Modeling Dynamic Behavior in Large Evolving Graphs

Ryan A. Rossi Purdue University rrossi@purdue.edu

Brian Gallagher

Lawrence Livermore Nat. Lab bgallagher@llnl.gov

Jennifer Neville

Purdue University neville@purdue.edu

Keith Henderson

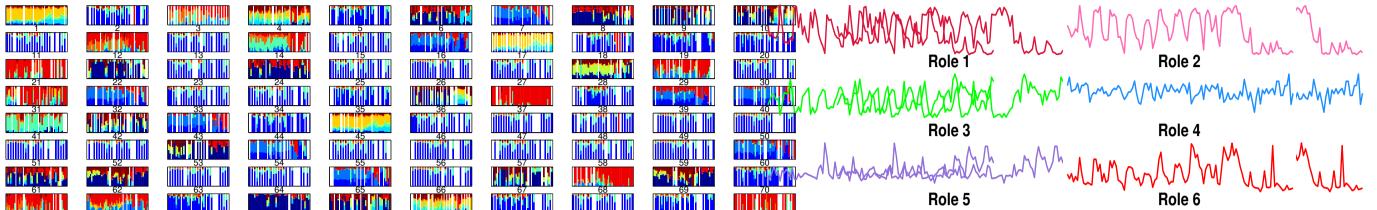
Lawrence Livermore Nat. Lab keith@llnl.gov

Problem Formulation

Given a large graph evolving over time, how can we model the roles and their evolution over time?

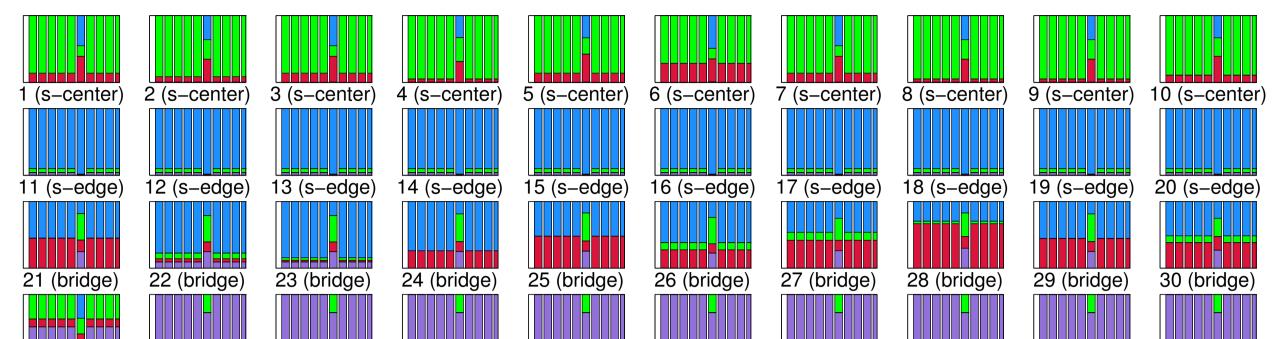
We proposed DBMM model for three main tasks:

Identify dynamic patterns in node/global behavior

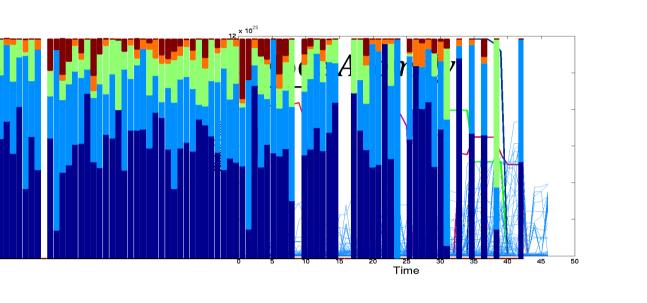


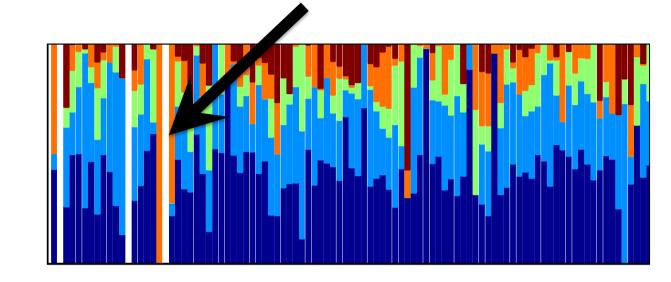
Dynamic Exploratory Analysis

Synthetic Graph Experiments. Generate sequences of graphs consisting of four main patterns, assess accuracy of DBMM model role discovery



- **Predict** future structural changes 2.
- **Detect** unusual transitions in behavior 3.





