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Overview Local & Global Embeddings

We find low-rank "local” node embeddings for each motif and k-step

Learning a useful representation (embeddings) from graph data lies at the heart and matrix by solving the following optimization problem:

success of many machine learning tasks such as entity resolution, classification, link
prediction, and anomaly detection. However, existing embedding methods are unable
to capture higher-order dependencies and connectivity patterns that are crucial to
understanding and modeling complex networks.
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In this work, we formulate higher-order network representation learning and describe Concatenate all k-step node embedding for all T motifs and K steps
a general framework for learning Higher-Order Network Embeddings (HONE) from
graph data based on subgraph patterns called graphlets (network motifs, orbits). The Yy — [ vV ... L g®) L &)
HONE framework is highly expressive and flexible with many interchangeable _ J : J
components. The experimental results demonstrate the effectiveness of learning 1-;;1) K-;;ps
higher-order network representations. In all cases, HONE outperforms recent
embedding methods that are unable to capture higher-order structures. In particular,
HONE achieve a mean relative gain in AUC of 19% (and up to 75% gain) across all U — g™, fort=1,....,Tandk=1,....K
methods and over a wide variety of networks from different application domains.
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All node embeddings are normalized appropriately via L2 norm

and find a "global” higher-order node embeddings by solving

Higher-Order Network Embeddings (HONE) argmin DY | &(ZH)) - (general bregman dvergence)

Given a graph G=(V,E) and a set ‘H = {Hj, ..., Hr} of T network motifs, we form the

weighted motif adjacency matrices Forinstance,
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(Wt)ij = # of instances of motif H, that contain nodes i and j (Eq. 2) ACN TOWOT £ 15 8 L-CIMENSIona
embedding of a node H
(thought of as a tensor where W, = # instances of H, that contain (i, j) € E) Z

Evaluation & Results

Experimental setup: 10-fold cross-validation, repeated for 10 random
trials, D=128, D, = 16, edge embedding derived via (zi +z;)/2; Predict
link existence via LR; # steps K selected via grid searchK € {1, 2, 3, 4}

Initial graph Weighted 4-path motif graph Weighted 4-clique motif graph

AUC results comparing HONE to recent embedding methods across a
wide variety of networks from different application domains.
Motif Matrix Formulations = -
To generalize HONE for any motif-based matrix formulation, we can & S § e 2 wm g
define a function g & Z 5 x T S
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Motif Transition Matrix: Normalized Motif Laplacian: 3 < a8 RS % RANK
P = D—lw (Eq. 4) E — 1 _ D—1/2WD—1/2 (Eq. 6) HONE-W (Eq. 2) 0.841 0.843 0.811 0.862 0.726 0.910 0.979 1
: HONE-P (Eq. 4) 0.840 0.840 0.812 0.863 0.724 0.913 0.980 2
D = diag(We) Wy . ]
Z P.—pnle=1 1-— Wy ifi=jandwj #0 HONE-L (Eq. 5) 0.829 0.841 0.808 0.858 0.722 0.906 0.975 3
IARTER t Lij=3-—2U_ ifjand jare adjacent HONE-L (Eq. 6) 0.829 0.836 0.803 0.862 0.722 0.908 0.976 4
VWiWj
Motif Laplacian Matrix: 0 otherwise Node2Vec [4] 0.810 0.635 0.721 0.804 0.701 0.844 0.894 5
L=D-W (Eq. 5) o . . DeepWalk [5] 0.796 0.621 0.710 0.796 0.696 0.837 0.863 6
| | wi = 2.j Wij is the motif degree of node LINE [9] 0.752 0.706 0.734 0.800 0.630 0.837 0.780 7
(can use in/out/total motif degree) -
GraRep |3] 0.805 0.672 0.743 0.829 0.702 0.898 0.559 8
Other interesting motif matrix formulations can also be used! Spectral [10] 0.561 0.699 0.593 0.602 0.516 0.606 0.629 9
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K-step Motif-based Matrices Overall improvement in AUC of 19.2% and up to 75.2%
Given the motif matrix functior ¥ and the weighted motif graphs W,
we derive all k-step motif-based matrices for all T motifs and K steps . . . . .
) Main Findings & Contributions
Sg):\IJ(W]tC), fork=1,...,.Kand t=1,...,T | |
1. Introduced higher-order network embeddings (HONE)
The number of paths weighted by motif\ The probability of transitioning from node i to 2. Described a ComPUtational framework for com puting them
counts from node | to node J in k-steps is node jin k-steps is given by 3. Demonstrated the effectiveness of higher-order network embeddings
(W5)ij = (W - W), (PX)j = (P -~ P, as HONE achieves a mean relative gain in AUC of 19% across all other

_ k Y k methods and networks from a wide variety of application domains.




