 
8 Hollywood.com - Your entertainment All Movie Guide 
9 The Knoxville News Boxoffice Magazine 

10 Excite@Home: Career Opp. Gannett home page 

4.3   Surf Sessions 

In a surf session we chose a starting site at random and follow the links with the high-
est weight. To generate the weights we first compute the SVD of the adjacency matrix 
from the movies query and set all but two hundred singular values to zero. We then 
compute M200. We selected the site “Math in the Movies” at random and followed the 
link with the highest value. In this example we can check that all visited sites are 
relevant, we had similar cases with other random start sites, where even if a visited 
site did not appear to be relevant the following ones were. Such surf sessions help us 
validate the SVD technique that we proposed, as well as being a starting point for the 
design of surf engines. 
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Table 4. Surf session starting with the site “Math in the Movies” from the query “Movies” 

Links Surf Session 

Start 
http://world.std.com/~reinhold/mathmovies.html 
Math in the Movies 

2 
http://www.pithemovie.com 
Pi The Movie: Enter 

3 
http://www.mrcranky.com 
Movies and more movies! 

4 
http://ign.com 
IGN 

5 
http://www.allmovie.com 
All Movie Guide 

6 
http://www.chireader.com/movies 
Reader Guide: Movies 

End 
http://www.amctv.com 
American Movie Classics 

4.4   Meta Sites and Targets 

Assuming that a hub and a corresponding authority are of excellent quality, we 
could expect that they are directly linked. This is why in SALSA, Trawling and 
others, the relationship between hubs and authorities is given as a bipartite graph. In 
our setting we can expect that the links with the highest value connect sites of par-
ticular interest. Indeed we see from the tables that the sites from which the links 
originate are sites about sites, or meta sites, while those pointed to by the links are 
targets. Such sites are related to Kleinberg’s Hubs and authorities, but they might be 
more specific and are computed differently, so we gave them different names to 
avoid confusion.   

Table 5. Meta sites and Targets for the query “Computational Geometry” 

Link Weight Meta sites Targets 

1.92 "All" Engineering Resources on the Internet Geometry in Action 

1.85 
Computational Geometry Pages: What's 
ancient? 

Geometry in Action 

1.60 Computational Geometry on the WWW Geometry in Action 

1.53 "All" Engineering Resources on the Internet 
Directory of Computational Geometry 
Software 

1.47 Computational Geometry Links Geometry in Action 

1.46 
Computational Geometry Pages: What's 
ancient? 

Directory of Computational Geometry 
Software 

1.36 Computational Geometry Web Directories Geometry in Action 

1.35 "All" Engineering Resources on the Internet The former CGAL home page 

1.30 
Computational Geometry Pages: What's 
ancient? 

The former CGAL home page 
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5   Conclusion 

We have shown that the ranking of links, using singular value decomposition, can 
have a beneficial effect on the ranking of sites, the discovery of meta sites, and can 
serve as a basis for the design of surf engines. 
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