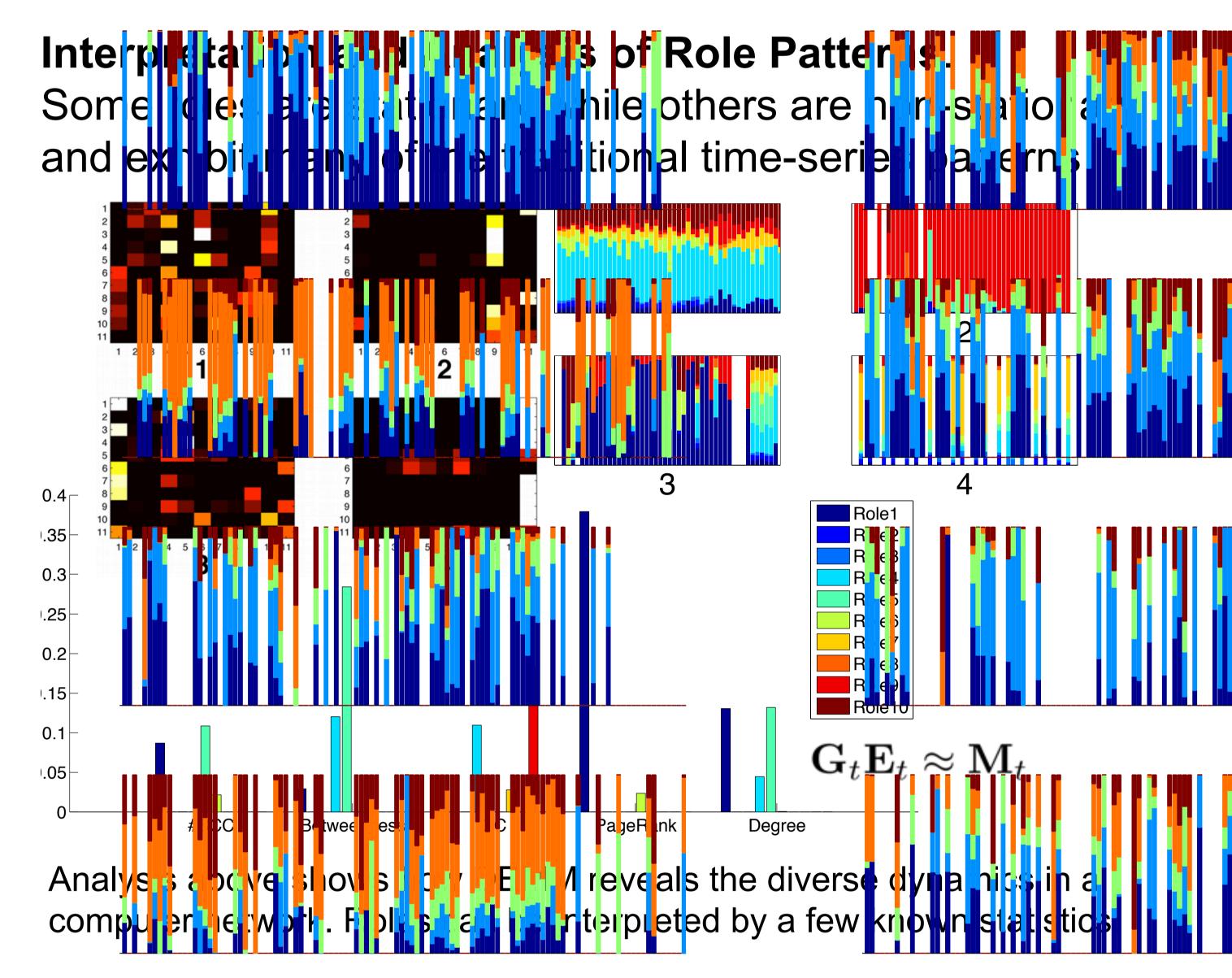
-based DB over

oles. Given a sequerce of where both eliges and ive **or** inactive:

		34 (clique)		38 (clique)	40 (clique)	

Roles	S-Center	S-Edge	Bridge	CLIQUE	Features	S-Center	S-Edge	Bridge	CLIQUE
S-Center	0.07	0.25	0.33	0.35	S-CENTER	0.08	0.25	0.34	0.33
$\mathbf{S} ext{-}\mathbf{E}\mathbf{D}\mathbf{G}\mathbf{E}$	0.28	0.10	0.22	0.40	$\mathbf{S} ext{-}\mathbf{E}\mathbf{D}\mathbf{G}\mathbf{E}$	0.27	0.11	0.25	0.37
Bridge	0.29	0.18	0.16	0.37	Bridge	0.29	0.20	0.17	0.34
CLIQUE	0.24	0.25	0.29	0.22	CLIQUE	0.24	0.24	0.29	0.23

