
1.  Use a fast heuristic to approximate the size of the
maximum clique. 	

•  Search ordering. Our fast heuristic searches vertices by

decreasing core number. 	

•  Greedy strategy. For each vertex and its induced neighborhood,

we build a clique by greedily adding, at each step, the vertex with
largest core number	

•  Pruning. Since the core numbers are also a lower bound on the
size of the largest clique a vertex participates, we can efficiently
prune the search space.	

2.  Initial pruning. Once we have a large clique H, we may
remove all vertices (and their edges) that have K(v) < |H|.	

•  This pruning procedure reduces the memory requirements quite

significantly for most networks. 	

•  In some cases, we find that K(v)+1 = |H| and simply return H.	

3.  Order the remaining vertices so that they’re searched
from smallest to largest degree. 	

4.  Compute and prune vertex neighborhood. While
computing each vertex neighborhood, we systematically
prune using core numbers and a pruned vertex array X.	

5.  Compute core numbers of vertex neighborhood.
Afterwards, we set P = NR(v) and compute core numbers on
the reduced neighborhood.	

•  Vertices with insufficient neighborhood core numbers are again

removed from P. 	

•  P is also ordered by neighborhood cores. 	

6.  Greedy coloring. Using the degeneracy ordering from the
neighborhood k-cores, we compute a greedy coloring to
obtain an upper bound on the clique size of the
neighborhood, which is guaranteed to be at least as tight as
the upper bound given by neighborhood cores 	

7.  Recursively search pruned vertex-neighborhood P	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

8.  Explicitly reduce the graph periodically. This 	

 operation reduces the cost of the intersections in the 	

 clique search procedure, and also has caching benefits.	

9. Repeat steps 4-8 until all vertex neighborhoods	

 are searched	

Ryan A. Rossi
Purdue University

rrossi@purdue.edu

David F. Gleich
Purdue University

dgleich@purdue.edu

Assefaw H. Gebremedhin
Purdue University

agebreme@purdue.edu

Md. Mostofa Ali Patwary
Northwestern University

mpatwary@eecs.northwestern.edu

Consider a simple undirected graph G. A clique of size k
is a subset of k vertices that forms a complete subgraph. 	

The maximum clique problem is to find the largest such k
contained in G.	

z	

w	
v	

u	
 z	

w	

u	

Cliques are nested	

z	

w	
v	

u	

3-clique	

Closed under
exclusion	

U	 –	 {v}	 is also a clique	

Clique	

•  Our algorithm is fast and shown to be effective for many types of
graphs, outperforming the competition	

•  CLIQUE is easy for powerlaw graphs; linear in the number of
edges and vertices	

•  Temporal SCC’s are easy to compute in practice 	

•  K-core pruning reduces the search space for sparse networks	

•  Our parallel algorithms reduces the dependency on the initial

ordering of vertices, sometimes giving superlinear speedups	

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

P(
r)

 o)

o

pmc (no neigh cores)
pmc
BK
FMC

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

P(
r)

 o)

o

Social	 &	 Info	 	
Networks	 	
(Serial)	

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

P(
r)

 o)

o

pmc (no neigh cores)
pmc

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

P(
r)

 o)

o

DIMACS-Hard 	

(16 Threads)	

CLIQUE in general is NP-hard, even to approximate it. In this
work, we propose a fast, parallel, maximum clique algorithm for
large social and information networks. The runtime of our
algorithm is shown to be linear in the size of the graph. This holds
even for big graphs with more than a billion edges. 	

In this spirit, we have released our
codes and an online appendix:
http://www.cs.purdue.edu/homes/
dgleich/codes/maxcliques/	

This now makes it possible for
CLIQUE to be used in tasks
such as:	

	

•  Analyzing massive networks	

•  Evaluating graph generation	

•  Community detection 	

•  Anomaly identification	

3 4 5 6 7 8 9
−3

−2

−1

0

1

2

log |V| + |E|

lo
g

R
un

tim
e

3 4 5 6 7 8 9
−3

−2

−1

0

1

2

log |V| + |E|

lo
g

R
un

tim
e

The CLIQUE problem can be solved in
polynomial time for planar and perfect graphs.
In this work, we demonstrate that CLIQUE is
also easy for power-law graphs.	

CLIQUE is easy for	

power-law graphs	

v	

u	

w	

z	

1,5	 3	

2	

4	

Dynamic Graph	

u-w-z	
 u-v-w	

v	

u	
 z	

w	
v	

u	
 z	

w	

Temporal Strong Components	

Parallel

Maximum
Clique
Finder	

v	

u	
 z	

w	

Edge (u,v) exists if
there is a temporal
path from u to v.	

v	

u	

w	

z	

✗	

Reachability Graph	

remove 	

non-reciprocal

edges	

A temporal path is a sequence
of edges that obey time.	