DBMM successfully distinguishes between the ground-truth roles, accurately revealing the known dynamics



1. Find set X of representative features for S_0 Fatract the featines X for each and a positive **ste** $\mathbf{H} \in \mathbb{R}^{r \times f}$ that minimizer $f(\mathbf{G}_t, \mathbf{F}) = \frac{1}{2} ||\mathbf{V}_t - \mathbf{G}_t \mathbf{F}||_F^2$ **min**(*number* of bits + errors) era ively estimate $I = \{G_{+}: t \in I\}$ s ng NMF. sition Models Given C. transition model T that minimizes the functional: $f(\mathbf{G}_t, \mathbf{G}_{t-1}) = \frac{1}{2} ||\mathbf{G}_t - \mathbf{G}_{t-1}\mathbf{T}||_F^2$ \mathbf{G}_{t-1} \mathbf{G}_t \mathbf{G}_{t-2} \mathbf{G}_{t-1} $\mathbf{T}~pprox$ All models predict G_{t+1} using G_t .

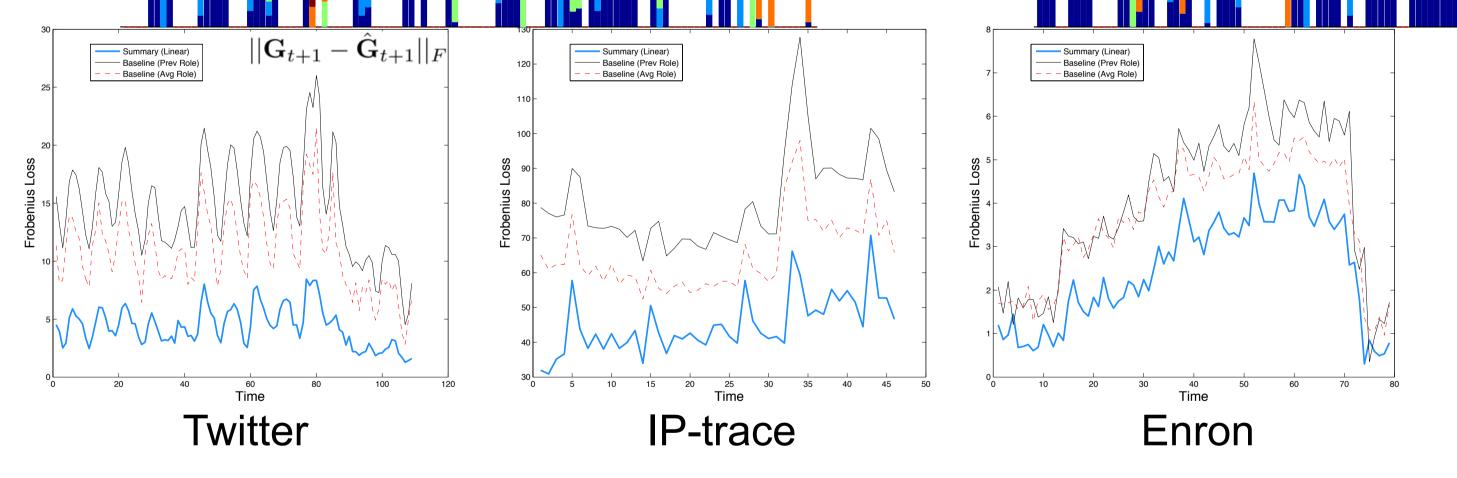
 \mathbf{G}_{k-1} Snapshot: Uses only the immediate past Stacked: Uses training examples from k previous timesteps <u>Summary</u>: Weight training examples from k previous timesteps

 $\mathbf{G}_{S(t)} = \alpha_1 \mathbf{G}_k + \ldots + \alpha_{w-1} \mathbf{G}_{t-1} + \alpha_w \mathbf{G}_t = \sum_{i=k}^t K(\mathbf{G}_i; t, \theta)$

 \mathbf{G}_k

Predicting Future Behavior

For etc. their future role (ertex. Me Di ler langerships as trail ahea



DBMM is more accurate at predicting future behavior than baselines.

Baseline Models: Predict future role based on (1) previous role and (2) average role distribution.

DBMM has the following properties:

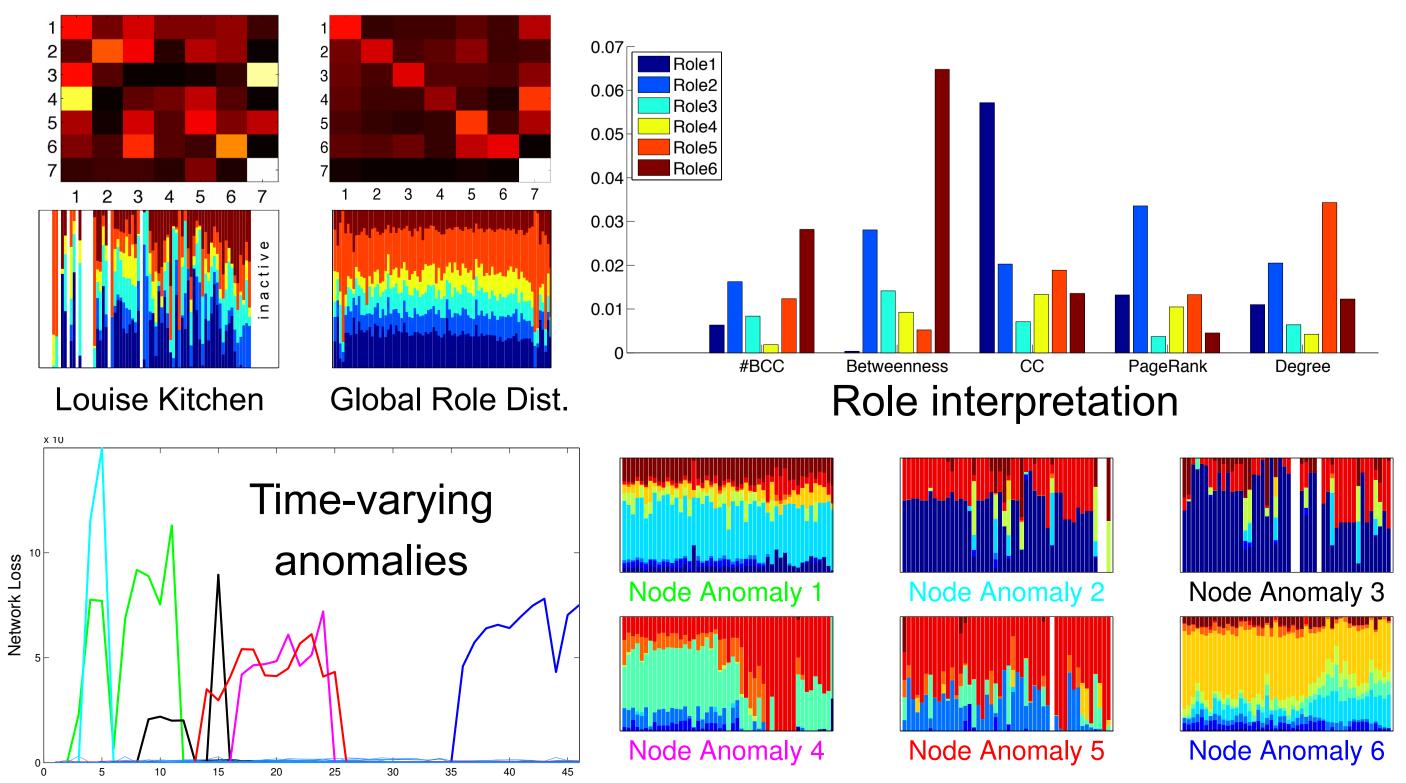
- 1. Automatic: No user-defined parameters
- 2. Scalable for **BIG** graphs: O(m) time to compute
- 3. Non-parametric & data-driven: # features / # roles
- 4. Interpretable: explainable trends / dynamics
- 5. Flexible: notion of role behavior is customizable

Role Statistics of Networks

Dataset	Feat.	\mathbf{Roles}	$ \mathbf{V} $	$ \mathbf{E} $	$ \mathbf{T} $	\mathbf{length}	- Networks with a
TWITTER	1325	12	310K	4M	41	$1 \mathrm{day}$	
TWITTER-COP	150	5	8.5K	27.8K	112	3 hours	greater number of
Facebook	161	9	46.9K	183K	18	$1 \mathrm{day}$	roles are highly
EMAIL-UNIV	652	10	116K	1.2M	50	$60 \min$	adaptive and
Network-Tra	268	11	183K	1.6M	49	$15 \mathrm{min}$	
INTERNET AS	30	2	37.6K	505K	28	$3 \mathrm{months}$	exhibit more
ENRON	173	6	151	50.5K	82	$2 \mathrm{weeks}$	complex dynamics
IMDB	45	3	21.2K	296K	28	1 year	
REALITY	99	5	97	31.6K	46	1 month	

Anomalous Structural Transitions

Detect anomalous vertices whose role transitions significantly deviate from the global role transitions.



DBMM finds vertices that are anomalous for only short periods of time and normal otherwise.