✗	

The maximum cliques of RG are the 	

largest temporal strong components	

✔	

Twitter:	 The	 maximum	 clique	
is	 a	 strange	 set	 of	 spammers	
and	 legitimate	 users	 (whom	
likely	 reciprocate	 all	 followers)	

so
ci

al
 n

et
w

or
ks
	

fa
ce

bo
ok
	

w
eb
	

te
ch
	

co
lla

b	

bi

o	

Technological	 networks:	
Surprisingly	 large	 maximum	
cliques	 given	 that	 it	 indicates	 an	
overly	 large	 set	 of	 redundant	
edges,	 suggesting	 over-‐built	
technology,	 or	 critical	 groups	 of	
nodes.	

Collaboration	 and	 web	
networks:	 We	 Nind	 that	 the	
largest	 k-‐core	 is	 the	 clique	
number,	 and	 can	 be	 veriNied	 by	
our	 heuristic!	

Social	 &	 FB	 networks:	 These	
networks	 have	 the	 largest	
difference	 between	 the	 actual	
clique	 number	 and	 the	 largest	
k-‐core	 (harder	 to	 verify	 using	
only	 our	 heuristic).	

Friendster:	 Our	 fast	 heuristic	
Ninds	 the	 exact	 clique	 number,	 	
of	 this	 large	 1.8	 billion	 edge	
network	 in	 only	 ~500	 seconds!	
Also	 the	 exact	 clique	 Ninder	 only	
takes	 1205	 seconds!	

The algorithms search over
vertex-induced neighborhoods:	

•  After searching a vertex it

is removed from the graph.	

•  Clique computations are

“independent”	

For each vertex u in decreasing core number order	

 Return if the core number of u is less than max.	

 Let S be the neighbors of u with core numbers > max	

 C = {}	

 For each vertex w in S by decreasing core numbers:	

 Add w to C	

 Set S to be S ∩ N(w)	

 If |C| > max, H = C and max = |H|	

Our algorithm uses novel bounds for social and information
networks, namely, the core numbers and greedy coloring. 	

	

PMCHeuristic: Returns a large clique H	

 1	

 3	
 4	
 6	

 5	

 2	
 7	
 8	

 1	

 2	

 3	

 4	

 5	
 6	

 7	

 8	

A k-core in G is a vertex induced
subgraph where all vertices have degree
at least degree k. The core number of a
vertex v is the largest k such that v is in
a k-core. Let K(G) be the largest core in
G, then K(G)+1 is an upper bound on
the clique size 	

Color vertices in order of decreasing core
numbers, assigning to each vertex v, the smallest
possible integer not yet assigned to one of its
neighbors. Let L(G) be the number of colors:	

Branch(C,P):!
while |P| > 0,	

 If |C| + L > |H|,	

 Select u from P, remove it, and add it to C	

 Set P’ to be P ∩ NR(u)	

 If |P’| > 0, 	

 recolor P’ and update coloring number L	

 Branch(C,P’)	

 Else if |C| > |H|, Set H to be C (new max)	

 Remove last vertex from C (backtrack)	

We believe the most important steps are:	

•  finding a good approximation via the fast heuristic	

•  searching vertices -- smallest to last ordering	

•  efficient data structures for all operations and graph

updates	

•  aggressively using k-core bounds and coloring

bounds to remove vertices early	

Suppose we have N problems, and M of them are solved within 4 times of the best
solver, then we’d have a point:	

Main findings. Our algorithm outperforms the competition dramatically.
The neighborhood core bounds help with challenging problems and
almost never take more than twice the time.	

BK solves only 80% of the
problems	

•  FMC is much better than BK,
but not comparable to PMC.	

•  For most of these networks,
PMC with neighborhood cores
is only marginally faster. 	

For the hard DIMAC
problems, neighborhood cores
improve performance quite
significantly.	

	

The performance of
neighborhood cores in our
parallel algorithm is shown to
increase compared to the serial
version.	

C is the clique being built, whereas P is the set of potential
vertices that could be added to C to form a clique of |C|+1.
After a vertex u from P is added to C, we must remove it
from P and compute the intersection of P ∩ NR(u)	

	

P	

 	
 	

 	
 	

 	

C	

 	
 	

 	

 	
 	

 	

 	

 v	

 1	

 3	
 4	
 6	

 5	

 2	
 	
 	

N(4) = {1,2,3,5,6}	

 	

 	

We use our fast maximum clique finder to compute the largest temporal
strong component, which is known to be an NP-hard problem.	

When edges represent a contact − a phone call, email, or physical proximity
− between two entities at a specific time, we have a dynamic graph.	

	

•  In all networks, our algorithm
computes the largest temporal-SCC
in less than a second.	

• Our fast heuristic finds the largest
clique in all these networks	

	

Reachability graph shows
clear communities of the
political left and right 	

Largest Temporal-SCC
consists of politically
right users.	

Political Retweets	

